
A. Supplementary Material

In Section A.1, we provide a description of our new

dataset. The transition effects of agents moving between

cells are briefly studied in Section A.2. We also present ad-

ditional experiments on cyclic domain shifts in Section A.3.

A.1. DADE Dataset

To study our new Multi-Stream Cellular Test-Time

Adaptation (MSC-TTA) setup and evaluate the performance

of our real-time method, we need a dataset that meets the

four following criteria. (1) Multi-agent long videos: the

dataset should consist of long video sequences captured by

multiple agents operating within the same dynamic environ-

ment. (2) Environment division: the environment should

be heterogeneous or dynamic to be spatially and/or tempo-

rally divided into cells, e.g., encompassing a variety of driv-

ing locations, such as rural, urban, and highway settings, or

a broad spectrum of weather conditions, including, e.g., day,

night, clear, rainy, and foggy scenarios. (3) Cell connec-

tion: each agent’s connection to a cell should be precisely

estimated, for instance using GNSS (Global Navigation

Satellite System) coordinates for the location, or a weather

service for the weather conditions. (4) Available ground

truths: for evaluation purposes, we need to have access

to ground-truth annotations for our semantic segmentation

task. Unfortunately, publicly-available datasets do not meet

these criteria. Existing datasets, such as [7, 32, 41], typi-

cally feature short video sequences, lack multi-agents, or

often do not include ground-truth annotations or a diverse

range of weather conditions. While the SHIFT dataset [41]

contains varying weather conditions and ground truths, it is

not a multi-agent dataset and its average sequence length is

under 160 s, which is too short for evaluating the long term

impact of our method.

Therefore, we generated and will publicly release our

own Driving Agents in Dynamic Environments (DADE)

dataset, meeting all the above criteria. To have access

to ground-truth annotations and precisely control the en-

vironment, we choose the CARLA simulator [9] (version

0.9.14) to generate the dataset. We synchronize and cal-

ibrate all sensors and register the semantic segmentation

ground truths. Our dataset is acquired using the recent

Town12 map that offers several visually distinct locations

and fine-grained control over the weather. Our simulation

showcases several agents, in our case, ego vehicles, on

which a camera is attached at the front, filming its front

view (in a “Cityscapes” fashion), as shown in Figure 6. We

collect the video sequences taken by an RGB camera, the

semantic segmentation ground-truth masks, the GNSS po-

sition of each agent in the simulation as well as the overall

weather information. All signals are acquired at the fram-

erate of 1 frame per second, with a high-resolution (HD)

definition.

Table 3. Comparison of class definition between Cityscapes [7],

CARLA [9], and our DADE dataset. Our DADE dataset takes

the intersection of the class definition between Cityscapes and

CARLA. The classes not included in the intersection are projected

to the “unlabeled” class, except for “road line” which is projected

to “road”. The classes used in training and evaluation for DADE

are the same as the ones of Cityscapes.

Cityscapes CARLA DADE

name training evaluation name name training evaluation

unlabeled unlabeled unlabeled

static static static

dynamic dynamic dynamic

ground ground ground

road X X road road X X

sidewalk X X sidewalk sidewalk X X

rail track rail track rail track

building X X building building X X

wall X X wall wall X X

fence X X fence fence X X

guard rail guard rail guard rail

bridge bridge bridge

pole X X pole pole X X

traffic light X X traffic light traffic light X X

traffic sign X X traffic sign traffic sign X X

vegetation X X vegetation vegetation X X

terrain X X terrain terrain X X

sky X X sky sky X X

person X X person person X X

rider X X rider rider X X

car X X car car X X

truck X X truck truck X X

bus X X bus bus X X

motorcycle X X motorcycle motorcycle X X

bicycle X X bicycle bicycle X X

ego vehicle ego vehicle ego vehicle

rectification border other

out of roi road line

parking water

tunnel

caravan

trailer

train

To align our dataset with current benchmarks in the se-

mantic segmentation field, we generated two versions of

the semantic segmentation ground truths in the dataset: (1)

the ones directly collected from the CARLA simulator (in-

cluding 29 semantic classes), and (2) the intersection of

the semantic classes available in CARLA and the semantic

classes from the Cityscapes [7] dataset (including 33 differ-

ent semantic classes). For consistency with previous works,

we choose the later version in our experiments, as most

state-of-the-art models for semantic segmentation in driv-

ing environments are trained on Cityscapes. Nevertheless,

the discrepancies between the two versions are minimal and

could be interchanged depending on the user’s preferences.

Table 3 provides the complete comparison between the se-

mantic segmentation classes of the Cityscapes dataset, the

CARLA simulator and our DADE dataset. Figure 6a shows

an RGB image alongside the two versions of the seman-

tic segmentation ground-truth masks (Figure 6b and Fig-

ure 6c). As can be seen, the “road line” class in the CARLA

labels, visible in Figure 6b, does not exist in the Cityscapes

labels. Also, the “car hood” is ignored (indicated by black

pixels) in the second version.

To study different cell divisions of the environment, our

DADE dataset is composed of two parts. The first part,



(a) (b) (c)

Figure 6. Comparison between the real ground truth and the ground truth used in our experiments. (a) An RGB image with (b) its

corresponding semantic segmentation ground truth from CARLA and (c) the semantic segmentation ground truth that we used to evaluate

our method. The black pixels in image (c) correspond to ignored classes or regions, such as the hood of the ego vehicle.
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Figure 7. Location of each agent for the 100 sequences of the

DADE-static dataset. The color of the line corresponds to the loca-

tion of the agent for each sequence at a given time: forest, country-

side, rural farmland, highway, low density residential, community

buildings, and high density residential. We can see that the se-

quences are evenly distributed across the entire 5-hour time frame.

DADE-static, is acquired with static weather conditions

(clear day) and contains 100 video sequences, as shown in

Figure 7. The second part, DADE-dynamic, is acquired with

varying weather conditions (ranging from day to night, with

clear, rainy or foggy conditions) and contains 300 video se-

quences, as shown in Figure 8. For both parts, each se-

quence is acquired by one agent (one ego vehicle) running

for some time within a 5-hour time frame, amounting to a

total of 990k frames for the entire dataset. In Figure 9,

we show a top view of the various locations in the Town12

map of the CARLA simulator in which the agents evolve,

namely forest, countryside, rural farmland, highway, low

density residential, community buildings, and high density

residential. Images captured in each location can be seen

in Figure 10. Finally, Figure 11 illustrates the 6 different

weather conditions, in the high density residential location,

encountered in the DADE-dynamic dataset.

Let us note that due to the limitations of the CARLA

simulator running the Town12 map, there are no pedestri-

ans on the streets, only vehicles such as cars, motorcycles,

bicycles or trucks. Also, the quantity of vehicles (traffic)

is independent on the location. The vehicles spawned in

the map move randomly through the seven locations. Fi-

nally, the different sequences are collected sequentially. In

the following, we provide some statistics about both parts

of our DADE dataset.

A.1.1 DADE-static dataset

This first part of our dataset is composed of 100 sequences,

acquired in the Town12 map of CARLA with a static clear

sunny weather during the day. Each sequence contains be-

tween 271 and 7,200 frames acquired at 1 fps, for total of

270,527 frames, amounting to more than 75 hours of video.

In Figure 12a, we show the distribution of the sequence

length for the 100 sequences. As can be seen, our dataset

contains a lot of short and long sequences, with an average

sequence length of 45 minutes. We also show, in Figure 7,

the locations of the 100 agents over time. The colors corre-

spond to the locations in which the agents are evolving (see

Figure 9). We can see that, for most sequences, the agents

evolve through several locations, and that the start and end

times vary significantly from one agent to another.

Figure 13a provides a more detailed analysis of each

agent’s location over time. Particularly, it shows that there

is a high imbalance between the locations, which is ex-

pected in real-world scenarios. For instance, it is realistic

to encounter much more vehicles in city centers than in the

countryside. Table 4 summarizes those values and splits

the number of images acquired during the two first hours

(used for pretraining) and the three last hours (used for test-

ing). Interestingly, data originating from the high density

residential location constitute over half of our DADE-static

dataset. We can also see that, during the first two hours,

over a thousand images are collected in each location, con-
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Figure 8. Location, weather, and daylight conditions of each

agent for the 300 sequences of the DADE-dynamic dataset. C, R

and F respectively correspond to clear, rainy and foggy weathers,

and night/day represent the daylight conditions. The color of the

line corresponds to the location of the agent for each sequence at a

given time: forest, countryside, rural farmland, highway, low den-

sity residential, community buildings, and high density residential.

Figure 9. Locations of the Town12 map in CARLA. The figure

provides the location in which the vehicle is depending on its x

and y coordinates. The different locations are the following: for-

est, countryside, rural farmland, highway, low density residential,

community buildings, and high density residential.

stituting a sufficient pretraining set.

Table 4. Number of images per location within the DADE-static

dataset during the pretraining time (two first hours), the test time

(three last hours), and the overall time (the five hours), as well as

the proportion of images originating from each location in com-

parison to the entire dataset.

Pretraining Testing Overall Proportion of

Location (2 hours) (3 hours) (5 hours) the entire dataset

Forest 2,176 2,796 4,972 1.84%

Countryside 2,442 1,215 3,657 1.35%

Rural farmland 3,608 6,089 9,697 3.58%

Highway 7,018 19,159 26,177 9.68%

Low density residential 11,187 36,658 47,845 17.69%

Community buildings 2,357 20,404 22,761 8.41%

High density residential 50,034 105,384 155,418 57.45%

Total 78,822 191,705 270,527 100%

A.1.2 DADE-dynamic dataset

This second part of our dataset is acquired during a period

of time of 5 hours with varying weather conditions as shown

in Figure 8. Particularly, it is composed of 300 sequences

containing between 188 and 7,200 frames acquired at 1 fps,

for a total of 719,742 frames or 200 hours of videos. Fig-

ure 12b shows the distribution of the sequence length. It

can be noted that the distribution follows the same trend as

for DADE-static, with a similar average sequence length of



Figure 10. Examples of the different locations in our dataset. We define 7 different locations based on the GNSS data and show some

images captured by the agent in each location. From left to right, we display the name of the location, an overview of the location, and six

images captured by agents.



Figure 11. Examples of the different weather and daylight con-

ditions in our dataset. The images show the 6 different weather

and daylight conditions in the same high density residential loca-

tion. The images correspond respectively, from left to right and top

to bottom, to clear day, clear night, rainy day, rainy night, foggy

day, and foggy night.

40 minutes. To generate various weather conditions, we dy-

namically change the weather parameters over time in the

same way for the entire map, i.e., that the weather condi-

tion is the same for all agents at a given time. We change

the weather condition every 10 minutes arbitrarily between

clear, rainy, and foggy weathers, with a smooth transition on

the weather parameters during 10 seconds. For the daylight

conditions, we choose to start the simulation during night

time and let the sun rise after one hour, finally setting in the

last hour. The 5 hours are thus composed of a total of ap-

proximately 2 hours of night conditions and 3 hours of day

conditions. During the entire simulation, there are 4 periods

of 10 minutes for each weather condition (i.e. clear, rainy,

and foggy) during the night and 6 during the day as shown in

Figure 14a. To visualize the transitions, Figure 14b zooms

in on the first thirty minutes where the simulation changes

from clear, then rainy, and finally foggy weathers.

Table 5 provides a summary of the number of images

for each location, weather, and daylight conditions during

the two first hours (used for pretraining) and the three last

hours (used for testing). We can see that the proportion of

images in each location is similar to the one of our DADE-

static dataset. However, upon further division based on both

weather and daylight conditions, we can see a significant

decrease in the number of images for each cell. Notably,

this division results in the absence of pretraining data for

the clear day weather condition in the countryside location.

Finally, Figure 13b shows the number of agents in each lo-

cation. The color of the plots corresponds to the color code

of the location in the Town12 map (see Figure 9). As can

be seen, there is also a high imbalance between the different

locations.

Table 5. Number of images per location within the DADE-

dynamic dataset during the pretraining time (two first hours), the

test time (three last hours), and the overall time (the five hours), as

well as the proportion of images originating from each location in

comparison to the entire dataset.

Pretraining Testing Overall Proportion of

Location (2 hours) (3 hours) (5 hours) the entire dataset

Forest 3,174 5,973 9,147 1.27%

Clear night 845 695 1,540

Rainy night 303 477 780

Foggy night 585 602 1,187

Clear day 381 1,467 1,848

Rainy day 572 1,675 2,247

Foggy day 488 1,057 1,545

Countryside 3,525 4,283 7,808 1.09%

Clear night 279 1,247 1,526

Rainy night 1,137 130 1,267

Foggy night 887 795 1,682

Clear day 0 194 194

Rainy day 1,020 1,312 2,332

Foggy day 202 605 807

Rural farmland 4,605 9,242 13,847 1.92%

Clear night 736 2,631 3,367

Rainy night 1,134 265 1,399

Foggy night 2,059 2,699 4,758

Clear day 221 1,268 1,489

Rainy day 418 926 1,344

Foggy day 37 1,453 1,490

Highway 27,573 40,275 67,848 9.43%

Clear night 4,676 4,878 9,554

Rainy night 4,809 4,508 9,317

Foggy night 6,052 4,876 10,928

Clear day 3,533 7,575 11,108

Rainy day 4,235 9,757 13,992

Foggy day 4,268 8,681 12,949

Low density 56,108 84,990 141,098 19.60%

residential

Clear night 7,348 9,214 16,562

Rainy night 6,957 7,381 14,338

Foggy night 7,673 8,190 15,863

Clear day 11,486 22,607 34,093

Rainy day 11,736 17,570 29,306

Foggy day 10,908 20,028 30,936

Community 23,965 42,205 66,170 9.19%

buildings

Clear night 3,648 4,984 8,632

Rainy night 3,746 3,532 7,278

Foggy night 3,386 4,121 7,507

Clear day 4,838 9,096 13,934

Rainy day 4,210 9,539 13,749

Foggy day 4,137 10,933 15,070

High density 164,708 249,116 413,824 57.50%

residential

Clear night 26,627 38,134 64,761

Rainy night 31,006 25,618 56,624

Foggy night 28,064 33,440 61,504

Clear day 26,260 48,795 75,055

Rainy day 26,830 53,676 80,506

Foggy day 25,921 49,453 75,374

Total 283,658 436,084 719,742 100%



(a) DADE-static (b) DADE-dynamic

Figure 12. Distribution of sequence lengths for (a) the DADE-static dataset and (b) the DADE-dynamic dataset. The DADE-static and

DADE-dynamic datasets have respectively an average sequence length of 45 and 40 minutes, with durations ranging from a few minutes

to two hours.

(a) DADE-static (b) DADE-dynamic

Figure 13. Number of agents per location over time for (a) the DADE-static dataset and (b) the DADE-dynamic dataset. The colors

of the plots correspond to the location: forest, countryside, rural farmland, highway, low density residential, community buildings, and

high density residential. The same trends can be observed in both datasets, with three times as many agents in DADE-dynamic as in

DADE-static. Note that there is at all time at least one agent in the high density residential location in both dataset and in the low density

residential in the DADE-dynamic. Conversely, forest, countryside, and rural farmland locations exhibit the least agent presence, often

remaining empty of agents for extended periods.

A.2. Analysis of transiting agents

In this section, we provide insights about the transition of

agents between cells. Particularly, we study the evolution of

the performance of the models around cell transitions. Fig-

ure 15 shows the mean performance of the agents transiting

from one cell to another, e.g., from a specific location to

another, or from a weather condition to another. As can be

seen, after the transition, the baseline method experiences

a decrease in performance, which remains low for a long

period of time. Contrarily, our method is able to recover

much faster thanks to the switch between the cell-specific

models. It is also interesting to observe that for both the

MSC-OL and MSC-TTA setups, a temporary drop of mIoU

score occurs right before a transition. This is probably due

to the fact that a vehicle approaching another cell may al-

ready see content from an adjacent cell while performing

the task with the previous cell’s model. For instance, a ve-

hicle approaching the city center may record an image with

its frontal camera showing the city center while still being
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Figure 14. Evolution of the weather parameters over time. The weather switches arbitrarily every 10 minutes between clear, rainy, and

foggy weathers with a smooth transition of 10 seconds. The parameters for the daylight conditions are related to the sun position, i.e. sun

altitude angle and sun azimuth angle, which vary smoothly over time, respectively between −15 and 45 degrees, and between 0 and 360

degrees. We consider that it is night time during the first hour and the last hour, when the sun altitude is below 5 degrees, and that it is the

day in between during three hours, i.e., when the sun’s altitude is over 5 degrees. In total, the clear, rainy, and foggy weathers each occur

10 times; 4 times during the night and 6 times during the day, as shown in (a). (b) zooms in on the first thirty minutes. During the first ten

minutes, the weather is clear, then there is a smooth transition of 10 seconds towards a rainy weather and, finally, after 20 minutes there is

again a smooth transition of 10 seconds towards a foggy weather.

Figure 15. Fleet performance around cell transitions on DADE-static dataset (top) and DADE-dynamic dataset (bottom). Compar-

ison of the performance in the MSC-OL setup (left) and the MSC-TTA setup (right) of our method (best settings) with the baseline for

each pretraining (Scratch, General, and Cell). Confusion matrices of each frame are aggregated using a sliding windows of 3 seconds. The

results are shown 30 seconds before and after any cell transition that the agents encounter during the 3 hours of testing.

registered in another location (e.g., the countryside or the

highway). This means that the agent will use the wrong cell

model to analyze the environment. In future work, we aim

to address this issue by proposing a model that automati-

cally recognizes the cell, rather than relying on predefined

rules.



Table 6. Comparison of our MSC-TTA method with a frozen

teacher, a frozen student, the Baseline [6], and Baseline+MIR [19],

on our DADE datasets and the dataset of Houyon et al. [19].

mIoU-I DADE-S DADE-D Houyon [19]

Teacher ^ .668 .611 /

Student ^ .214 .159 /

Baseline [6] .274 .212 .234

Baseline+MIR [19] .181 .147 .256

Ours .362 .312 .277

A.3. Experiments on cyclic domain shifts

In Table 6, we present additional experiments on the

dataset and the best method proposed by Houyon et al. [19],

namely Baseline+MIR, alongside the performance of the

frozen teacher and student trained on the same set (namely,

Cityscapes). The dataset and method [19] are specifically

tailored for cyclic domain shifts. The two first columns are

reported from Tables 1 and 2, for the 3 hours test sets.

Notably, our method demonstrates superior performance

on DADE-static, DADE-dynamic, and the cyclic dataset of

Houyon et al. [19]. Furthermore, we see that the Base-

line+MIR performs worse than the baseline for DADE-

static and DADE-dynamic, while it performs better on the

cyclic dataset of Houyon et al. [19].

The results also demonstrate that our method exhibits an

expected performance deficit relative to the teacher, while

consistently outperforming the student. The teacher is a

state-of-the-art semantic segmentation model (namely, Seg-

Former trained on Cityscapes [7]) and thus exhibits great

performance on our DADE datasets. However, the empha-

sis on achieving the best possible performance often comes

with increased complexity and overlooks the critical real-

time aspect. The frame rate of SegFormer is approximately

2 frame per second, it is thus far from being real time.

Our proposed method aims at mimicking the performance

of available teacher models while reducing computational

power and battery usage, thereby bringing state-of-the-art

performance at a higher frame rate.

The frozen student is trained on the Cityscapes [7]

dataset with an initial learning rate of 10−4 using the Adam

optimizer for 45 epochs, reducing the learning rate by a fac-

tor of 10 every 15 epochs, a cross-entropy loss function, and

a batch size of 8. To match the dimension of the images in

the DADE datasets, images from Cityscapes were resized to

720x1440 to keep the same ratio, then cropped to 720x1280.
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