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Abstract

In this paper, we develop a neural network that can de-
tect a mismatch between the light emitted from a monitor
and the light reflected from the face of a user sitting in front
of a monitor-webcam setup. This can be useful to detect
the presence of a deep fake virtual avatar or an inattentive
attendee to create a secure and engaging virtual communi-
cation platform, e.g. a student in a virtual education envi-
ronment. We can perform this detection passively, without
requiring the authenticator to project any specific patterns
intermittently on the screen, hence it does not disrupt the
meeting flow or alert the bad actors. We develop a person-
alized model, where the authenticator requires each team
member to watch ~30 minutes of video content, only once,
on their monitor as their faces are captured with a web-
cam. We then train a neural network that learns to pre-
dict the monitor content from their facial image and com-
pares it with the intended monitor content to detect ‘on-
task’ (real) vs ‘off-task’ (fake). This personalized network
can then detect ‘off-task’ scenarios, where monitor lighting
does not match the face, for any unseen user appearances.
Our method produces a binary classification accuracy of
70%, surpassing a baseline that always predicts ‘on-task’
with 58% accuracy.

1. Introduction

In recent years we have observed a strong continued growth
in virtual communication for conducting business, educa-
tional, and personal activities across different geographical
locations through video calls and live streaming. Virtual
communication offers accessibility, cost-effectiveness, flex-
ibility, productivity, collaboration, global reach, environ-
mental sustainability, improved work-life balance, remote
learning opportunities, and innovation. Yet, there has been
a growing concern in recent years about the insufficiency
of security measures [0, 8] and the diminished levels of en-
gagement [20, 37], posing obstacles to opting for virtual
communication over in-person interactions, despite its nu-
merous advantages.

A new threat concerning the security of video calls is
the emergence of powerful deep fake avatars, where a ma-
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Figure 1. We utilize the mismatch between the lighting emitted
from the monitor and reflected from the face to detect a deep fake
avatar or inattentive participant. We train a personalized neural
network that can predict the content of the monitor for each par-
ticipant and compare it with the intended content presented by the
authenticator, e.g. lecture slides presented by the instructor, to pre-
dict whether they are on-task (in green), i.e. real humans watching
the presentation, or off-task (in red), i.e. deep fake avatars or inat-
tentive participant watching something else.

licious actor can manipulate video content to deceive or
impersonate individuals. For example, consider this re-
cent incident, where a finance worker at a multinational
firm was tricked into paying $25 million to a fraudster
posing as the company’s chief financial officer in a video
conference call using deepfake technology [3]. In the fu-
ture, the emergence of powerful virtual talking head avatars
(e.g. recent tools like github.com/iperov/DeepFaceLive and
github.com/alievk/avatarify-python) will likely create many
such catastrophic incidents.

Similarly, online education in the form of virtual lectures
and group discussions suffers from a lack of engagement.
Understanding student engagement helps instructors design
better lectures and makes it easier to identify inattentive
students. While an instructor can easily infer student en-
gagement and attentiveness when teaching a class in per-
son, it is extremely difficult when teaching online [20, 37].
Even with stricter enforcement like turning on their web-
cam videos, students may often be disengaged, watching
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YouTube videos, playing games, browsing social media,
etc., while fixing their gaze on the monitor and sitting in
an attentive posture.

Both deep fake virtual avatars and students disengaging
from class content often share one underlying physical phe-
nomenon, i.e. the lighting on their faces does not match the
lighting emitted from the monitor. In this paper, we aim to
create a secure and engaging virtual communication plat-
form by detecting deep fake actors and disengaged partic-
ipants with the mismatch between screen illumination and
facial lighting. We can authenticate real and engaged users
by simply using the content being currently shared on the
screen as a part of the virtual meeting, without projecting
any specific patterns on the monitor that disrupt the meet-
ing flow and alert malicious actors. We consider a scenario,
where an authenticator, e.g. an instructor or a team leader,
is sharing specific contents during the virtual meeting that
every attendee is supposed to watch, e.g. lecture slides or
monthly project report. If an attendee is a real human who
is paying attention and watching the presentation, the light-
ing emitted from the monitor will reflect from their face, we
call this scenario ‘on-task’. If they are a deep fake avatar or
an inattentive attendee, e.g. a student browsing social media
instead of watching the virtual lecture, the lighting on their
face will not match the content shared by the authenticator,
we call this ‘off-task’.

We design a neural network that takes a portrait image
of the user captured by their webcam as input and gener-
ates the ‘predicted monitor’ content in low resolution, com-
pares it to the ‘intended content’ shared by the authenti-
cator, and predicts a binary classification of ‘on-task’ vs
‘off-task’. The neural network consists of a pre-trained
backbone (ResNet or ViT), a generator (convolution or pre-
trained StyleGAN) that outputs a predicted monitor, a map-
ping network that maps backbone features to the generator,
and a binary classifier. The binary classifier predicts atten-
tion, on-task or off-task, from the ‘predicted monitor’ and
the ‘intended monitor’.

In this paper, we train personalized detection models for
each user separately. We assume that the authenticator, i.e.
manager or instructor, requires their team or class to watch
specific videos (YouTube videos) on their monitor for ~30
minutes and record them with a webcam. This can be done
once when a new employee joins a team or at the begin-
ning of each term for the students. Then personalized Al
models will be trained on these captured videos and will be
applied to unseen appearances of the same user. We argue
that training a personalized model is easier than develop-
ing a generalized model that requires capturing hundreds of
participants and can pose more privacy concerns.

Our work is closely related to [11], which also uses il-
lumination difference between monitor and face to detect a
deep fake. However, the difference is that our approach uses

passive illumination in contrast to active illumination used

in [11], which requires the authenticator to share specific

contents, i.e. short video of distinct time-varying patterns,
intermittently. Our method uses whatever content the au-

thenticator shares on screen as a part of the meeting, e.g.

lecture slides, hence does not disrupt the meeting flow and

alert malicious actors.

We test our idea by developing personalized detection
models for 4 participants of different skin types (Types I
through IV) captured under different illumination condi-
tions, head motion and expression variations. From detailed
qualitative and quantitative evaluations, our key observa-
tions are: (i) Our best model — which uses multiple lay-
ers of features from a pre-trained ViT encoder and a Style-
GAN generator — obtains an average F1 score of 75% and
an accuracy of 69% across all participants in different en-
vironments. (ii) Multi-task learning, where we jointly pre-
dict actual monitor content and perform binary classifica-
tion, improves by ~3% (accuracy) over only performing bi-
nary classification. (iii) The performance of our best model
deteriorates from small head motion to large head motion
by 4.84% (accuracy) but is not impacted by ambient room
lighting. (iv) Our approach does not work when a strong
source of illumination, e.g. a bright lamp, is placed very
close to the participant’s face nullifying the effect of light-
ing emitted by the monitor.

In summary, the contributions of this paper are:

* We show that light emitted from the monitor and reflected
from the face is an effective signal to detect the presence
of deep fake avatars or inattentive attendees in video con-
ference calls. We show that this detection can be done
passively without requiring the authenticator to share spe-
cific patterns intermittently, which disrupts the meeting
flow and alerts the bad actors.

* We introduce a general neural network framework where
we extract features from the face and use them to predict
the student’s monitor content. We then use the predicted
monitor and the intended monitor to perform binary clas-
sification for ‘on-task’ (real) vs ‘off-task’ (fake). We
show that jointly predicting monitor and classifying stu-
dent attention improves accuracy by 3% over only classi-
fying attention.

* We perform an extensive quantitative and qualitative eval-
uation on four users with varying skin tones (Type I to IV)
analyzing the impact of different architectural choices,
head motion, and background ambient lighting.

2. Related work

Exploiting Screen Illumination for Relighting. Prior re-
search in computer vision has often considered using mon-
itors [5, 39] or projector screen [29] as light sources to en-
able relighting of static objects. Recently this has been ex-
tended to facial portrait relighting for video calls with light-
ing emitted from the monitor [4, 30]. Our method is also
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inspired by these approaches, but instead of relighting we
use screen illumination for deep fake detection. We fur-
ther show in Sec. 5.2 how existing relighting techniques
[4, 30, 32] can be used by students to prevent the instruc-
tor from monitoring engagement using monitor lighting.

Deepfake detection. The rise of generative image and
video editing tools led to the proliferation of deepfakes rais-
ing concerns regarding misinformation, privacy breaches,
and the potential to deceive or manipulate audiences on a
large scale. Hence, researchers have developed various Al
algorithms that focus on detecting deep fakes, a survey of
these techniques are presented in [21, 35]. However, most
existing papers focus on detecting deep fakes in images,
videos, and audio offline, i.e. the generated content already
circulating in the media. Only recently, live deep fakes,
synthesized in real-time by a virtual camera has become
popular, e.g. tools like github.com/iperov/DeepFacelive
and github.com/alievk/avatarify-python). Soon in the fu-
ture, these tools will become even more powerful posing a
real threat to live video communication platforms that were
traditionally considered believable’ to humans.

Recently researchers have explored active illumination
projected on the user’s screen to detect deep fakes. Live-
Screen [22] uses screen illumination reflected from the skin
to detect liveness. Similarly, researchers used active illu-
mination probing on corneal reflection [12] to detect deep
fakes. Both Gerstner ef al. [11] and Shang et al. [31] use
active screen illumination to project-specific patterns for au-
thentication. While [31] uses a simple change in the bright-
ness of the screen, it is not robust to real webcams with
built-in auto exposure. In contrast [11] relies on hue varia-
tion that is independent of the auto-exposure. Our method
does not require any active illumination and simply utilizes
natural change in intensity and chromaticity of the content
the user is viewing for authentication.

Active vs Passive Screen Illumination. Our work is
closely related to [11, 31], where the author uses active
monitor illumination to authenticate videos as real or ‘deep-
faked’. The authors assume that a call participant can
project a distinct temporally varying illumination pattern on
a shared screen and authenticate other user videos based on
the reflection of this pattern on their skin. The active illumi-
nation approach can be used at the beginning of the meeting
by an instructor to validate whether a participant’s video is
real or fake. However, using active illumination during the
meeting disrupts the meeting flow and alerts the bad actors.
Our proposed approach does not require any active illumi-
nation, i.e. creating specific content for authentication, and
can passively authenticate with the current content being
presented on the screen.

Online student engagement prediction Researcher
have used various different signals for predicting student
engagement in virtual learning platforms, e.g. physiological

signals from sensor readings [9, 23, 24, 33], browsing pat-
terns and mouse movements [2, 18, 19]. These techniques
often require active participation by requiring students to
put on wearable devices and consent to enable remote ac-
cess to their devices.

Thus often researchers have relied on eye gaze [, 15, 17,
25-27, 34, 38] as a passive measure of engagement in vir-
tual learning environments. However, uncalibrated eye gaze
tracking techniques based on deep learning often lack fine-
grained angular precision and are primarily used to tell if
a student is paying attention to the monitor. In many prac-
tical scenarios, inattentive students simply perform differ-
ent tasks on their monitor, e.g. browsing social media or
watching YouTube videos, while faking an attentive posture
and gaze. Our proposed approach is particularly focused on
these scenarios where gaze estimation does not indicate stu-
dent engagement. Instead, we exploit the reflections of the
monitor light from the person’s face as a visual cue for pre-
dicting engagement.

Another visual cue often used for predicting engagement
involves detecting facial expressions [13, 36] or full-body
pose [10]; However, like eye gaze, this prediction method
can be easily fooled with faked facial expressions.

3. Problem formulation

In this work, we detect whether the screen illumination
matches the face lighting or not during live video calls.
We assume we can detect this passively from the already
present content on the screen in contrast to existing ap-
proaches [11, 31] that require the authenticator to share
specific patterns, i.e. active illumination, which disrupts the
meeting flow and alerts ‘bad actors’. We develop an Al al-
gorithm that can analyze the light reflected from the face
and infer the nature of the monitor content. This allows us
to predict whether the ‘predicted monitor’ content matches
the ‘intended monitor’, which is currently on-screen, to de-
tect whether the face is a deep fake ‘bad actor’ in live video
calls or a student not engaged with the class content.

On-task vs. Off-task classification. We assume the au-
thenticator, i.e. either the person in charge of conducting
the meeting or an instructor in online education, is sharing
content for everyone to view, e.g. slide deck or meeting
notes. We term this content as ‘intended monitor’ content
which should be viewed by everyone else in the meeting.
We define ‘on-task’ as a situation where the light emitted
from the screen content, i.e. ‘intended monitor’ matches
the light being reflected from the face of the person. This
indicates that the person is viewing the ‘intended’ content
and is a real live person and not a deepfake. Similarly, we
define ‘off-task’ as a situation where the light emitted from
the monitor does not match the light being reflected from
the face, indicating either the presence of a deep fake avatar
or a person disengaged with the ‘intended monitor’ content,
e.g. a student browsing social media instead of watching
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Figure 2. We introduce a neural architecture that extracts features from the face and then maps them to a latent space using a mapping
network. We then use a generator to generate predicted monitor contents from the latent space. Finally, we use a classifier that takes the
predicted monitor and the intended monitor as inputs and predicts a binary classification of either on-task or off-task. We train this neural
architecture jointly with binary classification loss and a loss between the predicted and actual monitor. In the given example, the participant
is ‘off-task’, i.e. lighting on the face does not match monitor lighting. This diagram represents models with task classifier TC2. For models

with TC1, the output is passed directly from the mapping network to the task classifier and the generator is not present.

the lecture. Our method predicts whether each user is ‘on-
task’ or ‘off-task’ for every frame of their webcam video in
real-time (at 30 fps).

Personalized models for predicting engagement. In this
paper we focus on developing a personalized algorithm that
detects on or off task conditions, by training a neural net-
work only on the images of a user and testing on unseen ap-
pearances of the same user. We build personalized models
instead of generalized models since the latter would require
capturing a few hundred individuals in front of a monitor,
which takes significantly more time and resources. Thus
we will rely on personalized models to prove the effective-
ness of passive monitor lighting in deep fake detection. We
train separate neural networks for four individuals of differ-
ent genders, ethnicities, and skin colors.

To train a personalized model, we only require users to
watch ~30 minutes of arbitrary video content on their mon-
itor while capturing their faces with a webcam. We argue
that this is accessible enough to make the development of
personalized models practical for virtual meetings. For ex-
ample, before the start of a semester, each student could be
required to watch 30 minutes of video content and send their
webcam recordings to the instructor where they could build
personalized models for each student. Similarly, a manager
of a small organization can also build a personalized model
for their employees when they join the organization to au-
thenticate their presence in live video calls.

Collecting training data for a personalized model. For
‘on-task’ we capture real humans watching YouTube videos
on a monitor screen. For each user, we record them watch-
ing 4 different videos at different times. Each video is
roughly 8 minutes in length. We use the monitor content
as both an ‘intended monitor’ and an ‘actual monitor’ of
what they are watching. This capture data can be collected
by a manager of a team or an instructor of a class at the be-
ginning of the year. In our formulation, they do not need
to capture separate videos for ‘off-task’ but simply simu-
late ‘off-task’ scenarios from ‘on-task’ captured data. This

makes it significantly easier to train the models without re-
quire any separate capture for ‘off-task’.

For ‘off task’, we need to create a scenario where the
screen lighting and face lighting do not match, i.e. the ‘in-
tended monitor’ content does not match the content on the
screen being watched by the user ‘actual monitor’. This
allows us to simulate both live deep fakes and disengaged
participants scenarios. We first divide the 8-minute captured
video into short random chunks. For each chunk, we con-
sider them either to be ‘on-task’ by using the ‘actual moni-
tor’ content = ‘intended monitor’ content or we will create
‘off-task’ labels by simply using a random video as the ‘in-
tended monitor’. We ensure that each chunk is used as both
‘on-task’ and ‘off-task’ during the training and validation
process. Figure 3 explains this data collection process.

Since, in most practical scenarios slide contents are pre-
sented during virtual meetings we aim to mimic that by
considering the ‘intended monitor’ as slideshows in our
test videos. We created an 8-minute test video by ran-
domly replacing short chunks of a lecture slide video with
slideshows with a YouTube video. Here, the original lec-
ture video will be the ‘intended monitor’ content and the
test video (a mix of lecture slides and YouTube clips) will
be the ‘actual monitor’ content that the user watches.
Capture details. We use 5 monitor videos to capture 4
users of varying skin tones. We capture these 4 users in 4
distinct conditions to simulate different real-world scenar-
i0s: (AO-MO) a dimly lit room, small pose and expression
changes; (A0-M1) a dimly lit room, larger pose and expres-
sion changes; (A1-M0) a room with ambient lighting, small
pose and expression changes; (A1-M1) a room with ambi-
ent lighting, larger pose and expression change.

4. Method

We aim to extract lighting representation from a person’s
portrait image and determine if that matches the lighting
emitted from the screen. Our model consists of: a fea-
ture extractor, which is a pre-trained model that extracts
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Model Backbone Backbone Output Generator Mapping Net Classifier Total Loss
RX ResNet Final layer - - TC1 Lon

RC ResNet Final layer Conv - TC2 Lon + Lioni
RS1 ResNet Final layer StyleGAN v TC2 Lon + Linoni + Loy
RS2 ResNet Multiple layer StyleGAN v TC2 Lon + Linoni + Ly
VX ViT Final layer - - TC1 Lon

VC ViT Final layer Conv - TC2 Lon + Linoni
VS1 ViT Final layer StyleGAN v TC2 Lon + Linoni + Ly
VS2 ViT Multiple layer StyleGAN v TC2 Lon + Linoni + Ly

Table 1. We illustrate the configuration of eight different models used for evaluation in terms of architecture modules and training losses.

Captured Face Video

| Random Substitution

L

Training data Intended Monitor Video

Figure 3. We require every authorized participant to record them-
selves watching ~30 minutes of video content on their monitor
only once and label this as ‘on-task’ scenario, e.g. making an in-
troductory presentation when joining a team. We then randomly
replace different segments of varying lengths of the recorded
slideshow with random YouTube video clips, and change the label
of these segments to ‘off-task’. This augmented video clip with
random chunks of slideshow and YouTube videos will be consid-
ered as the ‘intended video’ and the original slideshow video will
be considered the ‘actual video’ the user watches with correspond-
ing ‘on-task’ and ‘off-task’ labels.

facial features from the portrait image, a mapping network
that transforms backbone features into input features for the
generator, a generator designed to reconstruct the predicted
monitor content, and a task classifier that uses the predicted
monitor and the input intended monitor for binary classifi-
cation of on-task vs. off-task.
The feature extractor operates by utilizing a pre-trained
network to extract features from a cropped portrait, focusing
exclusively on the facial region of a 480 x 480 resolution
image. We use either a ResNet18[14] or ViT Base with
16 x 16 image patches [7] as a feature extractor backbone.
The ResNet feature extractor has two possible config-
urations. In the case of ResNetl18 with a final layer out-
put, a feature map of dimensions 512x7x7 is produced from
the final convolutional layer. In the ResNetl8 with Mul-

tiple Layer output, four intermediate features are extracted
from the convolutional layer. The ViT backbone with a final
layer output extracts a feature map of dimensions 3x16x16,
specifically targeting the classifier token. The ViT backbone
with a multiple layer output, takes the 12 intermediate clas-
sifier tokens from the output of all 12 Transformer layers.
Generator network uses the output of the mapping network
or that of the feature extractor itself to estimate the ‘actual
monitor’ content as the predicted monitor. We consider two
different design choices for the generator: (i) a convolu-
tional generator, where we use a learnable convolution net-
work to generate an 18 x 32 x 3 resolution monitor image
directly from the output of the feature extractor without us-
ing any mapping network. (ii) a StyleGAN generator[16],
where we use the pre-trained StyleGAN-XL[28], trained on
a large dataset of landscape images, to generate a 64 x 64 x 3
monitor image. The StyleGAN-XL network uses the Map-
ping Network to convert the output of the Backbone Feature
Extractor to StyleGAN latent space.

Mapping network is exclusively used when employing
StyleGAN-XL [28] for the Generator. This network maps
the output of the backbone to the W space of dimension
512. We use a convolutional network if the feature extrac-
tor backbone is a ResNet, and a multi-layer perceptron if
the feature extractor is ViT.

Task classifier calculates the on-task probability using the
intended monitor and the predicted monitor. There are two
types of task classifiers TC1 and TC2. Models with TC1
extract the features for the input face directly from the map-
ping network. Models with the TC2 classifier are similar
but extract features from the predicted monitor.

Loss functions. Our model is trained by minimizing a
weighted combination of three loss functions: on-task clas-
sification loss, monitor loss, and latent code loss. First, we
utilize the binary cross-entropy loss for the on-task loss to
calculate the probability of being on-task (equal to 1).

Loy, = BCELoss(on-task, on-fask) (1

Next, we take the monitor loss between the intended
monitor and predicted monitor. We employ a combination
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of L1 loss and perceptual loss, with A andAA p setto 0.2
and 0.8, respectively. Also M,,_tqsx and M denotes on-
task monitor and predicted monitor:

Lmoni - >\L1 Ll (Mon—taska M) (2)
+)\PLP(Mon—task> M)

Finally, the latent code loss L,, was computed using the
L2 loss. We first conducted latent space optimization on
every monitor image to find the latent code w of the actual
monitor by gradient descent on w. The loss L,, is defined
as follows

Lw = L2 (wnptimized; ’Li)) (3)

where Woptimizea TEPresents the optimized latent code ob-
tained through latent space optimization, and w denotes the
output obtained using the mapping network.

5. Experiments

In this section, we outline our comprehensive approach to
experimental setup and evaluation. We gather both training
data and testing data following the specifications outlined in
Sec. 3. Subsequently, from the pool of 5 training videos, 1
is randomly selected as validation data, with the remaining
4 videos constituting the training data. The model is then
trained using this data, and after identifying the best thresh-
old through validation, evaluation is performed on the test-
ing data. In Sec. 5.1, we elucidate the metrics employed
for binary classification and predicted monitoring. Exper-
imental outcomes for classification and monitoring predic-
tion are detailed in Sec. 5.2.

5.1. Evaluation metrics

We apply four metrics for evaluating classification: accu-
racy, precision, recall, and F1 score. We employ recall, in-
dicating the ratio of true positives to actual positives; preci-
sion, measuring the ratio of true positives to predicted pos-
itives; and F1 score, which offers a balanced assessment of
precision and recall. We also use RMSE (Root Mean Square
Error) and PSNR (Peak Signal-to-Noise Ratio) to evaluate
the quality of the predicted monitor.

In Tab. 3 we compare the average performance of differ-
ent approaches across all four users under different lighting
and head motion. We consider a baseline that always pre-
dicts each frame as ‘on-task’ or ‘off-task’. Since our test
data is biased towards ‘on-task’, the accuracy and F1 score
are higher for the ‘always on-task’ baseline.

5.2. Observation

The optimal model (VS2) utilizes a combination of fea-
tures from a ViT encoder and a StyleGAN generator. In
Tab. 3, we observe that VS2 demonstrated superior perfor-
mance in terms of accuracy, F1 score, and recall metrics
across four diverse capturing environments and four users.

Notably compared to the ‘Always-On’ baseline VS2 per-
forms 11% better in accuracy, 13.5% better precision while
having slightly better F1-score by 1.5%

ViT feature extractor and StyleGAN as a monitor pre-
dictor contribute to performance improvement. In Tab. 3,
the average accuracy and F1 score of models using ViT
backbone are 66.71% and 73.74, respectively, whereas for
ResNet backbone, they are 65.98% and 71.69. This sug-
gests that using ViT is more favorable than using ResNet.
Among ViT backbone models predicting monitors (VC,
VS1, VS2), those employing StyleGAN, namely VS1 and
VS2, demonstrate approximately 11.2% higher accuracy
and 3% higher F1 compared to the convolution-based gen-
erator approach of VC.

Multi-task learning for monitor prediction proves to be
more effective in enhancing performance compared to
solely performing binary classification. Particularly, VS2
exhibits a 4% improvement in accuracy and a 2.3% increase
in F1 score over VX. Additionally, as shown in Fig. 6, it aids
in understanding the contents of the user’s screen.
Different skin types have minimal impact in predicting
student engagement. We compared F1 and accuracy mea-
sures averaged across different models and users based on
their skin types. We observe that, on average, all models
perform roughly similarly across all users without any spe-
cific trend. Individual variations can be attributed to ran-
domness in data augmentation and over-exposure during the
capture process.

Effects of room light and head pose motion is investi-
gated in Tab. 2. We note that with small head motion, the
accuracy of our top-performing model VS2 remains almost
the same for both dimly lit (‘A0-MO’) and ambient lighting
(‘A1-M0’), indicating our method can handle ambient room
lighting. For dimly lit conditions, large head motion only
slightly deteriorates the performance of VS2 by 3.5% (‘AO-
M1’ vs ‘A0-M0’). However, in ambient light conditions, ac-
curacy decreases by an average of 11.8% with head motion
(‘AI-M1” vs ‘A1-MO’). We argue that significantly large
head motion, with more than 30-degree head pose variation
on average between frames, is rare in virtual meetings.
Effect of color differences between intended and ac-
tual monitor in predicting ‘off-task’ accuracy is studied in
Fig. 5, by depicting variations of accuracy with respect to
differences in hue, saturation, and value. We consider our
best-performing model, VS2, and evaluate its accuracy for
one user in a dimly lit room with a small head motion. We
note that our model performs best with large differences in
value or intensity between the actual and intended monitor,
as expected. The accuracy of our model remains roughly
the same for hue or color differences between the intended
and actual monitor, showing that our model can differenti-
ate small variations in hue.

Predicting monitor content. We evaluate the error be-
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A0-MO

A0-M1

A1-MO Al1-M1

Model Acc.(%)1T Flscore?T Acc.(%)T FlscoreT Acc.(%)T Flscore? Acc.(%)7T F1score?
RX 67.96 0.7662 70.34 0.7543 61.92 0.6808 58.55 0.7365
VX 70.87 0.7780 67.17 0.7203 64.07 0.7029 59.49 0.7322
VS1 67.39 0.7594 68.97 0.7308 71.42 0.7460 59.77 0.7385
VS2 71.37 0.7809 67.92 0.7121 71.04 0.7618 62.29 0.7444

Table 2. We evaluate the average performance (higher the better) of our leading algorithms across 4 different users of varying skin tones
on different pose and lighting conditions. ‘A0’ and ‘A1’ indicate dimly lit room and room with ambient lighting, while ‘MO’ and ‘M1’
indicate small head motion and large head motion respectively.

Model Acc. (%) F1lscore Precision Recall A0-MO A1-MO

Always-On 58.32 0.7367 0.5832 1.0 Model RMSE| PSNR1T RMSE| PSNR*
_Always-Off — 41.67 0 0 0 RC 1022 2794 1021 2795

RX 66.11 0.7340 0.6816 0.8137 RS1 10.26 27.90 10.26 2791

RC 67.94 0.7389 0.7071 0.7948 RS2 10.14 28.01 10.22 27.95

RS1 64.59 0.6653 0.6447  0.6976 e 10.16 27.99 10.258 27.92

RS2 65.29 0.7295 0.6791  0.8172 VS1 10.15 28.00 10.19 27.98

VX 66.76 0.7336 0.6895 0.8048 vVS2 107 28.03 10.16 28.00

VC 62.05 0.7203 0.6621 0.7398

VS1 68.53 0.7449 0.7132 0.7989 Table 4. We evaluate the error between the predicted monitor and

VS22 69.51 0.7510 0.7188 0.8069 the ‘actual monitor’ for a small head motion with dimly lit (‘AO-

Table 3. We evaluate the average performance (higher the better)
of our leading algorithms across 4 different users in different pose
and lighting conditions. We consider two baselines where we al-
ways predict each frame as on-task or off-task.

User 3 User 4
Accuracy (%)
Model Userl User2 User3 User4
VSl1 68.65 70.19 66.14 72.05
VS2 69.44 73.19 69.25 68.56

Figure 4. We evaluate all eight proposed models separately on 4
users of different skin types in a dimly lit room with minimal head
motion (top). Our top two best-performing models VS1 and VS2
(bottom) produce similar results for all users. Small variations
could be attributed to randomness in data augmentation and over-
exposure during capture.

tween the predicted and the actual monitor for both dimly
lit (A0-MO) and ambient room lighting (A1-MO0) with small
head motion. The error between the predicted monitor com-
pared to the actual monitor is similar for all models, as ob-
served in Tab. 4. Our best-performing model for monitor
prediction is VS2 in both settings. In Fig. 6, we observe
that our model can faithfully recover the color tone of the
original monitor for both ‘on-task’ and ‘off-task’. Note that

MO0’) and ambient lit (‘A1-MO0’) data.

when the actual monitor has two dominant colors (white
and yellow in row 4), the predicted monitor can also recover
these colors. However, since we are using StyleGAN-XL,
pre-trained to generate landscape images, we often halluci-
nate structures in the middle of the image. We note that we
can mainly recover the color of the monitor content and fail
to reconstruct the basic layout or recognizable objects
Relighting algorithms virtually change facial lighting and
thus has the potential to defeat our system which relies on
the correlation between monitor lighting and facial lighting.
We evaluate the performance of two existing relighting al-
gorithms, Relight-Net1[30] and Relight-Net2[32] in Fig. 7
on all four conditions for one user. We observe that after
applying relighting the accuracy of our system drops signif-
icantly, especially for small head motion in dimly lit rooms
(A0-MO) by roughly 15%. However, we notice that with
large head motion and ambient room light (A1-M1) the re-
lighting algorithms are highly inaccurate and thus fail to de-
feat our approach by any significant margin.

6. Conclusion

We present a new technique that leverages screen light-
ing reflected from a participant’s face to determine whether
they are real humans or deep fakes and whether they are
paying attention or not to the intended screen content, e.g.
lecture slides. We can do so passively, without requiring
any specific patterns to be projected on the screen intermit-
tently, thus not disrupting the meeting flow and alerting the
bad actors. We envision that such a technique can be ex-
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Figure 5. We show that the oft-task prediction accuracy of our best-performing model, VS2, is independent of the hue, saturation, and

value differences between the actual and intended monitor.

source actual

predicted

intended

Figure 6. Our best-performing model, VS2, can generate a pre-
dicted monitor which has similar color tones as the ‘actual moni-
tor’. Predictions of our model are shown in the inset.

tremely useful in identifying deep fake avatars during video
conference calls, thereby mitigating security risks and pre-
venting fraudulent activities. This can be also beneficial in
online education systems enabling instructors to better un-
derstand student engagement and attention, which can then
be used to refine their own lecture materials or group dis-
cussion plans. We train a personalized network architec-
ture that takes the face video and intended monitor image,
e.g. lecture slides, as input and predicts the actual mon-
itor content, finally classifying the user as on-task or off-
task. We present a detailed analysis to understand the im-
pact of varying environmental conditions like head motion,
ambient room lighting, color variations in monitor, and net-

08 M Original [ Relit-net1 Relit-net2
0.7
>
3
5 0.6
3
<
05 I
0.4
A0-MO A0-M1 A1-MO A1-M1
Condition

Figure 7. We show that applying existing relighting algorithms,
Relight-Net1[30] and Relight-Net2[32], on face videos can reduce
the performance of our system significantly.

work architecture designs. Our research introduces a new
problem to the computer vision community that can be fur-
ther explored to build better models that can also generalize
across many users.

Ethical considerations. While the goal of this paper is to
create a tool that will enable instructors and managers to
create a secure and engaging virtual communication envi-
ronment, we recognize that this technique can be potentially
used to violate the privacy of participants. In this current pa-
per, we assume that all meeting participants consent to the
authenticator building their personalized detection models,
but in the future, a more generalized system can be used to
predict what any user is watching on their monitor without
their consent. However, it is extremely easy to defeat this
system by using a strong light in front of the face, e.g. a
lamp or sunlight coming through the window. Even when
these additional light sources are not available, our system
can be counteracted by virtual relighting algorithms. While
current relighting algorithms could only reduce the F1 score
to ~65%, we believe future research on virtual relighting
can also utilize our problem setup to validate their efficacy
in defeating our system.
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