
TrajFine: Predicted Trajectory Refinement for Pedestrian Trajectory
Forecasting

Kuan-Lin Wang1, Li-Wu Tsao1, Jhih-Ciang Wu2, Hong-Han Shuai1, and Wen-Huang Cheng2

1National Yang Ming Chiao Tung University, Taiwan
2National Taiwan University, Taiwan

Abstract

Trajectory prediction, aiming to forecast future trajec-
tories based on past ones, encounters two pivotal issues:
insufficient interactions and scene incompetence. The for-
mer signifies a lack of consideration for the interactions
of predicted future trajectories among agents, resulting in
a potential collision, while the latter indicates the inca-
pacity for learning complex social interactions from sim-
ple data. To establish an interaction-aware approach, we
propose a diffusion-based model named TrajFine to extract
social relationships among agents and refine predictions by
considering past predictions and future interactive dynam-
ics. Additionally, we introduce Scene Mixup to facilitate
the augmentation via integrating agents from distinct scenes
under the Curriculum Learning strategy, progressively in-
creasing the task difficulty during training. Extensive exper-
iments demonstrate the effectiveness of TrajFine for trajec-
tory forecasting by outperforming current SOTAs with sig-
nificant improvements on the benchmarks.

1. Introduction
Pedestrian trajectory prediction, the task of forecasting

the future paths of pedestrians based on their past behaviors,
has become increasingly pivotal. This surge in importance
is attributed to the rapid advancements in autonomous vehi-
cles [24], human-robot interaction systems [7], smart city
planning [17], and even video surveillance systems [11].
Considering complex interactions among individuals, such
as co-navigation, collision avoidance, and hesitation, adds
intricacy to the task, especially when dealing with dynamic
real-world scenarios. These numerous interactions signifi-
cantly contribute to the complexity of the prediction task.

Over the years, abundant methodologies have emerged
to address pedestrian trajectory prediction challenges by
adopting generative techniques such as GAN [2, 13, 35]
and CVAE [45]. More recently, with the emergence of dif-
fusion models, remarkable achievements have been made
in the generation tasks of computer vision [15, 38]. The
quality, diversity, and controllable nature of outcomes gen-

Figure 1. Illustration of main concepts in TrajFine. (a) General dif-
fusion models generate the denoised future trajectory Ŷk−1 from
Yk, which consider the condition of past context cpc only. In con-
trast, our refinement process further conditioned on the denoised
future context cfc, which allows for appropriate consideration of
future interactions to generate more reasonable Yk−1. (b) Scene
Mixup augments additional social agents across wide range of sce-
narios, which learns the capability to navigate through various so-
cial situations while interacting with others. (c) Curriculum Learn-
ing presents an easy-to-hard strategy on a variety of lengths.

erated by diffusion models have paved the way for var-
ious applications. For trajectory generation, a novel ap-
proach [33] incorporated controllable guidance factors such
as goals, avoidance, and social groups into the diffusion
model, leading to the generation of trajectory data that rivals
real-world scenarios while maintaining rationality. More-
over, MID [12] leveraged social-temporal information from
past trajectories as conditioning factors to enable the diffu-
sion model to predict a range of diverse future trajectories.

While the diffusion-based model exhibits impressive
performance in trajectory forecasting, two overlooked is-
sues, which we termed as insufficient interactions and scene
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incompetence, warrant further exploration. For instance,
MID allows the model to predict future trajectories accord-
ing to past trajectories. It operates only for single-agent pre-
diction, where the path of each agent is predicted separately.
This setup misses the simultaneous consideration of the ra-
tionality of multiple agents’ prediction. Thus, it could lead
to predictions that deviate from plausible real-world scenar-
ios, e.g., collision. Besides, the quality of trajectories gener-
ated by the diffusion model primarily depends on the diver-
sity and number of training samples, which are bottlenecks
while using existing incomplete benchmarks.

Regarding insufficient interactions, the most intuitive
solution is to enable the model to interact in the feature
space, exchanging information about the future trajecto-
ries of all agents within the same scenario. This interac-
tion would subsequently facilitate the concurrent prediction
of their future paths. However, implementing this “Paral-
lel” approach, i.e., simultaneously handling future trajec-
tory prediction and extracting future interaction, is chal-
lenging within the sole diffusion mode. The diffusion model
is designed to learn the objective of the appropriate amount
of noise to be denoised from the current noisy trajectory
during each diffusion step. Hence, these features represent
noise in the feature space, meaning they lack any informa-
tion related to trajectories. Therefore, if we direct interac-
tion and simultaneous prediction of these features from var-
ious agents, the model would encounter difficulties while
effectively utilizing the information from interactions.

In this paper, in contrast to the intuitive parallel con-
cept mentioned earlier, we introduce a novel “Series” ap-
proach, i.e., the process involves initially generating pre-
liminary predictions based on past trajectories and refining
these predictions by allowing them to interact and extract-
ing features from each other. As shown in Figure 1, our
formulation mainly focuses on tackling the mentioned is-
sues in designing a compelling trajectory refine module. In
detail, we proposed TrajFine, which first denoises the fu-
ture trajectories within the same scenario and then extracts
interactive relationship features between trajectories. Sub-
sequently, the refined trajectories are made using these com-
prehended features that capture the future trajectories of all
agents. This strategy enables the model to generate predic-
tions that also consider the future trajectories of other agents
and yield rational outcomes. To mitigate the scene incom-
petence issue, we propose the Scene Mixup, which involves
merging agents from diverse scenes, thereby augmenting
data into more complicated scenarios. The model attains
enhanced robustness through this augmentation process, en-
abling it to outperform across monotonous and complex
environments. With such augmentative scenes, we adopt
the Curriculum Learning (CL) strategy to progressively in-
crease the lengths of trajectories during the training process,
moving from simple to complicated tasks. In summary, the

main contributions of this paper are as follows.
• We introduced a novel framework for refining predicted

trajectories. By extracting future trajectory relationships,
TrajFine refines predictions more reasonably by consider-
ing the interactions among agents while achieving SOTA
performance to validate effectiveness.

• We proposed an augmentation technique named Scene
Mixup, which combines distinct scenes to facilitate the
model’s understanding of varied social relationships.

• We utilized Curriculum Learning to progressively predict
trajectories from short to long lengths, resulting in en-
hanced outcomes of the refinement process.

2. Related Work
Trajectory Prediction. The dynamics of social forces are
centered on the internal motivations of agents, dictating spe-
cific motion actions for pedestrians [14]. These forces en-
compass various dynamics, including maintaining interper-
sonal distances, attraction, and repulsion between individ-
uals. Consequently, numerous studies [1, 2, 4, 13, 35, 42]
concentrate on modeling social forces. Recent efforts ex-
plore multiple plausible avenues from a stochastic perspec-
tive, acknowledging the inherent uncertainty and augment-
ing diversity in pedestrian trajectory prediction. For in-
stance, studies like [1, 4] integrate social dynamics inherent
in historical trajectories using Long Short-Term Memory
(LSTM) models to predict and researches in [16, 19, 44],
employ GNN-based models to connect relationships among
different agents. Another category involves GAN-based [2,
10, 13, 19] techniques to strike a delicate balance between
diversity and authenticity in trajectory prediction. Addition-
ally, [45] introduced Transformers with Conditional Varia-
tional Autoencoders (CVAE) [5, 21, 43] to capture long-
range dependencies within trajectories. These diverse ap-
proaches aim to improve the fidelity and diversity of pre-
dicted trajectories by considering various aspects of social
dynamics.

Based on the remarkable effects of diffusion models, re-
cent research explores the potential and utilizes the diffu-
sion process to generate diverse predictions covering plau-
sible trajectories. For example, the Leapfrog [27] employs
an initializer to plan trajectories based on potential destina-
tions and variance, allowing some steps to be skipped dur-
ing denoising. In the TRACE [33], controllable guidance
is incorporated to enable the diffusion model to generate
trajectories to real-world scenarios and possess rationality.
Additionally, MID [12] employs spatial-temporal informa-
tion from past trajectories as a condition, allowing the diffu-
sion model to predict future trajectories based on the prior.

In contrast to previous works, the primary objective for
TrajFine is to enhance the learned predictive distribution of
the model by extracting social-temporal interactions among
predicted trajectories. This refinement process concentrates
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the predictive distribution more accurately around actual
trajectories while preventing overlap with other agents.
Curriculum Learning. Motivated by mimicking the learn-
ing procedures like humans, CL designs a progressive flow
that is typically simple to complex. This learning style
has been demonstrated in various tasks to accelerate con-
vergence and discover superior local optima. The CL
can be carried out from distinct standpoints, such as data,
task, and model. From the data perspective, the early
work [3] involves predefined difficulty levels according to
samples, while Spitkovsky et al. [40] formulates the various
tasks by predicting different sequence lengths. Subsequent
works [20, 22] focus on assessing sample difficulty by it-
eratively evaluating model performance during training. In
addition to facilitating the model’s progression from easy
to hard samples, the studies [39, 47] emphasize the need to
ensure diversity among the samples, employing additional
constraints to achieve balance. From the model view, Cur-
riculum Dropout [29] employs a time-based schedule to de-
termine the probability of retaining neurons in the network,
where the approach effectively gradually increases the dif-
ficulty for optimization. Another investigation [18] tackles
model capacity by progressively adding layers to the gener-
ator and discriminator during training, intensifying the ad-
versarial learning process between them.

We employed CL at the data and task perspectives for
our approach. More precisely, we treated the instances sub-
jected to Scene Mixup augmentation as hard examples. We
initially focused on the original samples during training and
then gradually increased the augmented sample ratio. From
the task aspect, the model also transits different level tasks
by learning to predict trajectories from short to long.

3. Method

The overall architecture is illustrated in Figure 2. We first
elaborate on the notations and then focus on the proposed
TrajFine. Furthermore, we present the innovative Scene
Mixup by augmenting additional social agents within the
scene, to enhance social diversity. Finally, we incorporate
the easy-to-hard learning pipeline, i.e., the CL framework,
which gradually captures the importance of refinement.

3.1. Preliminary

We consider a scene containing multiple agents for
data processing. The past trajectories are denoted by
X = (x−p

1 , · · · , x0
1, · · · , x

−p
N , ..., x0

N ), where p and N
stand for past timestamp and number of agents, respec-
tively. The future trajectories are denoted by Y0 =
(y11 , · · · , y

f
1 , · · · , y1N , ..., yfN ), where f represents future

timestamp. Since our framework is based on the diffusion
model, it is also essential to define the notations in our dif-
fusion and denoise process.

Diffusion Process. To prevent any confusion between tra-
jectory timestamps and diffusion timestamps, we represent
the diffusion process as (Y0, Y1, ..., YK), with K being the
maximum diffusion timestamps. In a single step of diffu-
sion process, the procedure can be formulated as:

q(Yk|Yk−1) = N(Yk;
√
1− βkYk−1, βkI), (1)

where β1,...,βK is the predefined variance for separated
timestamps. While considering multiple diffusion steps
from the original trajectory Y0 to the sampling of Yk, the
definition turned into another form:

q(Yk|Y0) = N(Yk;
√
ᾱkY0, (1− ᾱk)I), (2)

where αk = 1 − βk and ᾱk =
∏k
s=1 αs. To enable the

fast sampling speed of noisy data Yk, the noise ϵ is linearly
combined with the clean trajectory Y0, represented as:

Yk =
√
ᾱkY0 +

√
1− ᾱkϵ. (3)

Denoise Process. Based on conditional diffusion model [9,
15], we can sample trajectories from the condition of past
context cpc as shown in (4). The transition of Gaussian pro-
cess pθ(Ŷk−1|Yk, cp) formulates a step-by-step prediction
to get closer to the ground truth trajectory, which is con-
structed by learning the mean µθ with the predefined vari-
ance σk for each denoising timestamp in the model.

pθ(Y0|cpc) =
∫

pθ(Y0:K |cpc)dY1:K .

pθ(Y0:K |cpc) = p(YK)

K∏
k=1

pθ(Ŷk−1|Yk, cpc).
(4)

pθ(Ŷk−1|Yk, cpc) = N(Ŷk−1;µθ(Yk, k, cpc), σ
2
kI). (5)

Specifically, the decomposition of µθ is a linear combina-
tion between Yk and the noise approximator ϵθ. Thus, the
Gaussian formulation of Ŷk−1 can be represented as:

Ŷk−1 =
1
√
αk

(Yk −
1− αk√
1− ᾱk

ϵθ(Yk, k, cpc)) + σkz, (6)

where z implies the stochastic sampling from the normal
distribution N (0, I).

3.2. Training

This section discusses estimating coarse prediction by
intra-trajectory noise ϵθ and refining future sample depen-
dency on social aspects by inter-trajectory noise ϵϕ. We split
the discussion into estimation phase and refinement phase.
Estimation Phase. The main consideration in this phase is
to realize the spatial-temporal information of each agent.
To reach this goal, we employ the past context encoder
Fpc [45]. This encoder leverages attention mechanisms of
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Figure 2. Overview of our TrajFine framework and Scene Mixup. In Estimation Phase, the past context encoder Fpc extracts the feature cpc
according to the past trajectories X . The feature then combines with the noisy trajectory Yk at diffusion timestamp k, which is constructed
by adding the sampled noise ϵ to the future trajectory Y0. The prediction of ϵθ by Intra-Trajectory Noise Predictor (Intra-TNP) represents
the extraction of spatial-temporal information, which is used to generate the coarse prediction Ŷk−1 by denoise process. Subsequently, in
Refinement Phase, the future context encoder Ffc extracts the feature cfc according to the predicted trajectory Ŷk−1. Since the prediction
of each agent in Ŷk−1 are sampled independently, the overall target of ϵϕ is to enable further refinement on the future interactions, which
is generated by the Inter-Trajectory Noise Predictor (Inter-TNP). From Estimation Phase to Refinement Phase, we use the abbreviation SG
to denote the stop gradient. The use of SG can reduce the interference of these two independent targets, ϵθ and ϵϕ.

transformer to analyze interactions among agents and across
various timestamps within the scene, enabling us to extract
past information from X , represented as:

cpc = Fpc(X). (7)

This extracted information cpc is then utilized as the con-
dition for our intra-trajectory noise predictor (Intra-TNP),
which is composed of fully connected layers for dimension
adjustment and a transformer encoder to realize the future
behaviors from different timestamps. However, if we di-
rectly utilize (8) as the training objective, the predicted fu-
ture trajectories Ŷk−1 may implicitly include outcomes that
do not adhere to social forces, due to the independence of
stochastic sampling strategy in estimation phase.

Lintra = Eϵ,Y0,k∥ϵ− ϵθ(Yk, k, cpc)∥. (8)

To address this issue, we introduce TrajFine to consider
the social relationships on the predicted trajectories among
different agents. Thus, constructing inter-trajectory rela-
tionships through the design of our refinement phase.
Refinement Phase. Different from the estimation phase
that connects the understanding from past to future, the

Algorithm 1 Estimation Phase Training

Input: X , Y0

Output: ϵθ, Ŷk−1, Lintra
1: ϵ ∼ N (0, I)
2: k ∼ Uniform(1, ...,K)
3: Yk ← add noise on Y0 by ϵ and k ▷Eq. 3
4: cpc ←Fpc(X) extract past context ▷Eq. 7
5: ϵθ ← Intra-TNP(Yk, k, cpc)
6: Sample Ŷk−1 by Yk and ϵθ ▷Eq. 6
7: Calculate loss Lintra(ϵ, ϵθ) ▷Eq. 8

main target in this phase only focuses on the mutual infor-
mation among future agent trajectories. We adopt the future
context encoder Ffc [45] on the coarse prediction Ŷk−1 to
extract cfc as the condition of social understanding, i.e.,

cfc = Ffc(Ŷk−1). (9)

Algorithm 2 endeavors to alleviate the imprecise noise
(ϵ − ϵθ) in predictions through conditioning on cfc. The
inter-trajectory noise predictor (Inter-TNP) is similar to
Intra-TNP in model structure. However, its weights are dis-
tinct from those of Intra-TNP. Leveraging cfc and the pre-
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Algorithm 2 Refinement Phase Training

Input: Ŷk−1

Output: ϵϕ, Linter
1: cfc ←Fpc(Ŷk−1) extract future context ▷Eq. 9
2: ϵϕ ← Inter-TNP(Ŷk−1, k, cfc)
3: Calculate loss Linter(ϵ, ϵθ, ϵϕ) ▷Eq. 10

dicted trajectory Ŷk−1, Inter-TNP generates ϵϕ by encapsu-
lating social information from future trajectories of differ-
ent agents. During this phase, our compensatory training
objective can be expressed as follows:

Linter = Eϵ,Y0,k∥[ϵ− ϵθ(Yk, k, cpc)]− ϵϕ(Ŷk−1, k, cfc)∥.
(10)

As a result, our separated loss can be expressed as:

Lsep = Lintra + Linter. (11)

To better match our inference, we reformulateLsep by omit-
ting Lintra and define the combined loss as follows:

Lcom = Eϵ,Y0,k∥ϵ− [ϵθ(Yk, k, cpc) + ϵϕ(Ŷk−1, k, cfc)]∥,
(12)

which is the loss we used as Linter. Comparing the dif-
ferences between Lsep and Lcom, the simple social cases
can better fit Lsep, which put more weights on the intra-
trajectory noise ϵθ. In contrast, complex scenarios are
closely related to real-world situations, and thus Lcom is
a balanced way to put equal emphasis on ϵθ and ϵψ .

3.3. Inference

During inference, the overall noise ϵ̂ incorporates both
historical and forthcoming social information insights,
which is derived from ϵθ and ϵϕ as:

ϵ̂ = ϵθ + ϵϕ. (13)

The original approach to DDPM [15] sampling proves ex-
cessively protracted and time-consuming. Based on the ex-
perimental study in DDIM [38], excluding the stochastic
factor στ can contribute to enhancements when the num-
ber of sampled timestamps is small. Thus, we adopt the
DDIM [38] method to omit the stochastic mechanism in
the denoising process, which implies that the process be-
comes deterministic once YK is established. By doing this,
the number of diffusion timestamps can be decreased. We
have condensed the timestamp schedule resulting from pre-
defined reduction into the shorten timestamp τ , represented
by the following equation:

Yτ−1 =
√
ατ−1

(
Yτ −

√
1− ατ ϵ̂√
ατ

)
+
√
1− ατ−1ϵ̂.

(14)

3.4. Scene Mixup

Since TrajFine generates the final results by extracting
social information from both past observed trajectories and
future predicted trajectories. Due to the scarcity of agents
in some scenarios, which poses challenges for the model in
learning complex social interactions, we propose the appli-
cation of Scene Mixup, which is elaborated upon in Fig-
ure 2. Mixup [46, 48] is a data augmentation technique
that enhances a model’s representational capabilities, thus
improving generalization. This concept has been extended
to various applications in several previous works [28, 30].
While a straightforward approach might entail randomly se-
lecting agents from different scenes for blending, such a
method has the potential to disrupt the intrinsic social dy-
namics within each scene. To tackle this challenge, we pro-
pose the approach of combining agents from just two entire
scenes. By doing so, we not only involve more intricate so-
cial relationships inherent in both scenes but also preserve
authenticity by decreasing the likelihood of unrealistic so-
cial situations when augmenting more scenes. This concept
is formulated as follows:

X̃ = Xi ⊕ Xj ,

Ỹ0 = Y i
0 ⊕ Y j

0 ,
(15)

∀ i ̸= j, where i, j represent different scenes. Operation ⊕
denotes concatenation of past trajectories and ground truth
from scene i, j. After Scene Mixup, we will get augmented
past trajectories X̃ and ground truth of new scene Ỹ0.

3.5. Curriculum Learning

Due to the potentially long training process and the need
for diverse data in training the diffusion model, we em-
ploy the concept of Curriculum Learning for two aspects:
predicted length and data. It is intuitive that as the model
predicts longer future trajectories, the difficulty of task in-
creases. This phenomenon has been demonstrated in exper-
iments conducted by Gupta et al. [13], where the average
displacement error (ADE) tends to grow as the prediction
length extends. Based on these observations, we introduce
the concept of length-aware curriculum learning as train-
ing objective, raising the task complexity during training by
gradually extending the predicted length of future trajecto-
ries. We modify the equation (12) into following:

L
′

com = Eϵ,Y0,k∥
f̃∑
t=1

ϵt−[ϵtθ(Yk, k, cpc)+ϵtϕ(Ŷk−1, k, cfc)]∥,

(16)
where f̃ represents the number of length-aware future
timestamps, gradually increasing towards its maximum
value f as determined by the training process. This train-
ing strategy can lead to faster and more stable convergence
of the model. Furthermore, according to Choi et al. [8],
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ADE / FDE ↓ , Best of S = 20 samples
Method Venue ETH HOTEL UNIV ZARA1 ZARA2 AVG
Social-GAN [13] CVPR 2018 0.81 / 1.52 0.72 / 1.61 0.60 / 1.26 0.34 / 0.69 0.42 / 0.84 0.58 / 1.18
PECNet [25] ECCV 2020 0.54 / 0.87 0.18 / 0.24 0.35 / 0.60 0.22 / 0.39 0.17 / 0.30 0.29 / 0.48
Trajectron++ [36] ECCV 2020 0.61 / 1.02 0.19 / 0.28 0.30 / 0.54 0.24 / 0.42 0.18 / 0.32 0.30 / 0.51
AgentFormer [45] ICCV 2021 0.45 / 0.75 0.14 / 0.22 0.25 / 0.45 0.18 / 0.30 0.14 / 0.24 0.23 / 0.39
MID [12] CVPR 2022 0.39 / 0.66 0.13 / 0.22 0.22 / 0.45 0.17 / 0.30 0.13 / 0.27 0.21 / 0.38
BOsampler [6] CVPR 2023 0.52 / 0.95 0.19 / 0.39 0.30 / 0.67 0.14 / 0.33 0.20 / 0.45 0.27 / 0.56

TrajFine (Ours) with Lsep 0.34 / 0.58 0.11 / 0.19 0.21 / 0.44 0.17 / 0.35 0.12 / 0.27 0.19 / 0.37
TrajFine (Ours) with Lcom 0.35 / 0.60 0.11 / 0.18 0.22 / 0.48 0.15 / 0.30 0.12 / 0.25 0.19 / 0.36

Table 1. Comparisons on the ETH-UCY dataset with Best of 20 ADE / FDE ↓. The boldface score and underline denote the best and
second-best results, respectively.

the samples resulting from Scene Mixup are considered to
be more challenging. By employing data-aware curriculum
learning, we continuously enhance our training process by
gradually increasing the number of Scene Mixup samples.
This approach involves the model first learning basic social
relationships (original samples) before advancing to more
complex social relationships (Scene Mixup samples).

4. Experiment
We present the evaluation datasets, shedding light on

their inherent properties. The evaluation metrics com-
monly used in trajectory prediction are introduced after-
ward. Later, the comparative analyses with other SOTAs
are conducted and discussed. Finally, we visualize results
and investigate ablation studies that are explicitly tailored to
evaluate the effectiveness of our proposed method.

4.1. Experimental Setup

Datasets. We evaluate our method on two public datasets.
The widely recognized ETH-UCY dataset [23, 32] com-
prises five subsets: ETH, HOTEL, UNIV, ZARA1, and
ZARA2, where the first two subsets are from ETH and the
remaining belong to UCY. Those scenes encapsulate vari-
ous levels of complexity for social relationships, such as the
splits from ETH, which present simplistic and sparse sce-
narios with limited numbers of agents, while the UCY parts
contain more intricate social relationships and higher agent
density. Besides, the Stanford Drone Dataset (SDD) [34]
dataset has been recognized as a well-established bench-
mark. It captures agent trajectories in diverse scenes via
drones, offering complicated social relationships insights.
Evaluation Metrics. We follow the prevalent trajectory
prediction metrics: Average Displacement Error (ADE) and
Final Displacement Error (FDE). ADE computes the mean
difference between all the ground truth positions and all the
predicted positions throughout the trajectories. On the other

hand, FDE quantifies the displacement between the final
points of the actual and predicted trajectories, essentially
measuring the distance to the final destination.
Evaluation Protocol. The tendency of recent works has
shifted towards predicting stochastic trajectories rather than
deterministic ones to enrich the diversity and capability of
predicting plausible areas. In practice, the trajectory predic-
tor generates S samples and chooses the best one for eval-
uation. We adopt the leave-one-out strategy to evaluate the
ETH-UCY dataset, meaning the model is evaluated on one
subset after being trained on the remaining. This strategy
also indicates the generalization capabilities in the context
of domain adaptation. Our approach involves operating the
observed 8 timestamps as input and forecasting the subse-
quent 12 timestamps as the prediction for all benchmarks.
In addition, within the context of the stochastic strategy, we
follow previous works by selecting S = 20.
Implementation Details. We use a backbone similar to
AgentFormer [45] for past/future context encoders to ex-
tract cpc and cfc, respectively. The diffusion process is re-
ferred to MID [12]. We employ the Adam optimizer with a
learning rate 0.0001 and a batch size of 32 for 150 epochs.
All phases transfer the 2D positions into 512-dimensional
embeddings for learning by transformer. We employ diffu-
sion timestamps K = 100 during training, while the skip in
timestamps is a trade-off between acceleration and perfor-
mance during inference, as shown in Table 4.

4.2. Baseline Comparison

In trajectory prediction task, aside from using trajectory
information, certain methodologies also utilize map images
to enhance performance by comprehending environmental
elements such as obstacles and pedestrian pathways. How-
ever, in our evaluation, we primarily focus on using trajec-
tory as the only information for fair comparison.

On the ETH-UCY dataset, we compare our approach
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with several state-of-the-art (SOTA) methods [12, 13, 25,
36, 45]. In trajectory sampler based method, we compare
with BOsampler [6], which makes further improvement on
Trajectron++ [36]. As illustrated in Table 1, we compare
(11) and (12) mentioned in Section 3.2 with other base-
line methods. Particularly on the ETH and HOTEL sub-
datasets, our method effectively captures rich social interac-
tions from other sub-datasets, leading to apparent improve-
ments. Furthermore, our Scene Mixup augments the data
with enriched social information, enabling our performance
on the UNIV, ZARA1, and ZARA2 sub-datasets compara-
ble to other approaches. In UNIV, Lsep performs well by
leveraging Lintra effectively for learning from limited and
simple data. In contrast, in ZARA1 and ZARA2, where
both training and testing data are complex and abundant,
Lcom exhibits better performance, highlighting the need for
refinement functionalities on complex scenarios. Further-
more, due to the complexity of the SDD dataset in Sec-
tion 4.3, we select Lcom for our analysis.

Method Venue ADE FDE
PECNet [25] ECCV 2020 9.96 15.88
Trajectron++† [36] ECCV 2020 8.98 19.02
Expert† [49] ICCV 2021 10.67 14.38
LB-EBM [31] CVPR 2021 8.87 15.61
PCCSNET [41] ICCV 2021 8.62 16.16
MID [12] CVPR 2022 7.61 14.30
TUTR [37] ICCV 2023 7.76 12.69

TrajFine (Ours) with Lsep 7.22 13.79
TrajFine (Ours) with Lcom 7.11 13.28

Table 2. Comparisons on the SDD dataset with Best of 20 ADE /
FDE. † means the results are reproduced by Gu et al. [12].

Compared to the ETH-UCY dataset, the SDD dataset
comprises a greater variety of scenes, which in turn implies
a more complex and diverse range of social relationships.
We have compared our results with other SOTA [12, 25, 31,
36, 37, 41, 49], as illustrated in Table 2. Correspondingly,
our method outperforms other baseline approaches in ADE
and demonstrates comparable performance in FDE. Com-
pare to the recent work TUTR [37], which design general
motion modes to enhance the diversity of model predic-
tions, making it more likely for the destination to approx-
imate the ground truth. However, this approach needs to se-
lect proper hyperparameter on the number of motion modes,
which is sensitive to the final results. Thus, TUTR presents
the performance trade-off in ADE and FDE, which is im-
proper to select the best number of mode for the actual use
case on different scenarios. Compare to the baseline method
MID [12] using diffusion model as backbone, TrajFine uti-

lize a fewer number of diffusion timestamps, reducing ADE
from 7.61 to 7.11 and FDE from 14.30 to 13.28.

4.3. Ablation Study

Main Auxiliary
ADE FDE

TrajFine Scene Mixup Length CL
7.59 14.84

✓ 7.25 13.51
✓ ✓ 7.25 13.30
✓ ✓ 7.13 13.46
✓ ✓ ✓ 7.11 13.28

Table 3. Component Analysis on SDD dataset. ✓denotes that
the component is included. Length CL means length-aware CL.

Component Analysis. We further analyze the effect of each
component in our proposed method on SDD dataset. In Ta-
ble 3, we provide ablation studies on all of model compo-
nents: TrajFine, Scene Mixup, and length-aware Curricu-
lum Learning. The performance demonstrates a notable im-
provement with the primary method, TrajFine. Moreover,
Scene Mixup particularly enhances the model’s understand-
ing of diverse social interactions, focusing on the long-term
goal that continually preserves the social behavior, which
strongly correlates to its final decision and makes better per-
formance in FDE. On the other hand, CL employs progres-
sive learning, adeptly managing predicted trajectories from
short to long, ensuring that prediction of each timestamp
is thoroughly trained, thereby resulting in enhanced ADE.
In summary, the joint integration of these three introduced
components yields the most favorable outcomes.

DDIM inference timestamps ADE FDE
5 7.44 13.90

10 7.11 13.28
25 7.19 13.38
50 7.25 13.54

Table 4. DDIM timestamps analysis on SDD dataset. We report
the different inference timestamps for the diffusion process. All
results are under the identical timestamps during training.

DDIM Timestamps Analysis. In this part, we discuss the
impact of DDIM timestamps configuration. As observed
from the experimental results of Song et al. [38]. When uti-
lizing fewer sampling timestamps, the generated outcomes
are commendable, yet they slightly fall short in compari-
son to those produced with larger timestamps. This phe-
nomenon is also reflected in our own experiments shown
as Table 4. We can observe that the best performance is
achieved at 10 timestamps. Additionally, considering the
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Figure 3. Qualitative results for trajectory forecasting. First row visualize results without TrajFine (only ϵθ). Second row visualize the
predictions with TrajFine (denoising with ϵθ + ϵϕ)

real-time nature of the trajectory prediction task, decent per-
formance is achieved with just 5 timestamps.

4.4. Visualization Results

In Figure 3, we investigate whether the model’s predicted
walking area can be reduced by using TrajFine to mitigate
collisions. By incorporating our method, which enforces
social force principles on future trajectories, the predictions
retain a subtle margin and reduce collision between agents,
resulting in more rational and purposeful trajectory fore-
casts. Moreover, it becomes evident that the predicted plau-
sible walking area in the bottom row (with TrajFine) is more
reasonable than the top row (without TrajFine). This find-
ing indicates that taking the future trajectories of multiple
agents into account can prevent collisions.
Limitations. Our model is trained solely on path data.
However, real-world environments often entail obstacles to
be avoided or a necessity to walk on pedestrian pathways.
As evident from Figure 4, where the model encounters sud-
den turns due to environmental factors may lead to inaccu-
rate predictions. Therefore, beyond trajectory information,
it would be beneficial to incorporate map image data [26]
to enhance the model’s accuracy in situations that demand
sudden movements. This consideration of map image data
remains a prospect for future work, as it holds the potential
to significantly refine trajectory prediction accuracy.

Figure 4. We showcase some failure situations of TrajFine using
merely the trajectory information, where the agent may encounter
obstacles or areas of the map that are not permitted for pedestrians.

Scene Mixup Samples. As depicted in Figure 5, the pre-
dicted trajectories in distinct color schemes (green and blue)
correspond to trajectory data originating from different two

scenes. Our Scene Mixup method, as demonstrated, facili-
tates the diversity of trajectory data with more intricate so-
cial interactions, while concurrently preserving the inherent
social forces from the source scenes.

Figure 5. The augmented agents from Scene Mixup contain more
complex social interactions, such as walking vertically with trajec-
tory crossing or moving side by side in different directions.

5. Conclusion
We introduce TrajFine to address two common issues in

previous diffusion-based trajectory predictors, i.e., insuffi-
cient interactions and scene incompetence. To tackle the
former, TrajFine extracts social information from predicted
future trajectories and refines them, ensuring adherence to
social force principles. To address the scene incompetence
issue for comprehensively exploring diverse environments,
we employ Scene Mixup that breaks the confines of exist-
ing datasets, enabling adaptation to intricate scenes. Ad-
ditionally, our Curriculum Learning strategy progressively
increases difficulty from both data and task perspectives, re-
sulting in remarkable performance. The experimental re-
sults on the ETH-UCY and SDD datasets show valuable
improvements by TrajFine against current SOTA methods,
demonstrating that our TrajFine can generate plausible pre-
dictions.
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