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Abstract

The aim of this work is to explore the potential of pre-
trained vision-language models (VLMs) for universal detec-
tion of AI-generated images. We develop a lightweight de-
tection strategy based on CLIP features and study its perfor-
mance in a wide variety of challenging scenarios. We find
that, contrary to previous beliefs, it is neither necessary nor
convenient to use a large domain-specific dataset for train-
ing. On the contrary, by using only a handful of example im-
ages from a single generative model, a CLIP-based detector
exhibits surprising generalization ability and high robust-
ness across different architectures, including recent com-
mercial tools such as Dalle-3, Midjourney v5, and Firefly.
We match the state-of-the-art (SoTA) on in-distribution data
and significantly improve upon it in terms of generalization
to out-of-distribution data (+6% AUC) and robustness to
impaired/laundered data (+13%). Our project is available
at https://grip-unina.github.io/ClipBased-

SyntheticImageDetection/

1. Introduction
Synthetic images have by now left research laboratories and
are flooding the real world. The latest versions of popu-
lar image editing tools, such as Adobe Photoshop and Mi-
crosoft Paint, come with easy-to-use AI-powered generative
tools that allow even novice users to edit and generate visual
content at will. Thanks to diffusion-based generative mod-
els, it is not only the quality of the generated images that is
greatly improved, but also the flexibility in using these tools.
By issuing a few text commands you can easily obtain the
desired image. While this represents a great opportunity for
visual arts applications, it is also the paradise of disinfor-
mation professionals who can design their attacks with un-
precedented power and flexibility [5, 7, 23]. And, of course,
a nightmare for all those trying to combat the spread of fake
news and orchestrated disinformation campaigns: journal-
ists, fact-checkers, law enforcement, governments. There-
fore, there is a high demand for automatic tools that help
establish the authenticity of a media asset.

It is well known that each synthesis model leaves its own
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Figure 1. Area Under ROC Curve (AUC %) on unseen synthetic
generators (x-axis) and on post-processed data (y-axis). The first
number measures the generalization ability of the detector, the sec-
ond measures its robustness to possible impairments. Circle area
is proportional to training set size. Performance is measured over
18 different synthetic models. Our CLIP-based detector largely
outperforms all SoTA methods with very limited training data.

peculiar traces in all generated images, subtle traces that
give rise to so called artificial fingerprints, that can be ex-
ploited for forensic analyses [45, 71]. This phenomenon
was first observed for methods based on generative adver-
sarial networks (GAN) [20, 73] but holds, with obvious dif-
ferences, for all generation approaches, including the more
recent diffusion models (DM) [11]. One of the main chal-
lenges for current forensic detectors is the ability to gener-
alize to new and unseen generative methods. Indeed, the
in-distribution (ID) scenario, with perfectly aligned train-
ing and test sets, is rarely met in practice. Test images
are often generated by new approaches, unseen architec-
tures, or even known architectures re-trained under differ-
ent conditions, all representing different flavors of the out-
of-distribution (OOD) scenario. Additionally, most images
are downloaded from social networks, where they undergo
transformations such as compression and resizing (some-
times multiple times), processes that tend to wash out the
tiny traces so precious for detection. In [66], it is shown
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that training diversity and intense augmentation are crucial
for generalization. A ResNet-50 detector is trained on a sin-
gle but highly diverse dataset of about 360k ProGAN [36]
images. Results on OOD images generated by other GAN-
based generators turned out to be surprisingly good. How-
ever, the authors themselves attribute this performance to
the structural similarities between GAN-based generators.
Indeed, results are not equally good on images generated by
recent diffusion-based methods, which present somewhat
different generation artifacts [12].

Generalizing to OOD data is a major issue in deep learn-
ing and has been the object of intense research in recent
years. In this context, the advent of large pre-trained vision-
language models has brought about a number of new solu-
tions and exciting results. These models have been shown to
be excellent zero-shot and few-shot learners in many diverse
applications, such as image classification [54, 72], detection
[24, 49] and segmentation [68, 75]. Recently, there have
been attempts to exploit the power of VLMs to detect syn-
thetic images [2, 51, 61]. For example, [51] considers the
same dataset, augmentation strategy and experimental pro-
tocol as in [66] but uses a pre-trained VLM, the Contrastive
Language-Image Pre-Training (CLIP) [54], as a feature ex-
tractor rather than training a ResNet-50. Only the classifier
is then learned on the task-specific dataset. Compared to
[66] the performance improves significantly, especially on
images generated by diffusion models, showing excellent
generalization ability.

In this work, we explore in depth the potential of CLIP
for image forensics and conduct an extensive experimen-
tal analysis in challenging real-world scenarios involving
a large number of generative models. We find that CLIP-
based methods show impressive generalization ability and
very good robustness, resulting in large performance im-
provements compared to the state of the art. To achieve
such results, we avoid any intensive training on domain-
specific data, which could introduce unwanted biases and
undermine the descriptive power of CLIP features. Instead,
we rely on a small number of paired real/fake images with
the same textual description and use their CLIP features to
model the decision space. Synthetic images come from a
single generator, but results are equally good across all dif-
ferent data sources. The top performance is achieved with
just 1,000 to 10,000 paired images. Moreover, only minor
performance decays are observed when this number reduces
to 100 or even 10 (see Fig. 1). In summary, the key contri-
butions of this work are as follows:
• We show that CLIP features achieve excellent generaliza-

tion: by exploiting only a handful of examples, not even
belonging to the generator under test, the performances
are comparable to those of intensively trained solutions.

• We carry out a large set of experiments on diverse
synthetic generators and in very challenging conditions

achieving the best performance on average. Our exper-
iments make clear that the features extracted are par-
tially orthogonal to the low-level features used by pre-
vious methods.

2. Related work

There is an extensive literature on synthetic image detec-
tion, primarily focusing on images created by generative ad-
versarial networks (GANs) and, more recently, by diffusion
models (DMs). Some methods look for visible errors, such
as asymmetries in faces, incorrect perspectives, or unusual
shadows [25, 26, 47]. However, with the rapid progress
in image synthesis technology, these types of problems are
solved quickly and appear less frequently in modern gen-
eration methods. Therefore, we will focus on methods that
exploit “invisible” forensic traces, working either in the spa-
tial or frequency domain. Subsequently, we will provide a
brief overview of the most recent approaches that exploit
multimodal features.

Spatial domain methods. Despite their high visual qual-
ity, synthetic images carry with them distinctive traces of
the generation process that enable detection and even pat-
tern identification [45, 71]. Each generation model, in fact,
inserts a sort of digital fingerprint into all the images it cre-
ates, which depends on its architectural and training details.
This fingerprint can be easily estimated. Given a few hun-
dred images generated by the target model, it is sufficient to
average their noise residuals, extracted using simple denois-
ers [45] or more sophisticated methods based on deep learn-
ing [43, 62]. Detectors based on digital fingerprints can be
regarded as “few-shot”, as they can deal with new models
based on just a few example images. Other few-shot solu-
tions have been proposed lately in this field [13, 19, 32, 46].
However, they all require information on the target mod-
els, even if limited to a few images, so they fit a strictly
in-distribution scenario. In contrast, our work aims to gen-
eralize to new and previously unseen models, and therefore
fits into an out-of-distribution scenario.

Good generalization is a key requirement of synthetic
image detectors. Towards this end, it is important to in-
crease diversity in training, which can be pursued by suit-
able augmentation, by including a large number of different
categories [66], or even by model ensembling [44]. Other
studies suggest working on local patches [8] or combine
global spatial information with local features [34]. In [30],
it is shown that to preserve the subtle high-frequency foren-
sic traces, one should avoid any downsampling in the first
layers of the network. With the same aim, [64] proposes
to work on noise residuals rather than the original images,
extracting the gradients with a pre-trained CNN. In [10], a
systematic study is carried out on transferable forensic fea-
tures that allows easier generalization.
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The above investigations and proposals, however, only
consider GAN-based generators. Some very recent works
extend the analyses to latest generation approaches. [12]
shows that detectors designed for GAN images have a hard
time generalizing to DM images, especially in the presence
of common post-processing steps such as compression and
resizing. Furthermore, they are unable to select an adequate
decision threshold without the help of some calibration data
from the model under test. On the other hand, [22] shows
that it is possible to achieve decent performance by contin-
uously re-training the detector on images from new gener-
ators, as long as the latter share some architectural compo-
nents with the known ones. In [67], inspired by previous
work on GAN images [1], a detector specifically tailored
to DM images is proposed. Images are projected in a la-
tent space and reconstructed with known models to study
their features. Although promising, the approach refers to
specific architectures, hence an ID scenario, and has been
tested on a limited set of generative diffusion models. In
this work instead, we do not make any assumptions and in-
clude a large variety of both GAN and DM generators.

Frequency domain methods. GAN-image artifacts are
more easily spotted in the frequency domain and are clearly
visible in the artificial fingerprint spectra [20, 21, 28]. In
fact, they are caused by the up-sampling operations used
in the generator, which give rise to regular spatial patterns
and strong peaks in the Fourier domain. Interestingly, the
awareness of such weakness has prompted the design of
new architectures, like StyleGAN3 [39], which explicitly
avoid aliasing and reduce the above-mentioned peaks. In
addition to such obvious artifacts, the spectral content of
GAN images and real images is also known to differ signifi-
cantly in the medium and high frequencies. Likewise, clear
differences in the radial and angular spectral distributions
of the DM and real images were observed [11, 69]. Fur-
thermore, it is worth observing that DM images may also
present spectral peaks (see Fig. 5). Of course, frequency
domain traces can be used to train simple detectors for ID
images. Even more interestingly, some authors [33, 73]
replicate and modify the synthesis process of known gener-
ators by introducing a series of small architectural changes
to learn to handle even OOD test images. A major prob-
lem with spectral traces is their low resilience to laundering
operations, both unintentional (e.g. image resizing) and in-
tentional (e.g., counterforensic methods [9, 14, 18]).

Methods based on multimodal features. The introduc-
tion of large language models has sparked intense work in
the vision community attempting to leverage large models
trained using both images and text [72, 74]. In image foren-
sics, however, traditionally oriented towards the analysis of
low-level features, there has been very little work in this di-
rection. Only a few papers [2, 51, 61] have tried to leverage

Figure 2. Examples of synthetic images from generators used in
our experiments. From left to right, Top: GLIDE [50], Latent
Diffusion [55], DALL·E 2 [55]. Middle: Stable Diffusion 1.3,
Stable Diffusion 1.4, Stable Diffusion 2.1 [57]. Bottom: Stable
Diffusion XL [53], Adobe Firefly [27], DALL·E 3 [6].

pre-trained visual models for AI-generated image detection.
All these studies rely on variants of CLIP. However, only
in [51] is generalization to OOD data pursued, via nearest
neighbor and linear probing in CLIP feature space. To this
end, a large dataset of fake and real images is used to train
the classifier. In this work we take a further step in this di-
rection and show that superior performance can be achieved
even using much less data.

3. Datasets and metrics

The main objective of this work is to study the generaliza-
tion capacity of conventional and CLIP-based methods, i.e.
to evaluate how detectors behave on data never seen before,
of different origins and possibly impaired by various forms
of post-processing. Therefore, we consider a very large test
dataset and take measures to mitigate any potential biases
in the experimental validation process.

Tab. 1 lists all generation models used during test. They
are grouped into three families: GAN-based (ProGAN,
StyleGAN2, StyleGAN3, StyleGAN-T, GigaGAN), DM-
based (Score-SDE, ADM, GLIDE, eDiff-I, Latent and Sta-
ble Diffusion, DiT, DeepFloyd-IF, Stable Diffusion XL) and
commercial tools (DALL·E 2, DALL·E 3, Midjourney v5
and Adobe Firefly), which include some recent text-based
methods available online, whose architecture is not always
disclosed. The second column of the table specifies the
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generation modalities employed by these models: uncon-
ditional (u), conditional (c), and text-to-image (t). The last
column reports the resolution of the images in the dataset.
The central columns, indicate which datasets of real im-
ages were considered to carry out the detection experiments.
These have been carefully selected to avoid all foreseeable
biases. For example, when testing synthetic images gener-
ated by ProGAN, we use as real counterparts images from
the LSUN dataset on which the ProGAN model was trained.

The StyleGAN-T [58], eDiff-I [3], and GigaGAN [35]
images were provided by the authors of the respective pa-
pers. Instead, we generated the images ourselves for Score-
SDE [63], Stable Diff. [57], DiT [52], and Deepfloyd-
IF [40] using the pre-trained models available online. Ad-
ditional generated images were sourced from two public
datasets [12, 66]. For the text-driven commercial tools, we
used a recently proposed dataset [4]. Pristine and synthetic
images with similar semantic content are built by extracting
textual descriptions from a real dataset (RAISE [15]) and
using them as prompts for generating synthetic images. A
few examples of such images are shown in Fig. 2.

Overall, we have a dataset with 32, 000 real and fake im-
ages for all upcoming tests. To consider a more realistic
scenario we simulate images shared on social networks and
subject to post-processing operations: random cropping that
can vary in a range from 5

8 to the full size of the image, re-
sizing to 200 × 200 pixels, and JPEG compression with a
random quality factor between 65 and 100.

To measure performance, we consider three metrics. The
area under the receiver operating curve (AUC) and average
precision (AP) are both threshold-independent. The Accu-
racy instead, given by the number of correct predictions di-
vided by the number of tested images, depends on the de-
cision threshold. We always use a fixed threshold of 0.5, to
simulate a realistic scenario in which no prior information
on the data under test is available to carry out calibration.

4. CLIP for synthetic image detection
We propose a simple procedure to distinguish real images
from synthetic images based on features extracted from the
image encoder of CLIP ViT L/14. The design of the detec-
tor consists of the following four steps:
1. collect N real images {R1, . . . , RN} with the corre-

sponding captions {t1, . . . , tN};
2. use the captions to feed a text-driven image generator,

G(·), so as to obtain N synthetic images {F1, . . . , FN}
with Fi = G(ti). Now we have N real / fake pairs that
share the same textual description;

3. feed CLIP with the N real and N fake images and col-
lect the corresponding feature vectors {r1, . . . , rN} and
{f1, . . . , fN} extracted at the output of the next-to-last
layer, with ri = CLIP(Ri) and fi = CLIP(Fi);

4. use these N+N vectors to design a linear SVM classifier.
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ProGAN [36] u ✓ 2562

StyleGAN2 [38] u ✓ ✓ 2562-10242
StyleGAN3 [39] u ✓ 10242

StyleGAN-T [58] t ✓ 5122

GigaGAN [35] c,t ✓ ✓ 2562,5122

Score-SDE [63] u ✓ 2562

ADM [17] u,c ✓ ✓ 2562

GLIDE [50] t ✓ ✓ 2562

eDiff-I [3] t ✓ 2562,10242
Latent Diff. [56] u,c,t ✓ ✓ ✓ ✓ 2562

Stable Diff. [57] t ✓ ✓ 2562-7682
DiT [52] c ✓ 2562,5122
DeepFloyd-IF [40] t ✓ 10242

Stable Diff. XL [53] t ✓ 10242

DALL·E 2 [55] t ✓ 10242

DALL·E 3 [6] t ✓ 10242

Midjourney V5 [48] t ✓ 10242-11002
Adobe Firefly [27] t ✓ 20322-20482

Table 1. Image generators used in our experiments: GAN-based,
DM-based, and commercial tools. For unconditional (u) and con-
ditional (c) models, the real images used in test come from the
same datasets used to train the generator, while for text-to-image
(t) models synthetic images have been generated using the prompt
extracted from the real counterpart.

If the real images have low-quality associated captions,
or no caption at all, these can be generated by a dedicated
tool such as BLIP [41]. Real and fake images are coupled
to avoid possible semantic biases, which proves beneficial
when the number of images is very small, e.g., N = 10. We
chose to extract features from the next-to-last layer rather
than the last layer based on the results of preliminary ex-
periments and, in the same way, we selected SVM among a
set of candidate simple classifiers. All these preliminary ex-
periments and their results are described in the supplemen-
tary material. In the following, we analyze the performance
of the proposed detector as a function of the main design
choices and experimental conditions.

4.1. Influence of the reference set size

We start by investigating the role of the most important pa-
rameter of the proposed detector, the number of real / syn-
thetic samples N in the reference set, which in this experi-
ment includes COCO real images and Latent Diffusion syn-
thetic images. Fig. 3 shows results for N ranging from 10 to
100k in log scale. Results are in terms of AUC, AP and Ac-
curacy. When N is less than 10k, we perform several runs
with different sets of images and report the average metrics,
e.g., for N equals 1k, we average on 10 runs.

Let’s focus first on the top row, which shows results
on images that were neither recompressed nor resized. In
this simpler scenario, both AUC and AP values are ex-
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Figure 3. Performance of the CLIP-based detector as a function of
the number of real and synthetic images in the reference set. We
show AUC, AP and Accuracy on the original dataset (Top) and on
post-processed images that simulate a realistic scenario (Bottom).

tremely high, consistently above 85% for all known fami-
lies of synthetic images (GAN, Diffusion) and significantly
worse only for images generated by commercial tools. It’s
particularly remarkable that very good results are achieved
with as few as 10+10 reference images, proving that this
lightweight solution is fully viable. The performance im-
proves with N , growing up to 5-10% at the 10k plateau. We
note, in passing, that AUC and AP curves are very similar,
so we drop the latter for brevity in further experiments.

In the rightmost figure, we see that, unlike AUC and AP,
accuracy does not always improve as N increases. This
is because AUC and AP are threshold-independent integral
metrics. They tell us how well a method with a perfectly
calibrated threshold might work. Instead, the precision de-
pends critically on the selected threshold which, in the ab-
sence of any prior knowledge, is set at 0.5. For Latent, 0.5
is a good threshold and accuracy improves as N grows. In-
stead, in general, the optimal threshold moves further away
from 0.5 as N increases and the precision decreases sig-
nificantly. So, there is a trade-off between optimality and
robustness in our truly OOD scenario, where no calibration
data exists. On the other hand, if we had data from the tar-
get class, even just 10 images, we could use them to design
an ad hoc classifier (see supplementary material).

The bottom row of the figure shows results for images
that have been compressed and/or resized. As expected,
performance degrades slightly in this scenario, but contin-
ues to be very good, with AUC between 75% and 90% and
accuracy between 65% and 80% at N=10k. These are ex-
cellent results, well beyond the current state of the art, as we
will show later. In this case, using only 10+10 images does
not seem advisable but the performance is almost optimal
already at N=100.

4.2. Influence of the reference set content

We found that not only the quantity but also the quality
of images in the reference set significantly impacts perfor-
mance. This is intuitive with a very small reference set,

Datasets
augm. GAN Diffusion Commerc.

AVG
family family tools

COCO + Latent 92.4 92.6 80.5 88.5
COCO + Latent ✓ 89.3 91.8 87.0 89.4
COCO + ProGAN 93.6 90.0 65.6 83.1
COCO + ProGAN ✓ 91.3 90.1 82.3 87.9
LSUN + Latent 88.7 82.7 65.6 79.0
LSUN + Latent ✓ 87.9 79.9 80.3 82.7
LSUN + ProGAN 94.1 79.2 44.7 72.7
LSUN + ProGAN ✓ 95.0 82.7 67.5 81.7

Table 2. AUC performance of the CLIP-based detector for various
real/fake data, with and w/o augmentation (resizing/compression).
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Figure 4. Performance of the CLIP-based detector as a function
of the pre-training. We show AUC, AP and Accuracy on post-
processed images for models pre-trained on LAION-400M (0.4B
images), LAION (2B) and CommonPool (12.8B).

like 10+10 images, where low quality or limited diversity
could have catastrophic consequences. However, similar ef-
fects are observed even with a larger reference set. Tab. 2
shows the results in terms of AUC obtained using vari-
ous combination of real and synthetic images in the ref-
erence set, that is, (Real, Synth) ∈ {COCO,LSUN} ×
{Latent,ProGAN}, with and without augmentation. In all
cases, the reference set has size 10,000+10,000. Results
are clearly influenced by the specific combination. Indeed,
considerable degradation occurs when the LSUN dataset is
used instead of COCO to draw the real samples and, to a
lesser extent, when using ProGAN instead of Latent for the
synthetic images. We conjecture that both LSUN and Pro-
GAN lack the diversity necessary to adequately describe the
decision domain. Furthermore, unlike COCO, the LSUN
dataset exhibits several biases: the images represent only
a few well-defined categories, have all the same size, and
most of them are compressed with the same quality factor.
In Tab. 2, we see that data augmentation only marginally
reduces the effects of the dataset used.

4.3. Influence of pre-training

We experimented also with various versions of CLIP ViT
L/14 [31], trained on different datasets, observing signifi-
cant changes in performance. Fig. 4 shows, the AUC, AP
and Accuracy averaged on all families of models as a func-
tion of the pre-training dataset. Each curve refers to a dif-
ferent value of N and we consider only the case of post
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Method Real/Synth. Training Size (k) Aug. Test Strategy

[66] Wang et al. LSUN / ProGAN 360 / 360 ✓ global pooling
[8] PatchFor. CelebA,FF / various 84 / 272 resizing
[30] Grag. et al. LSUN / ProGAN 360 / 360 ✓ global pooling
[44] Mand. et al. various / various 232 / 386 ✓ patch aggregation
[43] Liu et al. LSUN / ProGAN 360 / 360 ✓ global pooling
[12] Corvi et al. COCO,LSUN / Latent 180 / 180 ✓ global pooling
[64] LGrad LSUN / ProGAN 72 / 72 ✓ resizing
[51] Ojha et al. LSUN / ProGAN 360 / 360 ✓ cropping
[67] DIRE-1 LSUN-Bed / ADM 40 / 40 resizing
[67] DIRE-2 LSUN-Bed / St.GAN 40 / 40 resizing
[65] NPR LSUN / ProGAN 72 / 72 resizing

Ours 1k COCO / Latent 1 / 1 resizing
Ours 1k+ COCO / Latent 1 / 1 ✓ resizing
Ours 10k COCO / Latent 10 / 10 resizing
Ours 10k+ COCO / Latent 10 / 10 ✓ resizing

Table 3. List of methods. For each method, we report the datasets
of real and synthetic images used for training, their sizes, whether
or not augmentation is used, and the testing strategy.

processed images for brevity. For both metrics and all val-
ues of N there is a steady increase in performance as in-
creasingly larger datasets are used for pre-training, from
LAION-400M (0.4B images) [59], to LAION (2B) [60],
to CommonPool (12.8B) [29]. Overall, there is a ten-point
improvement from the smallest to the largest dataset. This
confirms the importance of pre-training a large VLM on the
largest possible collection of different images.

5. Comparison with the state-of-the-art
In this Section we perform an extensive comparison
with SoTA methods in different scenarios. We consider
four versions of our approach, with 1,000+1,000 (1k) or
10,000+10,000 (10k) real+fake images in the reference set,
and with (+) or without compressed/resized images for aug-
mentation. To ensure a fair comparison, we only include
SoTA methods with code and/or pre-trained models pub-
licly available online. They are listed in Tab. 3 and de-
scribed in the supplementary material.

Generalization analysis. In Tab. 4 we show the results in
terms of AUC on 18 generative models. For each method,
the results obtained on the same dataset used for training
are in light gray, since the ID scenario is of little interest for
our analysis. The items in bold, instead, highlight the best
OOD performance for each dataset, considering a margin
of 1%. We can observe that methods trained on one GAN
dataset generally perform well on other datasets of the same
family but fare much worse on DM datasets. Then, the roles
change for methods trained on DM datasets. This is unsur-
prising, as generators of the same family share architectural
details that leave similar traces on the generated images.
No SoTA method performs uniformly well on all datasets.
In contrast, the proposed lightweight CLIP-based detector
consistently delivers strong performance. The version with
10k+10k reference images, without augmentation, outper-

forms the best competitor by +6.8% in terms of average
AUC. For GAN-based generators, the proposed CLIP-based
detectors keep providing the best performance, generally
much better than SoTA methods, except for the Liu method
which works almost at the same level. However, the perfor-
mance of this method, as well as many other methods, de-
creases catastrophically when considering synthetic images
from commercial tools. This is the most realistic and inter-
esting scenario, with images of unknown origin and no prior
information on the possible generation process. In this sit-
uation, most methods provide unreliable decisions. Corvi’s
method works surprisingly well on some datasets, perhaps
generated by diffusion models similar to Latent. However,
only the proposed CLIP-based approach provides good sta-
ble performance across all cases. On commercial tools, the
versions with resized and recompressed images in the refer-
ence set prove especially strong.

Robustness to perturbations. The observed trend with re-
spect to unknown models is further accentuated when the
images undergo post-processing, as shown in Tab. 5. These
impairments attenuate forensic traces, to the point that most
SoTA methods become essentially useless, performing no
better than random chance, particularly on unknown com-
mercial models. CLIP-based detectors, instead, keep pro-
viding a good performance.

6. Beyond low-level forensic traces
As previously mentioned, conventional detectors often ex-
perience significant performance degradation when images
are resized or compressed, as the subtle forensic traces they
depend on are significantly reduced. In contrast, the pro-
posed CLIP-based detector keeps working well under these
conditions, suggesting that it relies on higher-level seman-
tic features. To further investigate this hypothesis, we now
conduct some targeted experiments.

Removing/inserting low-level traces in images. We take
synthetic images generated by Stable Diffusion 1.4, Stable
Diffusion 2.0 [57], Stable Diffusion XL [53]) and down-
sample them by 1/4. Fig. 5 shows, on the left, the high- and
low-resolution images (top) along with their spectra (bot-
tom) for Stable XL. After reducing the resolution, the peaks
in the Fourier domain completely disappeared, because they
were caused by the aliasing effect of the oversampling fil-
ters, which can be removed by appropriate decimation. In
a complementary experiment, we take real images from
the RAISE dataset and pass them through the autoencoders
used by Stable Diffusion XL. This process does not change
the visual appearance of the images (Fig. 5 top-right) but in-
serts low-level forensic traces in their spectra (bottom) that
resemble those of the generated images.

In Table 6 we quantify the effects of such attacks on
1,000 real and 1,000 synthetic images, reporting the AUC
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GAN family Diffusion family Commercial tools AVG

Pro Style Style Style Giga Score
ADM GLIDE

Latent Stable DeepFl.
Ediff-I DiT SDXL

DALL· DALL·
Midj.

Adobe
Method GAN GAN2 GAN3 GANT GAN SDE Diff. Diff. IF E2 E3 Firef.

Wang et al. 100. 96.5 98.5 98.9 66.6 32.9 64.3 48.5 59.2 41.5 78.0 64.9 58.6 54.3 64.8 10.9 40.2 84.8 64.6
PatchFor. 92.3 84.5 91.8 91.2 64.7 83.3 74.8 96.2 78.1 62.4 62.7 78.7 83.1 68.4 41.9 52.7 57.8 49.4 73.0
Grag. et al. 100. 99.8 97.5 98.8 82.8 92.1 74.7 62.8 91.9 52.5 69.9 69.6 65.3 58.0 58.3 2.4 43.1 63.5 71.3
Mand. et al. 96.2 93.8 100. 92.6 61.8 99.8 56.5 40.5 70.0 36.8 47.2 65.0 59.1 27.0 14.5 14.7 24.3 36.7 57.6
Liu et al. 100. 99.8 98.4 98.5 98.2 95.4 82.5 76.5 97.6 77.4 72.2 98.7 88.0 31.1 70.4 0.2 40.7 11.8 74.3
Corvi et al. 79.4 73.7 50.0 97.1 63.4 65.0 80.7 91.9 100. 100. 99.9 85.7 100. 100. 69.4 60.8 100. 98.0 84.2
LGrad 100. 91.2 83.8 81.8 82.2 80.6 76.9 66.1 81.1 61.5 68.8 74.1 56.2 57.2 58.6 37.9 56.3 40.6 69.7
Ojha et al. 100. 93.9 92.3 98.2 96.0 58.4 86.7 80.8 85.7 89.5 92.9 80.6 77.8 85.1 95.2 36.4 66.2 97.5 84.1
DIRE-1 50.6 56.9 47.8 99.9 74.1 44.3 75.7 71.4 68.7 39.4 98.9 99.1 99.6 47.1 44.7 47.6 51.0 57.4 65.2
DIRE-2 54.2 52.5 43.0 99.6 76.0 41.0 70.1 70.1 69.3 46.9 97.0 98.2 98.3 42.8 41.0 49.6 47.8 43.0 63.3
NPR 100. 85.6 77.0 96.4 88.7 91.1 86.3 79.3 90.2 64.5 91.6 80.1 78.4 76.7 39.5 48.7 77.0 32.1 76.8

Ours 1k 98.9 90.5 85.5 100. 81.3 89.1 81.1 99.9 94.1 87.6 96.5 98.5 94.1 87.8 89.0 70.0 73.0 74.4 88.4
Ours 1k+ 91.4 80.9 84.0 99.8 74.7 84.3 75.2 99.6 81.6 89.8 98.0 99.1 92.5 88.9 83.6 93.6 78.7 85.1 87.8
Ours 10k 99.8 91.8 86.8 100. 83.6 89.0 81.4 99.9 94.2 90.7 97.0 98.7 95.0 87.4 89.2 77.6 75.3 80.1 89.8
Ours 10k+ 93.4 87.1 87.6 99.9 78.5 89.2 79.9 99.7 84.7 91.3 97.9 99.4 94.0 90.1 86.3 92.9 81.7 87.2 90.0

Table 4. Comparison with SoTA methods in terms of AUC. For our approach we show four variants: 1k and 10k indicate the number of
real and fake training images, + indicates augmentation (compression/resizing). Results on the dataset used for training are in light gray,
while bold underlines the best performance for each dataset with a margin of 1%. The last column shows the average over all datasets.

GAN family Diffusion family Commercial tools AVG

Pro Style Style Style Giga Score
ADM GLIDE

Latent Stable DeepFl.
Ediff-I DiT SDXL

DALL· DALL·
Midj.

Adobe
Method GAN GAN2 GAN3 GANT GAN SDE Diff. Diff. IF E2 E3 Firef.

Wang et al. 100. 86.6 88.4 61.7 59.2 68.0 65.0 60.6 67.1 55.2 50.3 48.3 55.1 64.5 46.2 27.7 46.7 55.9 61.5
PatchFor. 57.9 51.8 57.0 50.6 53.8 69.0 66.2 83.3 58.8 48.3 61.3 65.0 68.1 63.3 64.3 63.3 59.0 65.1 61.4
Grag. et al. 100. 95.4 90.9 94.4 64.4 77.1 77.1 79.8 84.0 53.5 50.6 55.6 66.7 66.6 55.2 25.1 48.5 60.2 69.2
Mand. et al. 81.1 79.3 87.2 49.1 49.3 64.0 54.8 42.6 52.9 39.4 55.7 54.5 49.8 42.2 47.9 42.3 35.2 53.4 54.5
Liu et al. 64.3 55.1 50.1 57.3 45.4 62.6 51.1 58.6 50.7 58.6 50.9 64.2 53.9 56.0 44.4 61.8 52.6 53.1 55.0
Corvi et al. 77.5 74.7 69.4 82.1 66.6 70.4 79.0 93.5 99.3 69.9 60.7 72.1 89.2 61.8 65.9 32.4 51.9 58.1 70.8
LGrad 56.3 58.3 49.8 52.3 43.5 45.9 49.2 42.3 50.4 54.8 40.7 46.4 49.4 53.2 41.8 53.5 50.4 51.8 49.4
Ojha et al. 99.8 75.5 75.4 91.1 88.5 79.3 83.7 83.3 81.8 75.0 59.9 68.7 70.1 61.8 63.2 41.7 40.6 52.9 71.8
DIRE-1 48.4 42.5 39.1 53.5 54.3 44.1 48.0 44.7 46.1 47.0 66.2 62.8 53.2 47.1 44.6 47.6 51.0 57.4 49.9
DIRE-2 49.3 41.6 38.6 53.8 55.0 44.3 45.1 40.2 45.9 56.4 70.7 72.2 53.0 42.8 40.9 49.7 47.8 43.0 49.5
NPR 54.5 48.5 41.9 54.0 44.8 44.7 46.9 47.2 47.7 55.4 49.6 54.6 50.9 52.8 50.0 67.5 50.8 55.5 51.0

Ours 1k 85.0 64.0 66.6 90.2 75.2 74.7 78.1 97.2 77.1 77.6 80.1 86.6 77.5 76.5 77.9 77.4 63.1 70.5 77.5
Ours 1k+ 78.7 62.5 68.4 97.5 67.9 84.0 74.3 99.6 78.2 83.7 94.5 97.1 88.9 89.6 81.2 90.9 77.6 83.7 83.2
Ours 10k 85.7 65.5 68.1 90.5 74.7 75.8 78.4 97.7 77.8 78.1 81.2 87.1 77.2 76.4 78.2 76.4 65.0 72.2 78.1
Ours 10k+ 82.8 67.4 70.7 98.4 71.9 85.4 77.3 99.7 80.2 85.8 95.9 98.2 91.1 89.9 83.8 90.1 79.4 85.5 85.2

Table 5. Comparison with SoTA methods (AUC) on images post-processed by random cropping, resizing and compression.

for our method and the best competitor before the attack
(first group of columns) after removing traces from syn-
thetic images (second group) and after adding them to real
images (third group). Before the attack, all detectors work
quite well, with the method proposed by Corvi et al., based
on low-level features, reaching perfect discrimination. Af-
ter the attacks, however, the performance of Corvi et al.
degrades dramatically, while the proposed method suffers
only a very limited loss. In summary, the CLIP-based de-
tector appears to withstand various types of image degrada-
tions easily, both innocent and malicious. The latter case
is particularly relevant: attacks can be carried out with the
very aim of making everything appear as synthetic, mislead-
ing current forensic detectors based on low-level traces, and
undermining public trust in forensic analyses.

Fusion. Based on the above results, the proposed CLIP-
based detector appears not to rely on the same low-level

traces exploited by most of the current detectors. This is fur-
ther supported by the scatter plot of Fig.6 where each point
gives the scores of the CLIP-based and Corvi detectors for
a given image. The two sets of scores are almost orthogo-
nal, as if they depended on uncorrelated features, a property
that paves the way for appropriate fusion strategies. We
implemented a simple decision rule where the image is de-
clared real only if both detectors agree on this choice. Tab.7
reports AUC and Accuracy results for Corvi, the proposed
method (10k and 10k+ versions), and their fusion. Results
are given as averages over the three families of generators:
GAN, Diffusion and Commercial Tools. The fusion ensures
a further boost in performance over the proposed CLIP-
based detector, both in terms of AUC (+3.6%) and Accuracy
(+7.4%). A smaller improvement is observed when images
are resized/compressed, arguably because low-level traces
are more compromised in this case.
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Figure 5. Top (from left to right): a synthetic image generated by
Stable Diffusion XL [53] and its 4× decimated version; a real im-
age and the corresponding image processed by the autoencoder of
Stable Diffusion XL. Bottom: Fourier spectra of the noise residu-
als for images shown on the top. A suitable decimation removes
Fourier peaks in synthetic images, while passing a real image
through an autoencoder creates new peaks.
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Figure 6. Scatter plots of scores provided by Corvi et al. (y-axis)
and proposed method without and with augmentation (x-axis) on
2400+2400 images sampled from the 18 datasets of Tab.1.

7. Discussion
We have proposed a simple method based on CLIP features
to distinguish real images from synthetic images. Through
extensive experimental analysis, we found that:
• CLIP features support a much higher generalization abil-

ity than what had been discovered so far. By leveraging
just a few examples, not even belonging to the genera-
tor under test, a simple CLIP-based detector achieves top
performance on a large variety of generators and in the
most challenging conditions.

• Maximizing the diversity of reference CLIP features has
a positive impact on performance, even when a relatively
large number of examples is considered.

• It is known that CLIP’s descriptive power comes from its
huge pre-training set. Further increasing this set keeps
boosting performance, up to 10%.

• Experimental evidence suggests that CLIP features, even
when adapted to forensic applications, are largely inde-
pendent of low-level forensic traces. This provides some

downsample by 1/4 add low-level traces

Method
St.Diff. St.Diff.

SDXL
St.Diff. St.Diff.

SDXL
St.Diff. St.Diff.

SDXL
1.4 2.0 1.4 2.0 1.4 2.0

Corvi et al. 100. 100. 100. 41.6 46.2 45.6 79.3 80.4 67.6
Ours 1k 88.8 87.0 87.8 85.8 82.2 79.3 89.3 82.5 80.8
Ours 1k+ 90.2 89.4 88.9 89.8 91.1 90.0 90.8 86.1 83.2
Ours 10k 93.8 90.6 87.4 86.8 84.4 80.5 93.7 86.2 80.6
Ours 10k+ 94.0 90.4 90.1 95.9 92.6 91.6 94.1 86.7 84.0

Table 6. Results in terms of AUC without attacks (first group of
columns) and after attacks on synthetic images (second group) and
real images (third group). Corvi et al., based on low-level foren-
sic traces, is severely affected by the attacks while the proposed
method keeps working well in all conditions.

Families of Generators

GAN Diffusion Comm. Tools Average
Method AUC/Acc AUC/Acc AUC/Acc AUC/Acc

Corvi et al. 72.7 / 52.1 91.5 / 75.1 82.1 / 62.8 82.1 / 63.3
Ours 10k 92.4 / 79.1 92.6 / 73.3 80.5 / 52.6 88.5 / 68.3
Ours 10k+ 89.3 / 74.9 91.8 / 77.2 87.0 / 67.3 89.4 / 73.1
Ours fusion 92.9 / 80.1 96.9 / 87.8 88.2 / 65.3 92.7 / 77.8
Ours fusion+ 89.9 / 75.5 96.8 / 88.8 92.3 / 77.2 93.0 / 80.5

Corvi et al. 74.0 / 55.1 77.3 / 62.1 52.1 / 50.1 67.8 / 55.8
Ours 10k 76.9 / 63.6 81.1 / 63.7 73.0 / 52.4 77.0 / 59.9
Ours 10k+ 78.2 / 69.0 89.3 / 78.7 84.7 / 66.4 84.1 / 71.4
Ours fusion 78.5 / 66.8 85.1 / 71.4 72.7 / 52.6 78.7 / 63.6
Ours fusion+ 79.6 / 70.8 91.7 / 80.7 84.5 / 66.6 85.3 / 72.7

Table 7. AUC/Accuracy results for Corvi et al., proposed method
(10k and 10k+ versions), and their fusion over the three families
of generators: GAN, Diffusion, Commercial Tools. Top: original
images; bottom: compressed/resized images.

immunity to malicious attacks targeting low-level arti-
facts and paves the way for further performance improve-
ments through suitable fusion with traditional detectors.

The present study provides a number of interesting insights
but leaves much room for future work. We believe that new
and better forensic methods can be proposed based on CLIP
features. One major area of study is the development of
few-shot methods that adapt the detector to the situation of
interest on the fly. Future work should also consider inter-
pretability, starting with understanding which forensic fea-
tures the detector exploits to make its decisions.

Acknowledgment. We gratefully acknowledge the sup-
port of this research by a TUM-IAS Hans Fischer Senior
Fellowship, a TUM-IAS Rudolf Mößbauer Fellowship and
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