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Abstract

Traditional deep-learning models use pre-trained knowl-
edge on large-scale datasets to fine-tune the model. This
strategy significantly improves the performance of down-
stream tasks such as object detection and segmentation. Re-
cently, vision-language (VL) models that jointly train an im-
age encoder and a text encoder have gained attention. No-
tably, CLIP, which employs contrastive learning for classifi-
cation, contributed significantly to establishing the founda-
tion for the VL model paradigm. In depth estimation, sev-
eral CLIP-based models have been proposed that use im-
ages and texts called semantic bins. However, it is ques-
tionable whether these human-set semantic bins are rea-
sonable. In this work, we propose a network for monocu-
lar depth estimation, leveraging CLIP’s pre-trained knowl-
edge. Our model employs a regression-classification for-
mulation, predicting depth through a linear combination
of depth candidates and a probability map derived from
the similarity score between image embedding and text em-
bedding. Unlike previous works relying on human-set se-
mantic bins for the text embedding, our model converts the
predicted depth candidates into distance classes using the
CaBins module. Moreover, we modify CLIP’s image en-
coder, which is designed for classification, to address the
dense prediction task. Experiments were conducted on the
NYU-Depth V2 and KITTI datasets. We compared the per-
formance of our model with CLIP-based as well as uni-
modal monocular depth estimation models. Our proposed
model outperformed previous CLIP-based models across
all evaluation metrics and showed high-quality boundary
predictions on both datasets. Our model is available at
https://github.com/EunjinSon1/CaBins.

1. Introduction
Deep-learning models leverage pre-trained knowledge on
large-scale datasets to fine-tune the model. This process ef-
fectively enhances the model’s performance for the majority
of downstream tasks. In traditional computer vision task,
the network extracts features from an encoder pre-trained

Figure 1. Visualization of the predicted depth map of our network
on the KITTI dataset. (a) indicates input images. (b) is ground
truths. (c) is the depth maps of our network.

on large-scale only image datasets such as ImageNet [10]
or MS-COCO [29]. The pre-training strategy of these vi-
sion models has demonstrated successful performance im-
provement across various vision tasks, including object de-
tection [7, 30, 40], segmentation [3, 9, 34, 49], and depth
estimation [12, 15, 25, 33].

Meanwhile, vision-language (VL) models, which learn
vision representations through joint training of an image
encoder and a text encoder, have started to attract atten-
tion [21, 37]. Notably, CLIP [37] demonstrated impres-
sive classification performance without fine-tuning by pre-
training on a dataset of 400 million web-based image-text
pairs through contrastive learning. Subsequently, various
downstream tasks, such as image generation [16, 47, 48, 51]
and video-text retrieval [22, 26, 46, 53], exhibited signifi-
cant performance improvements by leveraging CLIP’s pre-
trained knowledge. In particular, these VL models have
proven to be effective for zero-shot models because they
learn connections between visual and language informa-
tion [4, 14, 35, 45].

However, CLIP’s pre-trained knowledge does not adapt
well to all downstream tasks. CLIP is a model special-
ized for classification problems and its architecture is de-
signed to focus on global information. Therefore, it has
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not been well explored in tasks requiring dense prediction,
where local information is important. Rao et al. [39] tack-
led per-pixel problems such as semantic segmentation and
detection by redefining CLIP’s image-text matching prob-
lem as a pixel-text matching problem. Additionally, CLIP
is pre-trained on paired datasets of images and texts such as
“A photo of a [Object].”. The pre-trained knowl-
edge from these datasets has limitations in grasping ab-
stract concepts like depth clues. Consequently, VL models
still face challenges in handling complex and abstract tasks,
such as depth estimation and counting.

Recently, a zero-shot depth estimation model [52] was
proposed, leveraging the pre-trained knowledge of CLIP.
DepthCLIP [52] calculates the similarity score between im-
age features and semantic bins’ features to predict depth,
where semantic bins denote words representing distance
scales (e.g., [‘giant’, ‘close’, ..., ‘unseen’]). Their contri-
bution implies the potential for expanding the field of depth
estimation, suggesting that VL models can be adapted to
monocular depth estimation (MDE) through matching texts
for distance scale with images. However, it must utilize pre-
determined fixed depth values, called quantified bins, to ob-
tain the final depth. Furthermore, there is uncertainty about
the appropriateness of the human-set semantic bins and how
detailed they should be. Subsequently, several CLIP-based
depth estimation works [2, 20, 23] inspired by DepthCLIP
have been proposed. However, the fundamental question of
semantic bins remains unresolved, leading to a limitation
where the estimated depth map appears quite blurry.

In this paper, we propose a novel CLIP-based monoc-
ular depth estimation model and compare its performance
with other models. Inspired by AdaBins [5], we adopt
a regression-classification formulation to predict depth,
wherein the depth map is estimated as a linear combina-
tion of depth candidates and a probability map. Our work
stems from questions about the human-set semantic bins
employed in previous works. Instead of using human-
set semantic bins, our model uses bin centers, which are
depth candidates estimated from an image encoder, as text
prompt. We partition all bin centers into a few groups and
take one from each group, considering the distribution of
bin center values. These obtained values are referred to as
CaBins. Furthermore, to address the dense prediction prob-
lem, we modify CLIP’s image encoder to extract multi-scale
features. To demonstrate the effectiveness of our model, it
was evaluated on the NYU-Depth V2 [43] and KITTI [18]
datasets. Our model outperformed the previous CLIP-based
MDE models and achieved comparable results to unimodal
MDE models. Additionally, to verify the effectiveness of
our method for text prompt, we compare the results across
various text prompt. We hope that our work will contribute
to the advancement of MDE techniques, especially VL-
based MDE.

To summarize, our main contributions are

• We propose a novel model for CLIP-based monocular
depth estimation. Unlike previous works that rely on
human-set semantic bins, we use estimated bin centers
called CaBins as text prompt.

• We modified CLIP’s image encoder to extract multi-scale
features for addressing the dense prediction task.

• To demonstrate the effectiveness of our model, we
conducted experiments on NYU-Depth V2 and KITTI
datasets, respectively. Our model outperformed the pre-
vious CLIP-based MDE models.

2. Related work

2.1. Monocular Depth Estimation

MDE is the task of estimating pixel-level distance infor-
mation for a single RGB image. This task is essential for
various applications that recognize 3D environments, such
as autonomous driving or robotics. There are three ma-
jor formulations for MDE: Regression, Classification, and
Regression-Classification. Regression is a basic framework
for MDE, wherein the network is trained through a regres-
sion loss function that measures pixel-wise disparity be-
tween the predicted depth map and the ground truth. Eigen
et al. [12] introduced the first deep learning-based depth
estimation network and proposed the Scale-Invariant Log-
arithmic loss, which has been widely adopted as the re-
gression loss function for depth estimation tasks. Lee et
al. [25] proposed a local planer guidance layer that uses
plane coefficients to estimate depth. Ranftl et al. [38] pro-
posed a ViT [11]-based depth estimation model instead of
the traditional CNN-based backbone. There has been a
consistent trend of regression-based depth estimation mod-
els [31, 32, 36]. On the other hand, Fu et al. [15] intro-
duced a classification approach that predicts optimal depth
candidates by dividing the depth range into several can-
didates on either a uniform or logarithmic scale. While
this approach has shown significant performance improve-
ment, it suffers from poor visual quality due to depth dis-
cretization. Therefore, Bhat et al. [5] aimed to improve the
MDE performance by integrating regression and classifica-
tion approaches. Specifically, they combined a regression
method that learns a probability distribution with a classifi-
cation method that generates N depth candidates. In addi-
tion, they proposed an adaptive bins method that takes into
account the image-dependent depth distribution, allowing
depth candidates to be adaptively predicted for the image
instead of uniform division. Building upon the idea of [5],
subsequent works [1, 6, 27, 42] have been proposed, in-
cluding methods for predicting depth candidates at the pixel
level [6] and adjusting bin-widths based on uncertainty [42].
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Figure 2. An overview of the architecture of the proposed network. The network takes an RGB image to output an image embedding and bin
centers. These bin centers are converted into K CaBins through the CaBins module, where CaBin ek represents the depth value computed
by weighted summation of ng bin centers in the k-th group. Subsequently, they are concatenated with learnable prompt [p1, ..., pN ] and fed
into the text encoder. The text embedding is updated by the transformer decoder using image embedding. A similarity score is calculated
through the dot product between the two embeddings, then fed into the depth decoder to predict the probability map. Finally, the depth
map is computed as a linear combination of the bin centers and the probability map.

2.2. Vision-Language Models

The integration of pre-trained VL models into vision
tasks has demonstrated successful performance improve-
ments [21, 37]. Particularly, CLIP [37] significantly im-
proved classification performance through the pre-training
on a large-scale raw paired dataset using a contrastive learn-
ing method, thereby establishing the foundation for the VL
pre-training paradigm. They employ a prompt template
(e.g., “A photo of a [Object].”) to enrich contex-
tual information. Zhou et al. [54] addressed the constraints
of human-designed prompts by introducing prompt learning
that utilizes the concatenation of learnable vectors and ob-
ject labels for text prompt generation. Kwon et al. [24] pro-
posed a probabilistic prompt learning method that utilizes
multiple attribute prompts for a single image, considering
the randomness of the visual-context. Although adapting
VL models to vision tasks has led to significant advance-
ments, such works have primarily designed for limited tasks
such as classification and segmentation.

2.3. CLIP-based Depth Estimation

Recently, several works have been proposed to adapt VL
models in the field of depth estimation [2, 20, 23, 52].
Initially, Zhang et al. [52] proposed zero-shot depth esti-
mation model, leveraging CLIP’s pre-trained knowledge.
They define seven human-set semantic bins (e.g., [‘gi-
ant’, ‘ extremely close’, ‘close’, ‘not in distance’, ‘a lit-
tle remote’, ‘far’, ‘unseen’]) to generate prompts such
as “This object is [semantic bin].”. These
prompts are fed into the text encoder to output a text em-
bedding, and the depth weights are calculated through the
dot product between it and a image embedding, followed by
a softmax operation. Subsequently, the final depth map is

predicted through a linear combination of the depth weights
and the quantified depth bins, which are fixed depth values
set in advance. Hu et al. [20] improved DepthCLIP [52] by
considering that the depth distribution is different for each
scene. They design a learnable depth codebook by train-
ing on a single image from each scene category and store
the learned quantified depth bins for each scene. Auty [2]
utilize learnable tokens instead of semantic bins, but has to
rely on predetermined fixed depth values for the final depth
prediction. While these works have shown the applicability
of VL models in depth estimation, there are still limitations,
including fundamental questions about human-set semantic
bins and issues with blurry output.

3. Method
In this section, to facilitate a better understanding of our
model, we first introduce the architecture of CLIP, specif-
ically its ResNet-based image encoder and text encoder.
Subsequently, we present our model and training loss. An
overview of the architecture of our proposed network is
shown in Figure 2.

3.1. CLIP

CLIP consists of a ResNet [19] or ViT [11]-based image
encoder and a Transformer [44]-based text encoder. Each
encoder outputs embedding vectors for their corresponding
input. For the ResNet-based image encoder, the encoder
consists of the standard ResNet architecture and an addi-
tional Multi-Head-Attention (MHA) module. Specifically,
the input image I is fed into the ResNet architecture, result-
ing in a feature map x with a stride of 32 and 2048 channels.
This feature map x is then flattened into a vector and con-
catenated with a global token x having 2048 channels. The
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global token x is obtained as the average of x and serves as
a global image representation. Subsequently, the input em-
bedding [x,x] with the positional embedding added is fed
into the MHA module, where an attention mechanism is ap-
plied with x as the query and [x,x] as the key and value.
The final output of the image encoder is an embedding vec-
tor z with D channels.

For the text encoder, CLIP constructs the text prompts
“A photo of a [Object].” for K object classes.
Subsequently, a tokenizer assigns an integer to each token
of the text prompt using a lower-cased byte pair encoding
(BPE), resulting in a vector of size K×77. Where 77 repre-
sents the maximum sequence length, including [SOS] and
[EOS] tokens. This vector is converted into an embedding
vector of size K × 77 × 512 through an embedding func-
tion. Positional embedding is then added before it is fed
into the transformer. The final text embedding t ∈ RK×D

is obtained by projecting only the embedding vector corre-
sponding to the [EOS] token of the transformer’s output
embedding into D dimensions. D is set to 1024 in ResNet-
50 and 512 in ResNet-101.

3.2. CaBins

3.2.1 Image Encoder

We adopt ResNet-101 as the image encoder. CLIP concen-
trates on extracting global information from the image for
classification. However, in dense prediction tasks such as
MDE, incorporating both global and local information is
crucial for achieving accurate depth estimation. Therefore,
we make some modifications to the CLIP’s ResNet-101-
based image encoder, enabling the extraction of multi-scale
features. Specifically, for an input image I , the input em-
bedding [x,x] is obtained by the same process described in
Section 3.1. This embedding vector [x,x] is then fed into
the MHA module. Note that, unlike CLIP, the MHA module
apply a self-attention mechanism with [x,x] as a query and
generates an output embedding [z, z] with 512 channels.

Subsequently, an MLP with ReLU activation function is
applied to the global token z to generate an nbins dimen-
sional vector b′. This vector b′ is then normalized, sum-
ming up to 1, to obtain a bin-width vector b. The final bin
center vector c (b) is computed as follows:

c (bi) = dmin + (dmax − dmin)

bi
2
+

i−1∑
j=1

bj

 ,

i ∈ {1, ..., nbins} , (1)

where dmin and dmax denote the minimum and maximum
values of the depth range, respectively, and nbins is the
number of bins, which is set to 256 as in AdaBins [5].
Moreover, we utilize the encoded features {xi}4i=1 with

Figure 3. Our proposed CaBins module. Given nbins bin centers,
the CaBins module partitions them into K groups. In the k-th
group, the CaBin ek is computed as a weighted summation. The
weight is defined by applying the softmax operation to the inverse
of the deviation from the mean, as shown in Equation 2. Finally,
the CaBins are concatenated with the learnable prompts and fed
into the text encoder.

strides of 4, 8, 16, and 32 from each stage of ResNet-101
in the depth decoder.

3.2.2 CaBins

We construct the text prompt based on the predicted bin cen-
ters. As shown in Figure 3, the bin center vector c (b) from
the image encoder is grouped into adjacent bins to generate
K groups {ck (b)}Kk=1, where K is set to 8. Subsequently,
we take one value from each group to serve as the distance
class ek for the text prompt. To assign greater weight to bin
center values that are closer to the mean in the k-th group,
the weight w and distance class ek are defined as follows:

ek =

ng∑
i

wick (bi),

wi = softmax
(

1

|ck (bi)−mk|+ ϵ

)
,

(2)

where ng and mk represent the number and mean of bin
centers ck (bi) in the k-th group. ek is the k-th distance class
computed by the weighted summation of ng bin centers,
and the resulting K distance classes are referred to as K
CaBins. ϵ is set to 1e−4, a small positive number to ensure
numerical stability. To prove the efficiency of our method,
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we conducted experiments using various methods, which
are covered in Section 4.6.

3.2.3 Text Encoder

We use CLIP’s pre-trained transformer-based text encoder.
The text encoder is frozen during training. Unlike previous
works [20, 52] that use seven semantic bins, we employ bin
centers estimated from the image encoder for text prompt.
To construct text prompts, the nbins bin centers are passed
into the CaBins module to generate K CaBins, as detailed in
Section 3.2.2. These resulting CaBins {ek}Kk=1 are concate-
nated with the learnable prompts p ∈ RN×512 introduced
by CoOp [54] and then fed into the text encoder. Here, N
represents the context length of the text prompt, which is
set to 8 in our case. Following the same process as CLIP,
the text encoder outputs a text embedding t ∈ RK×512.
Subsequently, inspired by DenseCLIP [39], the text embed-
ding t is updated through a transformer decoder using [z, z]
as key and value, with t as query. This process ensures a
more comprehensive integration of visual context into the
text embedding:

t← t+ γvpost,

vpost = TransDecoder(t, [z, z]),
(3)

where γ ∈ R512 is a learnable parameter, initialized to
10−4.

3.2.4 Depth Prediction

To match the visual representation with the linguistic rep-
resentation for the depth value, a similarity score between
the image and text embedding is calculated through the dot
product:

s = ẑ · t̂, (4)

where ẑ and t̂ mean z and t normalized in the channel di-
rection, respectively. The concatenation of s and x4 is fed
into a depth decoder and used to predict a probability map.
The depth decoder consists of simple upsampling layers
and channel reduction layers. At each stage, the encoded
features {xi}3i=1 are used as skip-connections to generate
a feature map with a shape of H/2 × W/2 × nbins. The
probability map p is predicted through a 1× 1 convolution
followed by a softmax function on this feature map. The
depth di at pixel i is predicted through a linear combination
of the bin center vector c (b) and the probability map p:

di =

nbins∑
k=1

c (bk) pik, (5)

where c (bk) is the k-th bin center, and pik is the probability
for the k-th bin center at pixel i. Finally, our depth map is
obtained by upsampling to the original resolution through
bilinear interpolation.

3.3. Training Loss

Pixel-level loss. Following previous works [5, 25], we use
the Scale-Invariant Logarithmic (SILog) loss introduced by
Eigen et al. [12] to train the network:

Lpixel = α

√√√√ 1

n

∑
i

g2i −
λ

n2

(∑
i

gi

)2

, (6)

where gi = log di − log d∗i is the logarithmic distance be-
tween the predicted depth map d and the ground truth d∗

at the i-th pixel and n is the number of valid pixels in the
ground truth. We set λ = 0.85 and α = 10 in all experi-
ments, respectively.

Bins loss. Following [5], the adaptive bins are supervised
using bi-directional Chamfer loss [13], which encourages
the two sets of values to be similar:

Lbins = chamfer (X, c (b))+chamfer (c (b) , X) , (7)

where X is a set of ground truth depth values and c (b) is a
set of predicted bin center values.

Total loss. Finally, the total loss is defined as:

Ltotal = Lpixel + βLbins, (8)

where we set β = 0.1 for all experiments in this work.

4. Experiments
4.1. Implementation Details

The proposed algorithm was implemented using a Nvidia
GeForce RTX 3090 GPU hardware environment and Py-
Torch framework. For training, we adopt the AdamW opti-
mizer with a weight decay of 0.1 and a 1-cycle policy with
the maximum learning rate of 3.57e − 5. The network is
trained for 25 epochs with a batch size of 8 in all experi-
ments. We evaluate the proposed model on the NYU-Depth
V2 indoor dataset and the KITTI outdoor dataset, respec-
tively.

4.2. Datasets

NYU-Depth V2 dataset. The NYU-Depth V2 dataset is
a dataset composed of video sequences captured from 464
different indoor scenes using RGBD camera. It consists of a
total of 120K RGB image and depth pairs with a resolution
of 640×480. Depth values range up to 10 meters. Follow-
ing previous work [25], we use 24,231 images for training
and 654 images for testing. Additionally, we apply a pre-
defined cropping by Eigen et al. [12].

KITTI dataset. The KITTI dataset is an outdoor road driv-
ing dataset consisting of stereo images and corresponding
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Method Approach AbsRel↓ RMSE↓ log 10↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Make3D [41]

Unimodal

0.349 1.214 - 0.447 0.745 0.897
DORN [15] 0.115 0.509 0.051 0.828 0.965 0.992

ASTransformer [8] 0.103 0.374 0.044 0.902 0.985 0.997
DepthFormer [28] 0.096 0.339 0.041 0.921 0.989 0.998
NeWCRFs [50] 0.095 0.334 0.041 0.922 0.992 0.998
DepthCLIP [52]

CLIP-based

0.388 1.167 0.156 0.394 0.683 0.851
Hu et al. [20] 0.347 1.049 0.140 0.428 0.732 0.898

Auty† [2] 0.324 0.961 0.127 0.473 0.779 0.921
Ours 0.120 0.401 0.050 0.866 0.978 0.996

Table 1. Performance comparison on NYU-Depth V2 dataset. A unimodal approach refers to training the model only on the image dataset.
↓ denotes that lower values are preferable, while ↑ denotes that higher values are preferable. The symbol † means reimplementation.

Method Approach AbsRel↓ SqRel↓ RMSE↓ RMSE log↓ log 10↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
DORN [15]

Unimodal

0.072 0.307 2.727 0.120 - 0.932 0.984 0.994
ASTransformer [8] 0.058 - 2.685 0.089 - 0.963 0.995 0.999
DepthFormer [28] 0.052 0.158 2.143 0.079 - 0.975 0.997 0.999
NeWCRFs [50] 0.052 0.155 2.129 0.079 - 0.974 0.997 0.999
DepthCLIP [52]

CLIP-based

0.473 6.007 12.958 - 0.680 0.281 0.531 0.696
Hu et al. [20] 0.384 4.661 12.290 - 0.632 0.312 0.569 0.739

Auty† [2] 0.307 2.197 6.405 0.121 0.113 0.548 0.826 0.935
CLIP2Depth [23] 0.074 0.303 2.948 - 0.032 0.938 0.990 0.998

Ours 0.057 0.186 2.322 0.088 0.025 0.964 0.995 0.999

Table 2. Performance comparison on the Eigen split of KITTI dataset. A unimodal approach refers to training the model only on the image
dataset. ↓ denotes that lower values are preferable, while ↑ denotes that higher values are preferable. The symbol † means reimplementation.

Velodyne LiDAR scans. The RGB images have an aver-
age resolution of 1241×376 pixels. Depth maps are created
by projecting LiDAR points and have a maximum depth
value of 80 meters. Following the standard Eigen split [12],
we use 23,158 images for training and 697 images for test-
ing. We apply a pre-defined cropping proposed by Garg et
al. [17].

4.3. Evaluation Metrics

We evaluate the quantitative performance of the pro-
posed model using standard metrics used in previous
works [25, 50]. For the accuracy metrics, the ratio of
pixels with relative errors lower than a threshold value
is used: % of di s.t. max( di

d∗
i
,
d∗
i

di
) = δ < thr, for

thr = 1.25, 1.252, 1.253. For the error metrics, the
following metrics are used: absolute relative error (Ab-
sRel): 1

n

∑
d∈n |d− d∗| /d∗; squared relative error (SqRel):

1
n

∑
d∈n ∥d− d∗∥2/d∗; root-mean-squared error (RMSE):√

1
n

∑
d∈n ∥d− d∗∥2; root-mean-squared logarithmic er-

ror (RMSE log):
√

1
n

∑
d∈n ∥log d− log d∗∥2; average log

error (log 10): 1
n

∑
d∈n |log10 d− log10 d

∗|, where d is the
predicted depth map, d∗ is the ground truth, and n denotes
a total number of available pixels in the ground truth.

4.4. Experimental Results on NYU-Depth V2

Table 1 and Figure 4 show the quantitative and qualita-
tive results on the NYU-Depth V2 dataset, respectively.
As shown in Table 1, our model exhibited improved per-
formance over CLIP-based depth models. Specifically, it
achieved reductions of 62.96% and 58.27% in the Ab-
sRel and RMSE error metrics, respectively, compared to
Auty [2]. In Figure 4, it demonstrated outstanding results
in predicting object boundaries and capturing small objects
such as the faucet. However, our model tends to underesti-
mate the depth range.

4.5. Experimental Results on KITTI

Table 2 and Figure 5 show the quantitative and qualitative
results on the KITTI dataset, respectively. As shown in
Table 2, our model outperforms all previous CLIP-based
models by a significant margin across all evaluation met-
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Figure 4. Qualitative comparison on the NYU-Depth V2 dataset. The symbol † means reimplementation.

rics. Specifically, it improved CLIP2Depth [23] by 22.97%
in terms of the AbsRel metric. Additionally, despite the
limitation that image features and text features from the VL
models are not well aligned for abstract tasks such as depth
estimation, our model showed comparable performance to
existing unimodal vision models. Figure 5 shows the qual-
itative results of the estimated depth maps. Our model
yielded high-quality boundary predictions and effectively
captured small objects such as car side mirrors. Addition-
ally, it adequately covered the entire depth range for the
KITTI dataset.

4.6. Ablation Study

In this section, we conduct an ablation study to demonstrate
the effectiveness of the proposed CaBins module. Experi-
ments were performed using a ResNet-50 based image en-
coder and evaluated on the KITTI dataset. Moreover, we

compare the results of different image encoders, including
ResNet-50, ResNet-101, and ViT-B/16.

CaBins. The main contribution of our work is to use pre-
dicted depth values for text prompt instead of the semantic
bins. In our CaBins module, we utilize a weighted sum-
mation with deviation to extract CaBins {ek}Kk=1 from all
bin center values. To demonstrate this effect, we conducted
experiments using semantic bins and various methods. For
semantic bins, the word ’farthest’ was added to the seman-
tic bins used in [52] to match the number of text prompt.
That is, the semantic bins used in the experiment are as fol-
lows: [‘giant’, ‘ extremely close’, ‘close’, ‘not in distance’,
‘a little remote’, ‘far’, ‘farthest’, ‘unseen’].

As shown in Table 3, our method reduced the RMSE
error metric from 2.363 to 2.339 compared to the seman-
tic bin-based method. These results support our proposal
that utilizing predicted depth values for text prompt is more
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Figure 5. Qualitative comparison on the Eigen split of KITTI dataset. The symbol † means reimplementation.

practical than relying on semantic bins. Additionally, in-
stead of merely selecting median values (denoted “Me-
dian”) or using simple average values (denoted “Mean”),
utilizing values that account for the distribution of predicted
bin centers showed improved performance.

Backbone. CLIP provides various image encoders based on
ResNet and ViT. We compared the performance of the mod-
els on ResNet-50, ResNet-101 and ViT-B/16 backbones.
For the ViT-B/16 backbone, we modified the architecture
following DPT [38] to extract multi-scale features. Ta-
ble 4 shows the results for different backbones. Regardless
of the type of backbone, our model outperforms previous
CLIP-based models by a large margin. However, we ob-
served a significant performance gap between ResNet and
ViT-based networks. We presume that this gap is caused by
differences in the process of extracting multi-scale feature
maps between two backbones. Specifically, the ResNet-
based image encoder conducts stepwise downsampling to
extract feature maps with strides of 4, 8, 16, and 32. On the
other hand, the ViT-based image encoder generates multi-
scale feature maps by applying upsampling or downsam-
pling on the feature map with a stride of 16. We suppose
that the lost information, which cannot be recovered during
upsampling, may have impacted the depth estimation per-
formance, where local information is important.

5. Conclusion

In this paper, we propose a novel monocular depth estima-
tion network, which leverages CLIP’s pre-trained knowl-
edge. Our network consists of CLIP encoders for image
and text, a CaBins module, and a depth decoder. Unlike
previous CLIP-based MDE models that rely on human-set
semantic bins, we use the bin centers estimated from the

Distance class AbsRel↓ SqRel↓ RMSE↓ log 10↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Semantic bin 0.059 0.196 2.363 0.026 0.959 0.995 0.999

Median 0.059 0.193 2.346 0.026 0.961 0.995 0.999

Mean 0.059 0.198 2.383 0.026 0.960 0.995 0.999

Ours 0.059 0.191 2.339 0.026 0.960 0.995 0.999

Table 3. Ablation experiments to demonstrate the proposed CaB-
ins module. For this experiment, the ResNet-50 is adopted as an
image encoder. Our method showed improved performance in
terms of SqRel and RMSE metrics compared to other methods.

Backbone AbsRel↓ SqRel↓ RMSE↓ log 10↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
RN50 0.059 0.191 2.339 0.026 0.960 0.995 0.999

RN101 0.057 0.186 2.322 0.025 0.964 0.995 0.999

ViT-16/B 0.070 0.246 2.542 0.030 0.952 0.994 0.999

Table 4. Ablation experiments on the different backbones.

image encoder as distance classes, called CaBins, for text
prompts. CaBins are obtained through a weighted sum
of the bin centers, with the weights defined based on the
deviation from the mean of the bin centers. Experiments
were conducted on the NYU-Depth V2 and KITTI datasets.
The experimental results demonstrate the effectiveness of
our proposed method. Especially, it outperforms previous
CLIP-based depth models by a significant margin. We hope
that our work will contribute to the advancement of the
depth estimation techniques.
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