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Abstract

This paper introduces a novel multi-task transformer for
detecting synthetic speech. The network encodes magni-
tude and phase of the input speech with a feature bottleneck,
used to autoencode the input magnitude, to predict the tra-
jectory of the first phonetic formants (F0, F1, F2), and to
distinguish whether the input speech is synthetic or natu-
ral. The approach achieves state-of-the-art performance on
the ASVspoof 2019 LA dataset with an AUC score of 0.932,
while ensuring interpretability at the same time.

1. Introduction
Over recent years, advances in synthetic speech generation
have reached remarkable milestones, to the point that it is
now possible to reproduce highly realistic voices which are
hard to detect even for trained professionals [17]. Hence,
widespread access to advanced speech synthesis models and
tools to the larger public has sparked considerable concerns
over potential misuse of such technology for creating dis-
information [2], and for its potential of becoming a staple
tool for organised crime [9]. These worries are exacerbated
by the current lack of effective and robust detection meth-
ods, compounded by limited availability of suitable train-
ing content, insufficient cooperation between industry and
academia, and significant challenges with respect to ensur-
ing generalizability of detection approaches with respect to
unknown synthesis algorithms [4].

Artificial intelligence (AI) has played a key role in de-
veloping state-of-the-art detectors, and significant work was
conducted within the community associated with Automatic
Speaker Verification and Spoofing Countermeasures Chal-
lenge (ASVspoof): Models crafted by the challenge or-
ganizers, such as RawNet2 [25], RawGAT-ST [26], AA-
SIST [13], have laid a solid foundation for synthetic speech
detection.

However, given the data-dependant nature of these mod-
els, interpretability is a challenge: It is not possible to de-
termine ex-ante which input features will end up being rel-

evant for the detection. Salvi et al. [21] aimed at a post-hoc
analysis, using methods for explainable AI devised for im-
age input processing [20, 24]. They discovered that the net-
works were primarily influenced by non-vocal spectrogram
regions – silent parts, and very low and very high frequency
ranges. This finding was validated by a subsequent study
from the same research team, which achieved state-of-the-
art synthetic “speech” detection performance by focusing
on the analysis of background noise alone, without consid-
ering the speech content [23].

The ability to explain the decision-making process of
utilized networks is not only a nice-to-have feature but a
mandatory one, especially when it comes to forensics ex-
amination for the court. This is required, for instance,
by the upcoming European Artificial Intelligence Act [3]
which classifies all techniques that could impact the citi-
zens’ rights and freedom, including tools used for evidence
analysis in legal trials, as high-risk AI. Hence, there is a
pressing need for detection systems designed to be explain-
able, and to focus on the modeling and analysis of speech
signals and their characteristics.

We described and tried to satisfy these requirements
in [5] by proposing SFAT-Net, i.e., an audio transformer
for speech formant analysis based on the hypothesis that
the energy distribution among vocal formants of synthetic
speech exhibits anomalies. In the initial paper, we designed
a multi-task architecture, tailored for audio signals, that in-
cluded a feature bottleneck. This bottleneck was utilized to
autoencode the input spectrogram, to predict the fundamen-
tal frequency (F0) trajectory of the input utterance, and then
to classify the input speech as synthetic or natural.

SFAT-Net relied on sequence-to-sequence (seq2seq)
transformers as basic building block, thereby benefiting
from their attention mechanism [28]. Indeed, attention is
well suited for predicting F0 and autoencoding the input,
thanks to the direct correlation between input speech har-
monics and fundamental frequency, which is essential for
the correct reconstruction of the input. Thus, speech syn-
thesis detection in SFAT-Net can be considered a byprod-
uct of attention to the energy distribution among vocal for-
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mants, and the approach provides a clear understanding
about which characteristics of the input signal contribute to
the final outcome.

The encoding part of the model, initially based on a vi-
sual transformer applied to the audio spectrogram [7], was
later extended in SFAT-Net-2 [6] to include an additional
phase input: By employing a shared framing grid and po-
sitional embeddings, the modified network achieved better
performance than the baseline despite the lower number of
parameters, maintaining the feature bottleneck unchanged.
Building on this achievement, we now propose to extend the
SFAT-Net concept by revising the decoding process.

Even though F0 is a fundamental characteristic of the
input speech, we believe that a more appropriate approach
should also encompass other characteristics of the input ut-
terances, and in particular the F1 and F2 formants that in
phonetic analysis are relied upon to describe the speech con-
tent [12], the speaker identities [18], and the speaker voice
qualities [15]. Thus, In this paper we introduce the SFAT-
Net-3 architecture, which enhances the previous versions
by adopting a more sophisticated decoder capable of recon-
structing not only the F0 trajectory but also the trajectories
of the F1 and F2 formants, thereby offering a deeper analy-
sis of the input speech.

The rest of the paper is organized as follows: Section 2
provides a comprehensive overview over the model, intro-
ducing the new decoder and its corresponding loss function.
Section 3 outlines the evaluation setup used in our experi-
ments, the results of which are presented in Section 4. Fi-
nally, Section 5 concludes the paper with a summary of our
findings, and directions for future research.

2. Proposed Architecture

Our architecture consists of five key components, outlined
below and illustrated in Figure 1:

1. Magnitude Encoder EX: A seq2seq transformer convert-
ing the magnitude X of an input file into a suitable se-
quence of embeddings yX

enc (Section 2.1).
2. Phase Encoder EΦ: A seq2seq transformer converting

the phase Φ of an input file into a suitable sequence of
embeddings yΦenc (Section 2.2).

3. Magnitude Decoder DX: A seq2seq transformer convert-
ing the joint encoding embeddings yenc in an approxima-
tion of the input log-magnitude (Section 2.3).

4. Multi-formant Decoder DF : A seq2seq transformer con-
verting yenc in an approximation of the trajectories of the
F0,F1,F2 formants of the input speech (Section 2.4).

5. Synthesis Predictor P : A seq2seq transformer convert-
ing yenc into a 2-dimensional vector indicating the pres-
ence of synthetic speech (Section 2.5).

Figure 1. Proposed SFAT-Net-3 architecture

2.1. Magnitude Encoder

The magnitude encoder EX is a seq2seq transformer de-
signed to convert an input audio signal into a corresponding
sequence of log-magnitude embeddings denoted as yX

enc.
The input to the encoder is the log-spectral magnitude X

obtained by the input recording x, i.e.:

X ∈ RL×M = log ( |STFT(x)| ) , (1)

with L representing the number of frames and M the num-
ber of frequency bins of the Short-Time Fourier Transform
(STFT).

The log-magnitude X is first split into non-overlapping
2D patches xX

p , which are then projected into a series of
patch embeddings zX:

zX ∈ RN×DX
= [zX

1 , z
X
2 , . . . , z

X
N ], (2)

where
zX
p ∈ R1×DX

= project(xX
p ,Θ

X
enc), (3)

with ΘX
enc being the required set of encoding parameters.

The log-magnitude embeddings yX
enc are calculated by

feeding the sequence with positional information into an en-
coding transformer TX

enc:

yX
enc ∈ RN×DX

= TX
enc(z

X + zpos), (4)

with zpos being standard learnable 1D positional embed-
dings described in the transformer architecture [28].

The transformer TX
enc consists of alternating layers of

multi-headed self-attention (MSA) and multilayer percep-
tron (MLP) blocks, with layer normalization applied before,
and residual connections after each block. Further details
are provided in the related SFAT-Net-2 paper [6].

2.2. Phase Encoder

The phase encoder EΦ is a seq2seq transformer designed to
convert an input audio signal into a corresponding sequence
of phase embeddings, denoted by yΦenc.

The input to the encoder is the phase Φ obtained by the
input recording x, i.e.:

Φ ∈ RL×M = sin (∠STFT(x) ) , (5)
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(a) Input log-magnitude X (b) Reconstructed log-magnitude X̂ (c) Estimated multi-formant matrix F̂

Figure 2. Example outputs of the SFAT-Net-3 decoders, alongside the input log magnitude

where ∠ represents the phase of the STFT, and the sine
function ensures that the signal is bounded.

Following a similar approach as for the magnitude em-
beddings, the phase Φ of the input STFT is initially split
into non-overlapping 2D patches xΦ

p , which are then pro-
jected into a series of patch embeddings zΦ:

zΦ ∈ RN×DΦ

= [zΦ1 , z
Φ
2 , . . . , z

Φ
N ], (6)

where
zΦp ∈ R1×DΦ

= project(xX
p ,Θ

Φ
enc), (7)

with ΘΦ
enc being the required set of phase encoding parame-

ters.
The phase embeddings yΦenc are calculated by feeding

the sequence with positional information into an encoding
transformer TΦ

enc:

yΦenc ∈ RN×DΦ

= TΦ
enc(z

Φ + zpos), (8)

with the transformer TΦ
enc being again a series of alternating

layers of MSA and MLP blocks where layer normalization
is applied before and residual connections after each block.
Moreover, zpos are the identical positional embeddings used
by the log-magnitude encoder EX – implying that the spa-
tial information is shared across the two branches. Further
details are provided in the SFAT-Net-2 paper [6].

2.3. Spectrogram Decoder

The spectrogram decoder DX aims at mapping a sequence
of embeddings yenc ∈ RN×D to a matrix X̂ ∈ RLXM ,
which should closely resemble the log-magnitude X of the
input recording.

In this paper, we define the sequence of encoding em-
beddings yenc as

yenc ∈ RN×D =
(
yX

enc ◦ yΦenc

)
, (9)

meaning that the embeddings are created by concatenating
the outputs of the encoders EX and EΦ alongside the last
dimension, to obtain a sequence of embeddings in which
each patch of the input is described by a 1×D vector.

These embeddings are processed by a decoding trans-
former TX to yield a reconstructed sequence of log-
magnitude patch embeddings:

ẑX = TX(zX + zXpos), (10)

which are then projected back into a time-frequency do-
main:

X̂ = project−1(ẑX ,ΘX
dec), (11)

where ΘX
dec represents the necessary parameters. Further

details are provided in the SFAT-Net-2 paper [5].
To ensure that the decoded output X̂ matches the input

log-magnitude X as closely as possible, i.e.,

DX(yenc,Θ
X
dec) = X̂ ≈ X, (12)

the component must minimize an autoencoding loss during
training:

lauto
(
X | Θenc,Θ

X
dec

)
=

∥∥∥X −DX

(
E(X,Θenc),Θ

X
dec

)∥∥∥
2
,

(13)
with ∥·∥2 denoting the l2 norm, and Θenc denoting the
union of the parameters of both encoders. An illustrative
output from this process, alongside the corresponding log-
magnitude of the input speech, is shown in Figure 2.

2.4. Multi-formant Decoder

In a nutshell, speech formants are resonant frequencies
present in the acoustic signal of human speech, correspond-
ing to specific resonance frequencies of the vocal tract.
They are created by the unique shape and configuration of
the vocal tract, including the throat, mouth, and nasal pas-
sages, as air passes through them during speech production.

Figure 3 shows F0, F1, and F2, known as the lower
formants, as detected by the Praat software for phonetic
analysis of speech [1]. These formants play a crucial role
in speech perception, affecting the quality of vowels and
certain consonants: Since they are influenced by the posi-
tion and shape of the articulators (such as the tongue, lips,
and jaw) during speech production, different speech sounds
have characteristic formant patterns that help distinguish
one sound from another.
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Figure 3. F0, F1, F2 formants detected by the Praat software [1]

In the following, we describe the multi-formant decoder
DF, i.e., a component meant to map a sequence of embed-
dings yenc ∈ RN×D to a matrix F̂ ∈ RLXM , estimating the
trajectories of the F0, F1, F2 formants of the input speech.

Let us denote with f0(l), f1(l) and f2(l) the frequency
values of the F0, F1 and F2 formants at a specific time frame
l. All the information about these three components is de-
scribed with a respective contour matrix Fn ∈ RL×M by
means of:

Fn(l,m) =

{
1 if fn(l) ≈ fs

2M ·m
0 otherwise

(14)

with l ∈ [1, L]. Therefore, the task of the multi-formant de-
coder can be considered a regression problem, in which yenc
must be mapped to a superposition of the contour matrices
of the formants of interest, i.e.:

DF(yenc,Θ
F
dec) = F̂ ≈ (F0 + F1 + F2), (15)

with ΘF
dec the set of model parameters.

A similar task, albeit only tracking the contour for F0,
was performed also by SFAT-Net. Therefore, we relied on
the same architecture used for the spectrogram reconstruc-
tion to train a different transformer with its own projection
matrices and learnt positional embeddings. Similarly, the
loss of the network was based on the desired multi-formant
contour matrix:

lF
(
X,F | Θenc,Θ

F
dec

)
=

∥∥∥F −DF

(
E(X,Θenc),Θ

F
dec

)∥∥∥
2
,

(16)
with ∥·∥2 denoting the l2 norm.

In order for this task to be successful, the creation of
a proper ground truth for the three formants of interest is
crucial. Hence, we decided to rely on the formant estima-
tion procedure provided by the Praat software for phonetic
analysis [1], which makes use of the analysis-by-synthesis
paradigm. In a first step, it estimates the linear predictive
coding (LPC) coefficients of the input, by means of the Burg
algorithm for auto-regressive modeling of time series [10].
It then re-synthesizes the input speech using the detected
LPC coefficients, and identifies the location of the spec-
tral peaks present for each output frame. The n-th detected

Figure 4. Formants retrieval via LPC analysis-by-synthesis

formant corresponds to the n-th peak in the spectrum. A
schematic visualization of the formants interpreted as peaks
of the LPC-estimated speech is depicted in Figure 4.

Furthermore, following the example of the initial SFAT-
Net, we decided to input the loss function calculation with
a smoothed version of the multi-formant contour matrix F ,
rather than the formulation in Eq. (14). Therefore, we fil-
tered F with a 3× 3 Gaussian kernel with unitary variance,
with the goal of penalizing small errors less severely than
large ones, and of improving the convergence speed. An ex-
ample of an estimated multi-formant contour matrix F ob-
tained following the entire procedure is depicted in Fig. 2,
alongside the input and reconstructed log-magnitude.

2.5. Synthesis Predictor

The synthesis predictor P is a component designed to con-
vert the sequence of embeddings yenc ∈ RN×D to a 2-
dimensional vector ysynth, indicating the presence of syn-
thetic speech by means of one-hot encoding, i.e.

P (yenc,Θ
P
dec) = ŷsynth, (17)

where ΘP
dec denotes the set of model parameters, and

argmax (ŷsynth) =

{
1 F0,F1,F2 appear synthetic
0 otherwise

(18)

The predictor consists of a standard transformer with a
class token used as input to a classification layer, which is a
standard procedure for vision transformers [7].

Given a transformed sequence of patch embeddings ẑP ,
defined by

ẑP = TP (z̃P + zPpos), (19)

where zPpos denotes a new set of 1D positional embeddings,
and z̃P ∈ R(N+1)×DP

a projected input sequence with a
class token, the first element ẑP0 ∈ RDP

of the transformed
output sequence can be processed by a classification layer
yielding the final output:

ŷsynth = f
(
Wsynth · ẑP0 + bsynth

)
, (20)

with Wsynth and bsynth representing the weight matrix and
bias vector of the linear classification layer, and f(·) its ac-
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Table 1. Hyper-parameters of the SFAT-Net-3 transformers

Component Global Params MLP Blocks Self-Attention Blocks

Depth Embedding Size Dimensions Dropout Number of Heads Head Dimension

EX – Magnitude Encoder 8 512 1024 0 8 64
EΦ – Phase Encoder 8 512 1024 0 8 64
DX

dec – Spectrogram Decoder 6 512 1024 0 8 64
DF

dec – Multi-formant Decoder 4 512 1024 0 8 64
P – Synthesis Predictor 4 512 1024 0.1 6 64

tivation function. A more formal description of the predic-
tor, including the use of projection matrices to accommo-
date changes of the inherent dimensions, can be found in
the SFAT-Net-2 paper [6].

In our experiments, we decided to use a linear activation
function at inference phase, and a sigmoid function with
binary cross entropy (BCE) loss at training phase:

lP (X, ysynth | Θenc,Θ
P
dec) =

= BCE
(
ysynth, P

(
E (X,Θenc) ,Θ

P
dec

)) (21)

The BCE loss is defined as usual by

BCE(y, ŷ) = − 1

N

N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi),

(22)
with y being the ground truth, ŷ the predicted value, and N
the number of samples in the training dataset.

3. Experimental Setup
3.1. Dataset

Our experiments were carried out utilizing the ASVspoof
2019 Logical Access (LA) subset [29], which comprises
train, dev, and eval partitions, each encompassing both gen-
uine and artificially generated utterances. The train and
dev ASVspoof partitions were created utilizing the same
six synthesis algorithms (A01, ..., A06), whereas the eval
partition showcases samples generated through thirteen dis-
tinct techniques (A07, ..., A19), mirroring an open-world
scenario where unfamiliar synthesis algorithms produce un-
known voices.

To refine the dataset, we eliminated any leading or trail-
ing silence from the original content via the MarbleNet
model for voice activity detection [11], and standardized
the volume following the EBU recommendation on audio
signal loudness [8], employing a sampling frequency of 16
kHz. Additionally, we merged the train and dev sections
into a unified training set, reserving the eval segment for
testing purposes.

The considerable disparity between genuine and arti-
ficially generated utterances, with ratios of 1:6 and 1:13

respectively, was addressed by oversampling the genuine
recordings along with the application of a randomized start-
ing offset to each training trial.

3.2. Training Parameters

In Table 1 we reported the training parameters for the trans-
formers included by our model. To assess the distinct con-
tribution of the multi-formant decoder, we maintained all
hyper-parameters as suggested for SFAT-Net-2 unchanged.
This includes using the same MLP dimension, number and
dimension of heads, as well as the same depth – i.e., the
number of alternating pairs of MSA and MLP blocks – that
the original SFAT-Net architecture employed exclusively
for F0 decoding.

The STFT was computed using a window length of 32
msec and a hop size of 16 msec, and included a standard
pre-emphasis filter with coefficient 0.97. Thus, X and Φ
had size of L = 128 frames by M = 256 frequency bins,
corresponding to 2.064 seconds of content. We applied a
framing grid of 16 × 16 patches, resulting in a sequence
length of N = 128.

The training started with a learning rate of 1e-4 and a
batch size of 64, using Adam optimization [14] coupled
with cosine annealing schedule [16] set to complete a full
cycle ever 2 epochs. We used early stopping when the sum
of the autoencoding and formant estimation losses obtained
on 10% of the data kept for validation reached a plateau,
which occurred after about 100 iterations.

3.3. Evaluation Metrics

The performance of SFAT-Net-3 will be evaluated by means
of the Receiver Operating Characteristic (ROC) curve ob-
tained by the model, and of the corresponding Area Under
the Curve (AUC) and Equal Error Rate (EER).

Even though these metrics do not relate to a specific op-
erating threshold, we believe that they still provide an excel-
lent description of the overall performances: The shape of
the ROC curve provides interesting insights on the behavior
of the network for low alarm rates, i.e., for the conditions in
which the network is likely to be applied for forensic exam-
inations; the EER and AUC determine the inherent model
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Table 2. Performance of SFAT-Net-3 vs baseline models

SFAT-Net-3 SFAT-Net-2 SFAT-Net Pure Tr.

EER (%) 15.05 16.59 17.51 20.26
AUC (#) 0.932 0.910 0.900 0.885

Figure 5. ROC curves of SFAT-Net-* on ASVspoof 2019 LA

ability to discriminate the two classes in cases for which
false alarms are more tolerable, e.g., when the results are
applied for an initial screening of large content sets.

To ease the comparison with previous version of the
model, we kept the conventions used in the SFAT-Net pa-
per, and express EERs with percentages, and AUCs as pure
numbers.

4. Evaluation
4.1. Contribution of the Multi-formant Decoder

In order to assess the distinct contribution of the multi-
formant decoder, we compared the performance of SFAT-
Net-3 against its predecessors.

Furthermore, we included in the evaluation a baseline
model employing a pure transformer architecture, com-
posed solely of the magnitude encoder EX , the phase en-
coder EΦ, and the predictor P . The training configuration
and hyper-parameters of the transformers present in the re-
sulting model were kept consistent with those detailed in
Tab. 1 and Sec. 3. The results of this evaluation are reported
in Tab. 2, and the corresponding ROC curves are depicted
by Fig. 5.

SFAT-Net-3 is superior to all previous versions, achiev-
ing both a lower EER (15%) and a higher AUC (0.93)
scores. From the ROC curve, we can observe how it con-
sistently achieves a lower false alarm rate and higher recall
across all possible operation points.

Table 3. Performance of SFAT-Net-3 vs SOTA models

SFAT-Net-3 AASIST RawNet2 RawGAT-ST

EER (%) 15.05 17.10 20.67 23.00
AUC (#) 0.932 0.896 0.877 0.841

Figure 6. ROC curves vs SOTA models on ASVspoof 2019 LA

Crucially, all versions of the network surpass the pure
transformer baseline, suggesting that focusing the attention
on specific parts of the input through multi-task learning
improves the overall generalization capabilities – which are
essential to achieve a high score on the test partition of the
ASVspoof 2019 LA dataset.

4.2. Comparison with the ASVspoof Baselines

In order to compare SFAT-Net-3 with the existing state
of the art, we utilized a few baseline networks pro-
vided as open source by the ASVspoof committee, namely
RawNet2 [25], RawGAT-ST [26] and AASIST [13].

RawNet2, at its core, is a SincNet architecture designed
for speaker identification, which was fine-tuned for syn-
thetic speech detection. The network learns a bank of pass-
band filters, with widths and center frequencies determined
by the training procedure – with the advantage of learning
to focus on the parts of the input spectrogram which are
relevant for the desired task [19, 25].

RawGAT-ST instead employs a graph attention network
(GAT) on the spectro-temporal (ST) representation of the
input speech. The ST representation is obtained using a
SincNet encoder, i.e., by again learning a filterbank tailored
to perform the desired task. Afterwards, the ST representa-
tion is converted to a fully-connected graph, and the edges
of the graph are related to the attention computed between
its nodes [26].

AASIST enhanced the graph-attention mechanism of its
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Table 4. Performance breakdown on the spoofing algorithms of the ASVspoof 2019 LA test partition

all A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19

EER (%) 15.05 0.00 3.20 1.63 23.49 14.14 26.49 26.44 1.14 21.46 0.10 23.45 9.92 0.07
AUC (#) 0.932 1.000 0.996 0.999 0.852 0.927 0.815 0.818 0.999 0.872 1.000 0.850 0.965 1.000

(a) SFAT-Net-3 (proposed model)

all A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19

EER (%) 17.51 0.03 2.89 2.92 24.49 14.21 31.23 31.74 1.17 21.59 0.11 31.46 15.21 0.06
AUC (#) 0.900 0.999 0.995 0.995 0.811 0.924 0.736 0.729 0.999 0.847 0.999 0.734 0.913 0.999

(b) SFAT-Net (baseline in [5])

predecessor RawGAT-ST, by fusing the attention computed
upon several graphs. While RawGAT-ST attended the en-
tire graph in one shot, AASIST employs three graphs, one
considering only connections within a time frame, a second
considering only connections within a frequency band, and
a last across both dimensions, as its predecessor [13].

All three models are provided by the respective authors
with a pre-trained set of weights tailored to work with the
original ASVspoof 2019 LA partitions. However, the pre-
trained weights led to very poor performance akin to ran-
dom guessing on our refined version of the dataset, in which
we removed trailing and ending silence, and pre-normalized
the loudness. Therefore, we retrained the three models
using the same dataset as for SFAT-Net-3, with the same
hyper-parameters described in the respective publications,
until the classification loss obtained on 10% of data reserved
for validation did not reach a plateau. The results obtained
after retraining are reported in Tab. 3, and the corresponding
ROC curves are depicted by Fig. 5.

In terms of EER (15%) and AUC (0.93) scores SFAT-
Net-3 is superior to all baseline models provided by the
ASVspoof organizers. This holds particularly true for
both RawNet2 and RawGAT-ST, which are clearly outper-
formed. The AASIST architecture, however, is on par with
RawNet2 for low alarm rates, but exhibits a lower recall for
more lenient scenarios in which the false alarm rate can be
10% or higher.

4.3. Detailed outcome on ASVspoof 2019 LA

The performance of synthesis detection on the ASVspoof
2019 LA dataset was found to be noticeably uneven in the
summary paper of the challenge [27].

Specifically, attacks A10, A13, and A18 were identified
as significantly impairing Automatic Speaker Verification
(ASV) performance while also proving challenging to de-
tect. Additionally, the A17 attack emerged as the most elu-
sive synthesis method to detect, although it presents a rel-
atively low threat to ASV systems. Attacks A16 and A19

were classified as “known,” meaning that synthetic content
examples were provided in the training set, albeit with dif-
ferent voices and utterances.

In Tab. 4, we present the EER and AUC values of the
ROC curves we obtained with SFAT-Net-3 for each individ-
ual synthesis algorithm in the test set, alongside the values
obtained by the baseline SFAT-Net model. We can observe
that the performance improved consistently across synthe-
sis algorithm, especially for A12, A13, and A17, which
were the most challenging algorithms for SFAT-Net – and
for which the multi-formant estimation resulted in a reduc-
tion of the EER of about 10%.

4.4. Impact of lossy encoding

All the performance reported so far referred to uncom-
pressed PCM content, having a sampling rate of 16 kHz.

These ideal conditions, however, do not match the anal-
ysis conditions expected for content retrieved from mobile
devices or from the social media. Therefore, we investi-
gated the performance of SFAT-Net-3 when faced with au-
dio content which was lossy-encoded using AAC with sev-
eral bitrates, as one would expect, e.g., for MP4 videos
shared across the Internet.

The results obtained on lossy-encoded content are re-
ported in Tab. 3, and the corresponding ROC curves are
presented in Fig. 5.

We can observe a moderate degradation of the perfor-
mance for bitrates equal to 32 kbps or above, which is
promising for future deployment in real-world-scenarios.

Table 5. SFAT-Net-3 performance with lossy encoding

Encoding PCM AAC (kbps)

128 64 32 16

EER (%) 15.05 16.02 15.78 17.64 25.01
AUC (#) 0.932 0.922 0.923 0.909 0.831
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Figure 7. ROC curves of SFAT-Net-3 with lossy encoding

The network reliability drops significantly for content
encoded with AAC at 16 kbps. The reason behind this be-
havior is the aggressive low-pass filtering applied by the en-
coding around 3.4 kHz, that removes more than half of the
frequency range that the network would typically inspect
for tracing formants and detecting synthetic speech.

Yet, considering that for bitrates above 32 kbps the per-
formances are superior to those obtained by all ASVspoof
baselines on PCM content, we deem SFAT-Net-3 to be gen-
erally reliable.

5. Conclusions and Outlook
In this paper we presented SFAT-Net-3, a novel multi-task
transformer performing synthesis detection as a byproduct
of estimating the phonetic formants F0, F1, and F2 of the
input speech, and of reconstructing the entire input log-
magnitude.

SFAT-Net-3 outperforms the previous version of the
same architecture, and demonstrates superior or comparable
performance to existing state-of-the-art baselines provided
by the ASVspoof community. The model exhibits sufficient
reliability even when processing input content encoded with
AAC, and for input content encoded with at least 64 kbps,
it was able to match the EER and AUC performance that
state-of-the-art models achieve for PCM encoded content.

In future work, we aim to explore more features derived
from the phonetic domain, and to address the drop in per-
formance due to the presence of aggressive low-pass filters,
such as the one we encountered for AAC at 16 kbps. The
issue might be mitigated, for instance, by adjusting the fre-
quency range of the input signal to only consider frequen-
cies up to 4 kHz, or by incorporating data augmentation
techniques in our training procedure that include speech en-
coders commonly found in the consumer devices.

Furthermore, since the selection criteria for synthesis al-
gorithms within ASVspoof preclude drawing definite con-
clusions about the results beyond mere numerical per-
formance, we plan to evaluate SFAT-Net-3 and existing
state-of-the-art models using additional datasets, such as
ODSS [30] and TIMIT-TTS [22], which are designed to
mitigate such interpretation challenges.

Lastly, while SFAT-Net-3 has introduced significant per-
formance improvements over its predecessors, it has not
fully eradicated detection challenges associated with the
most critical algorithms in the ASVspoof evaluation par-
tition. To enhance predictive capabilities, further investi-
gation into features drawn from the phonetic domains is
needed, aiming to address these lingering weaknesses.

Acknowledgments
This paper was supported by the BMBF SpeechTrust+
project (grant no 13N16267), and by the EU Horizon Eu-
rope vera.ai project (grant no. 101070093).

Additionally, we would like to thank Kristina Tomić
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