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Supplementary Material

A. Monocular depth in the “LiftSplat”
paradigm

A.1. Computation of ground truth depth from lidar

For each camera image we compute the ground depth map
Dgt ∈ RH×W by projecting the 3D lidar point cloud onto
the image plane and binning each point within the pixels
of the camera feature map. For non-empty cells, we fol-
low [27] and choose the depth to be the minimum distance
(from the camera plane) of all the points in the cell, leaving
the depth unspecified for empty cells and those for which
the minimum yields a depth value which is outside the range
of the model’s depth bins. This depth map is suitable for
visualisation and depth metric evaluation, but for depth su-
pervision it is necessary to calculate the one-hot encoding
of Dgt according to buckets defined by the model’s depth
bins d ∈ RND .

A.2. Visualisation of depth maps

We generate the monocular depth maps shown in Fig. 1 by
calculating the weighted average of the model’s depth bins
d with the predicted depth distribution Dpred ∈ RND×H×W

Dmean
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dnD
pred
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This depth map is constrained by construction to
[min(d),max(d)] and we map this range onto the Turbo
colour map [38] for visualisation.

The lidar depth map Dgt is similarly colourised, except
for cells where the depth is unspecified as described above
(see Fig. S1, top-right) which are coloured grey.

A.3. Supervision of predicted depth using lidar

We perform all of our experiments using the method pre-
sented in [36] and use the original repository3. We use
the vanilla Lift-Splat transform implemented in the class
LSSTransform with default parameters provided in the
original work. We supervise the depth classifier by intro-
ducing the following loss alongside the original detection
losses,

Ldepth = − 1

N

NX

n

log(Dn · 1n), (7)

which is a cross-entropy loss between the lidar depth distri-
bution and predicted depth distribution, taken over all cells
for which the lidar depth is available. Dn ∈ RND is the

3https://github.com/mit-han-lab/bevfusion

normalised predicted depth distribution from the LiftSplat
model for the nth cell, 1n is the one-hot encoded lidar depth
distribution for the nth cell. The model is trained end-to-
end with all components unfrozen as in [36] and hyper-
parameter λ controlling the strength of the depth supervi-
sion loss with respect to the detection losses.

We also experiment with pretraining the depth estimation
module within LiftSplat. First, we train the camera stream
in [36] supervising only the depth distribution with the
whole camera pipeline unfrozen. Following this pretrain-
ing, we add the lidar components and train the full model
end-to-end as in [36], with no depth supervision (λ = 0)
and all modules unfrozen.

A.4. Extended depth quality results

We evaluate the performance of the depth classifier using
five of the metrics proposed in [10]: root mean squared error
(RMSE), root mean squared logarithmic error (RMSLE),
mean absolute relative error (Abs. Rel.), mean squared rela-
tive error (Sq. Rel.) and fraction outside 125% (Frac. 125).
We show all the metrics for 2 different methods of trans-
lating the classification output into a depth map: “mode”
— in which we use the bin with maximum probability, and
“mean” — where the predicted depth is the weighted aver-
age of all the bins. We take the average of these quantities
over all predictions made by the depth classifier for which
we have ground truth to compute the metrics. Camera fea-
ture cells for which lidar depth is unspecified are ignored.
We compare BEVFusion and four different variants: adding
depth supervision using Eq. (2) with various weights λ, us-
ing lidar depth maps instead of monocular depth estimation
(lidar), using a pretrained and frozen depth classifier (pre-
trained), and finally removing depth estimation altogether
by projecting camera features at all depths uniformly using
Eq. (3) (uniform depth). Quantitative results can be seen
in Tab. S1 and qualitative comparisons in Fig. S1.

B. Detailed experimental results

B.1. 3D object detection

In Tab. S2 we present per-class detection scores and com-
pare our model to other state-of-the-art models on the vali-
dation and test splits of the nuScenes dataset. Our method
outperforms baselines based on the LiftSplat paradigm. We
are additionally showing how test-time-augmentations and
temporal feature aggregation further improves these results.



Loss Weight mAP
mode mean

Relative RMSE Frac. 125 Relative RMSE Frac. 125Abs. Sq. Linear Log Abs. Sq. Linear Log
BEVFusion [36] 68.5 2.95 133.76 25.95 1.87 0.97 2.75 61.31 17.40 1.30 0.88

λ = 0 68.4 3.69 176.09 30.22 1.90 0.96 2.83 68.73 18.54 1.34 0.87
0.001 68.1 1.79 65.63 20.16 1.77 0.94 3.14 79.87 19.91 1.39 0.88
0.01 68.0 0.61 11.78 11.54 1.03 0.63 0.76 10.30 8.09 0.68 0.61
0.1 68.1 0.38 5.53 9.28 0.77 0.41 0.43 4.97 6.47 0.46 0.37
1 68.1 0.21 2.48 5.78 0.37 0.20 0.22 2.23 4.77 0.33 0.19
5 66.6 0.19 2.01 4.77 0.33 0.17 0.19 1.95 4.53 0.32 0.17

100 64.6 0.16 1.15 4.64 0.33 0.17 0.16 1.12 4.55 0.32 0.17
Pretrained 67.4 0.54 8.10 9.95 0.86 0.61 0.64 7.91 7.87 0.66 0.57

Lidar 68.4 0.04 0.01 0.29 0.05 0.00 0.04 0.01 0.29 0.05 0.00
Uniform depth 68.5 – – – – – – – – – –

Table S1. Extended analysis of the monocular depth quality provided by different variations of the “LiftSplat” camera feature projection,
see Sec. A.4.

Model barrier bicycle bus car CV MC ped TC trailer truck mAP NDS
Ours 74.1 70.0 81.3 90.3 33.8 80.8 89.3 79.7 44.0 68.2 71.2 72.7
BEVFusion[31] 73.5 67.5 77.7 89.1 30.9 79.0 89.4 79.3 42.6 66.7 69.6 72.1
DeepInteraction[66] 78.1 52.9 68.3 87.1 33.1 73.6 88.4 86.7 60.8 60.0 69.9 72.6
Ours‡ 77.5 75.2 82.3 91.2 40.0 85.6 90.6 80.2 50.1 72.2 74.6 75.1
Ours w/ TFA 74.4 72.4 81.6 90.8 33.7 82.5 89.8 79.6 45.8 70.1 72.1 73.8
Ours‡ w/ TFA 78.6 78.2 84.3 91.6 39.9 87.5 91.4 80.7 51.2 73.3 75.7 76.0
Ours 78.0 54.9 72.1 89.0 38.9 75.3 90.3 87.0 65.3 64.2 71.5 73.6
Ours‡ w/ TFA 79.7 65.2 75.2 90.3 43.5 82.8 92.0 87.1 70.1 68.9 75.5 74.9
BEVFusion[31] 78.3 56.5 72.0 88.5 38.1 75.2 90.0 86.5 64.7 63.1 71.3 73.3
DeepInteraction[66] 80.4 54.5 70.8 87.9 37.5 75.4 91.7 87.2 63.8 60.2 70.8 73.4

Table S2. Per-class object detection scores on the nuScenes validation set (top) and test set (bottom). TFA: Temporal Feature Aggregation.
‡ indicates ensembling + TTA.

B.2. Detailed qualitative results

To obtain Figure 4a for our method, we first compute
the full camera-to-BEV attention map Attn(cami→bev) ∈
RH×W×N×M . To do so, we extract the attention map of
the last transformer decoder block by averaging over all
heads, Attn(cami→frustum) ∈ RH×W×D×W ′

, where (D ×
W ′) corresponds to the frustum dimension. We construct
Attn(cami→bev) by scattering the frustum attention values
onto the BEV grid. Given camera image Ii, we then cre-
ate Mask(i) ∈ {0, 1}H×W by in-paint drawing the annota-
tions, see Fig. S3, and obtain the BEV attention Attn(bev) ∈
RN×M shown on Figure 4a by projecting these camera fea-
tures onto the BEV grid:

Attn(bev) = max
i,h,w

Attn(cami→bev)
h,w · Mask(i)h,w. (8)

To obtain a similar visualisation for the “LiftSplat” pro-
jection, see Figure 4b, we adjust the implementation of [36]

but use the same model weights. Firstly, we replace the
feature map of image Ii with Mask(i) and use that as in-
put to the projection. This binary mask is “lifted” onto a
3D point cloud using the normalised depth classification
weights Di for which we clipped the first 5 and last 5 depth
bins. Mask(i) thus acts as an indicator function and Di

specifies the strength of correspondence between pixels and
the 3D point cloud P ∈ RH×W×ND×3. Secondly, during
“splatting”, we project points onto the z = 0 plane and pool
them using max. This operation ensures that the weight of
attention for large objects in the final visualisation does not
overpower that of smaller objects.

B.3. Ensemble and test-time augmentations

For test-time-augmentation (TTA) and model ensembling,
we use WBF [50] based on L2 distance metric per object
category to decide which of the boxes to fuse. We first
carry out TTA (using mirror and rotation augmentations)



Camera Lidar

End-to-end [36] Supervised λ = 0

Supervised λ = 0.001 Supervised λ = 0.01

Supervised λ = 0.1 Supervised λ = 1

Supervised λ = 5 Supervised λ = 100

Figure S1. Depth maps obtained after different levels of depth supervision on an example from the nuScenes val set.

with WBF for each cell resolution, and then apply another
WBF on the outputs from TTA of each model to get the fi-
nal detections which we use for evaluations. For rotation
augmentation, we use (-12.5, -6.25, 0, 6.25, 12.5) degrees.
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Figure S2. (a) Similar attention pattern as highlighted in the main text for a close object which is well-represented by the lidar point cloud.
(b) For the same object, but at a later frame when the car moved further away from the ego, our model attends to the same area when
trained with camera and lidar as when trained with camera only (left). (c) For an occluded object, whose representation in the lidar point
cloud is weaker, our model attends to the entire unoccluded area in both settings. BEVFusion [36] appears to consistently attend to a larger
neighbourhood of pixels. (d) The pedestrian, who is not well-represented by the lidar point cloud, is fully attended by our model in the
presence of lidar and camera.
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Figure S3. (a) Camera image Ii with annotations highlighted in white and our model’s predictions, in colour. (b) Binary image Mask(i)

created by in-painting the annotations.

Before fusion module

(a)

After fusion module

(b)

Figure S4. Activations in BEV space derived by summing up feature maps along the channel dimension. (a) uses the channel-wise
concatenation of lidar and projected camera features. (b) uses the output of the fusion module, demonstrating its efficacy in suppressing
background activations.
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Figure S5. Additional examples showcasing the weight of projected camera features onto the BEV space. All examples presented in the
analysis are from the validation set.


