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Abstract

This paper introduces a framework for Audio Prove-
nance Analysis, addressing the complex challenge of ana-
lyzing heterogeneous sets of audio items without requiring
any prior knowledge of their content. Our framework ap-
plies a novel approach that combines partial audio match-
ing and phylogeny techniques. It constructs directed acyclic
graphs to capture the origins and the evolution of content
within near-duplicate audio clusters, identifying the least
altered versions and tracing the reuse of content within
these clusters. The approach is evaluated for two selected
application scenarios, demonstrating that it can accurately
determine the direction of content reuse and identify parent-
child relationships, while also offering a dedicated dataset
for benchmarking future research in this area.

1. Introduction
The ability to verify the reliability and origin, i.e. prove-
nance, of audio files is crucial in combating disinformation
and ensuring the integrity of media content. This need is
particularly evident in fields such as journalism and law en-
forcement, where the validation of audio material can be
pivotal in investigations or fact-checking efforts.

Journalists and law enforcement agencies often face the
task of examining media files to trace their distribution and
identify the earliest or least altered versions. This process is
crucial for gathering information on the lifecycle of audio
files in order to verify content authenticity, identify sources
of information, and unravel distribution patterns. This anal-
ysis becomes increasingly complex when dealing with ex-
tensive sets of audio files, where manipulated or decontex-
tualized materials may incorporate segments from genuine
sources, and identical content may proliferate across multi-
ple platforms. Therefore, being able to distinguish between
derived and original or first-published versions, and to de-
tect the transformations applied, is essential.

In this context, scientists have identified the need for a
specialized field focused on tracing the lineage of transfor-

Figure 1. Audio Phylogeny vs Audio Provenance Analysis

mations and identifying the source or the least transformed
version within a set. For audio content, this field has been
termed audio phylogeny, with all suggested methods requir-
ing audio items to be part of a set of near-duplicates. How-
ever, challenges arise in more heterogeneous sets composed
of media content from various internet sources or devices,
and lacking detailed content information. In such cases, de-
tecting content similarity and transformations remains an
unresolved issue in the current state of the art.

This paper introduces an approach for Audio Provenance
Analysis that addresses these challenges, aiming at mapping
the directed relationships among media files by focusing
on reused audio segments. The goal is to identify near-
duplicate audio sets, reconstruct their lineage in directed
acyclic graphs, and highlight partial content reuses that con-
tribute to the creation of new compositions (see Fig. 1).

The proposed approach represents the first comprehen-
sive effort to automate the process that takes a set of het-
erogeneous audio files as input, and provides provenance
graphs as output. As such, it introduces the following con-
tributions to the research domain:

• The definition of the novel task of audio provenance anal-
ysis, along with a cohesive workflow that integrates vari-
ous analysis methods.

• A new clustering methodology that exploits the detailed
output of partial audio matching for refined analysis.

• A novel graph-building approach that integrates audio
phylogeny analysis with cross-cluster segment matching.

• The creation of a dataset for audio provenance evalua-
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tion, demonstrating the effectiveness of our approach and
establishing a foundation for future advancements.

2. Literature Review
2.1. Multimedia Phylogeny

Multimedia Phylogeny is a research field aiming to trace
the origin and evolutionary pathways of closely related –
i.e., near-duplicate – media documents, and thus to identify
the source document from a set of near-duplicates and to
map the genesis of each near-duplicate, typically visualiz-
ing the relations via a so-called phylogeny tree. The founda-
tional principles of this field, especially in the context of im-
ages,were laid out by Dias et al. in [10], who elaborated on
its methodologies and evaluative processes. This pioneer-
ing work was further expanded in order to apply multime-
dia phylogeny principles across various domains, including
video [9], audio [12, 19, 24, 34], and even text [31].

Since then, the field has progressed to address more com-
plex scenarios, such as Multiple Parenting Phylogeny. This
innovative approach, originally explored for the image do-
main, extends beyond analyzing near-duplicate sets, to also
address compositions derived from combining elements of
two donor images. Oliveira et al. in [8, 26] delved into mul-
tiple parenting image phylogeny and introduced methodolo-
gies that facilitate the analysis of image compositions cre-
ated from one alien and one donor image. However, their
studies also highlighted limitations of current methodolo-
gies, including constraints on the number of donor images
in a composition and dependence on phylogeny forest tech-
niques for effective clustering.

2.2. Provenance Analysis

2.2.1 Image Domain

In response to the limitations in existing Multimedia Phy-
logeny approaches and to encourage further research into
multi-asset forensic analysis, both the Defense Advanced
Research Projects Agency (DARPA) and the National In-
stitute of Standards and Technology (NIST) have played
important roles [25]. They introduced new terminology,
metrics, and datasets, thereby expanding the scope of phy-
logeny reconstruction into what is now referred to as Prove-
nance Analysis. This term not only covers the reconstruc-
tion of derivation stories of assets, but also emphasizes the
critical step of asset retrieval.

In the realm of image analysis, the transition to Im-
age Provenance Analysis has witnessed significant advance-
ments. Building upon the foundation set by de Oliveira et
al. [8], Bharati et al. [3] broadened the framework to in-
clude images derived from multiple sources, thereby en-
hancing the methodology applicability and analytical depth
by constructing an undirected graph. Another notable ad-
vancement is from Moreira et al. [23], who proposed a fully

automated framework for image provenance analysis. This
framework introduces key methodologies, including Prove-
nance Image Filtering, designed to retrieve both directly and
indirectly related images, and utilizes both global and lo-
calized dissimilarity metrics to analyze matching regions of
images.

Given that Provenance Analysis has largely been con-
fined to the image domain, exploring parallels to potential
audio approaches becomes essential. Unlike images, con-
ducting reverse audio searches across the internet for con-
tent retrieval is currently impractical, implying that prove-
nance filtering must commence with a predefined set of au-
dio files. Furthermore, there is a deviation from the query-
centered approach recommended by NIST for image prove-
nance, highlighting the unique challenges in audio prove-
nance analysis where the application-driven goal is to re-
veal connections between all files in a set without assuming
a predefined query. Despite these methodologies being tai-
lored to the image provenance analysis [23, 36], the core
strategy of detecting localized segment matches and con-
structing a tailored provenance graph bears resemblance to
approaches that are applicable for audio file analysis, sug-
gesting that the foundational principles of provenance anal-
ysis are potentially applicable across different media types.

2.2.2 Video Domain

Video provenance introduced additional challenges due to
the temporal dimension of video content, adding complex-
ities not found in still images. While a comprehensive ap-
proach targeting video provenance analysis does not yet ex-
ists, initial steps have been taken to develop some of the
essential components of such a system. These include foun-
dational approaches within video phylogeny field, applying
image phylogeny methodologies in a frame-by-frame man-
ner to video content [4, 5, 9]. Subsequent advancements in-
cluded techniques for aligning videos by age metrics [22],
or temporally aligning similar video sequences [17, 18], es-
tablishing the basis for future frameworks in video prove-
nance analysis. These developments signal a growing ac-
knowledgement of the importance of provenance analysis
across various media types, each presenting unique chal-
lenges and necessitating specialized approaches.

2.2.3 Audio Domain

Similarly, the exploration of Audio Provenance Analysis is
in its early stages, yet lacking holistic approach. Nonethe-
less, several key components that are needed for such a sys-
tem have been addressed. Drawing inspiration from the im-
age domain, research in Audio Provenance Analysis calls
for a comprehensive strategy, including:
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1) Provenance Clustering: This critical step involves de-
tecting and localizing content reuse within a collection of
audio files in order to form clusters of near-duplicates,
identifying the cross-tree connections that indicate segment
reuse. Similar to work in the domain of image provenance
in [23, 36] and to related video approaches [17, 18], achiev-
ing accurate and reliable matching is crucial for the distinc-
tion of near-duplicates, and the detection and localization
of potentially matching content segments. This requires a
method capable of a) reliably detecting perceptually identi-
cal content that was created via transformations, b) detect-
ing and localizing matching segments, and c) adapting to an
unknown quantity of segments between two files.

Numerous audio matching techniques have been devel-
oped, primarily for audio identification purposes, where
a query is matched against a database to find its origin.
[1, 2, 6, 7, 11, 13, 14, 30, 32, 33, 35]. These meth-
ods focus on global similarity and are optimized for re-
trieval speed, crucial for databases with millions of songs.
Content-Based Copy Detection (CBCD), in contrast, repre-
sents a more relevant use case for our purpose: In CBCD,
the aim shifts towards localizing the match within the refer-
ence data, assuming that only a portion of the query might
match the reference content. This requires retrieval algo-
rithms capable of localization, addressed by several ap-
proaches [15, 16, 27–29] that introduced enhancements for
detecting a sub-sequence of the query within reference files.

Despite these advancements, most methods struggle
with handling multiple partial matches or achieving precise
match localization, assuming at most one matching segment
between every pair of files, and relying on near-duplicate
search, voting, or counting strategies. These strategies,
while effective, face limitations regarding granularity and
accuracy of match localization. This limitation was ad-
dressed by our work in [20, 21], where we proposed an au-
dio matching technique capable of detecting and localizing
an unknown number of reused segments, making it an ideal
choice for provenance clustering in our Audio Provenance
Analysis framework.

2) Provenance Graph Building: The subsequent goal
is to synthesize identified clusters and reused audio seg-
ments into a directed graph, clarifying the origins of the
content and, in cases of partial reuse, the content creation
history. The methodology for constructing this graph must
be tailored to the audio domain, diverging from the query-
centered approaches for image analysis.

As a key component of provenance graph building, au-
dio phylogeny methods could be utilized to reconstruct di-
rected graphs within clusters of near-duplicates. In the lit-
erature, audio phylogeny approaches include computation-
ally intensive efforts of Nucci et al. in [24], more stream-
lined approaches leveraging transformation detection func-
tions [19, 34], and the more recent approach we proposed

in [12] that relies on Deep Neural Networks (DNN) for
transformation detection, improving extensibility and com-
putational efficiency. Indeed, extensibility is critical for
real-world applications, allowing for the expansion of the
considered transformations set. Contrary to manually engi-
neered transformation detection functions, our DNN-based
audio phylogeny approach offer straightforward extension
via retraining of the network with appropriate data, bypass-
ing the challenging process of feature engineering. Thus,
the DNN-based audio phylogeny we proposed in [12] was
chosen for graph reconstruction within near-duplicate con-
tent sets, becoming a key component of the provenance
graph building process in our proposed Audio Provenance
Analysis system.

3. Proposed Approach
In the previous section, we reviewed the most relevant
works related to the domains of image, video, and audio
provenance analysis. Upon recognizing the need for a com-
prehensive provenance analysis framework within the audio
domain, we drew parallels and inspiration from established
methodologies in the image domain. This comparative anal-
ysis led us to identify two critical tasks essential for an ef-
fective audio provenance framework: Provenance Cluster-
ing and Provenance Graph Building. We detailed the state-
of-the-art approaches relevant to both tasks within the audio
domain and justified our selection of existing audio match-
ing and audio phylogeny methods as being well-suited for
integration into our framework. In the following sections,
we will discuss our audio provenance analysis framework,
presenting how both adapted and novel methodologies for
Provenance Clustering and Provenance Graph Building are
implemented, in order to address the unique challenges of
audio provenance analysis.

3.1. Provenance Clustering

The goal of the Provenance Clustering task, as illustrated in
Figure 2, involves initially applying Partial Audio Matching
to determine which audio items are related to each other,
followed by a Near Duplicate Clustering process. This pro-
cess aims to group near-duplicate items in clusters, and to
identify the connections between non-near-duplicates.

The Partial Audio Matching step utilizes the audio
matching approach we proposed in [20, 21]. This method
introduces an advanced retrieval algorithm tailored to de-
tect and localize reused audio segments as short as 3 sec-
onds, meeting our requirements for precision and reliability
in segment localization. As such, it is the ideal solution for
our task of provenance clustering.

Given a set of audio files A = {ai} let us denote with N
their number (i.e., i ∈ [1, N ]) and with Li the length in sec-
onds of the i-th file in the set. The partial matching requires
extracting one audio fingerprint Fi for each file under analy-
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Figure 2. Proposed Audio Provenance Analysis workflow

sis, and performing a pairwise comparison between all pairs
of existing fingerprints (Fi, Fj). The outcome of the com-
parison is a set of matching results, each one of the form

{start i, start j, duration, confidence, i, j} , (1)

where start i marks the start of the matching in audio item
ai, start j the start of the match in audio aj and confidence
is the percent of matching sub-fingerprints over the duration
of the detected match [20].

Modifying the original notation, we now define the k-th
detected match between a file ai and a file aj as:

m
(k)
ij =

(
s
(k)
i , s

(k)
j , l

(k)
ij

)
, k ∈ [1,Kij ] (2)

where si and sj indicate the start of the match in the re-
spective file, lij its length, and Kij the number of matches
detected for the pair of files.1

The Near Duplicate Clustering process aims to discern
which outputs of the partial matching component indicate
the presence of a near-duplicate and which ones do not, and
to group near-duplicate files into clusters. Let D = (Dij)
represent a near-duplicates matrix, where

Dij =

{
1 (ai, aj) are near-duplicates
0 otherwise

(3)

and let P = (Pij) denote a partial-duplicate matrix in which

Pij =

{
1 (ai, aj) are partial-duplicates
0 otherwise

(4)

Given two files with at least one detected match (Kij >
0), we classify them as near-duplicates if the total length

1The confidence value is not relevant in this context and was therefore
omitted.

of the respective matching segments exceeds the length of
both files, or as partial-duplicates otherwise, i.e.

Dij =

{
1

∑Kij
k=1 l

(k)
ij > max(Li, Lj)− ϵ

0 otherwise
(5)

Pij =

{
1 Kij > 0 ∧Dij = 0

0 otherwise
(6)

where ϵ accounts for a small tolerance to minor localiza-
tion inaccuracies due, for example, to background noise or
encoding, and Li, Lj represent the length in seconds of the
two audio files.

3.2. Provenance Graph Building

The goal of the Provenance Graph Building task is depicted
in Figure 2. In a first step, we transform the clusters of
near-duplicates into set of phylogeny trees, i.e., of directed
graphs in which the direction indicates provenance; In a sec-
ond step, we process the cross-tree partial connections, i.e.,
the partial matching existing between disjoint phylogeny
trees, to pinpoint the specific files acting as donors in the
creation of derived content.

3.2.1 Audio Phylogeny

Audio phylogeny aims to detect the relationships and trans-
formations within a set of near-duplicate audio items. This
involves computing a dissimilarity matrix between each pair
of near-duplicates, which is then transformed into a directed
phylogeny tree using the Oriented Kruskal algorithm [10].

Among the few algorithms for audio phylogeny dis-
cussed in Section 2, we chose the one we presented in
[12], which proposes the use of a neural network to de-
tect the most probable transformation that occurred between
every input pair of near-duplicates. This approach offers
high computational efficiency, enables detection of specific
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transformation between pairs of files, and allows for the ex-
pansion of the set of potentially detected transformations
with relative ease.

As with partial matching, we will omit the specifics of
the phylogeny analysis – the workflow of which is detailed
in [12]. Instead, we focus on how to apply the output of the
algorithm for our provenance analysis task.

Let us denote a single cluster of near-duplicates with
Cn. Before the phylogeny analysis, our only information
is that for every pair (i, j) where ai, aj ∈ Cn, both elements
Dij , Dji in the near duplicate matrix D are equivalent and
set to one.

The phylogeny analysis, in turn, yields an asymmetric
matrix of edges E = (Eij), where

Eij =

{
1 if ∃T (·) : aj = T (ai)

0 otherwise
(7)

with T (·) representing a content-preserving transformation.
Hence, if Eij = 1, then ai is deemed a parent of aj .

To disseminate this information, we impose Dij =
Eij∀(ai, aj) ∈ Cn, repeat the operation for all identified
near-duplicate clusters within our provenance graph, and re-
duce the number of relevant relationships from |Cn|(|Cn|−
1)/2 to |Cn|.

3.2.2 Processing of Cross-tree Connections

Following the phylogeny analysis, our original file set A is
mapped to a forest of phylogeny trees represented by

Ti = (ai∗ , Ci,Ei), (8)

with ai∗ indicating its root audio file, Ci the cluster of files
in the tree, and Ei their adjacency matrix.

Hereon, we assume that if two trees (Ti, Tj) share partial
connections and Ti was used to generate Tj , this happens
because one audio file āi ∈ Ci in the first tree was used to
generate the root file aj∗ of the second tree. In more concise
terms, we can identify a donor tree Ti, a donor audio āi, a
composition root aj∗ , and a composition tree Tj .

For an arbitrary pair of trees (Ti, Tj) with partial connec-
tions we cannot tell in advance which tree is the composi-
tion, and which one is the donor: The goal of cross-tree con-
nection processing is to identify the donor audio ā(Ti,Tj) for
all pairs of phylogeny trees in the analysis set, and to prune
all partial connections except the ones between ā(Ti,Tj) and
either the root ai∗ or aj∗ .

The initial step in achieving this goal involves determin-
ing which segments of the audio files to analyze. We pro-
pose selecting the interval defined by the longest matching
segment, thus

argmax
ijk

(
l
(k)
ij

)
, ∀m(k)

ij : (i, j) ∈ Ci × Cj . (9)

Subsequently, we crop all files in Ci ∪Cj to the correspond-
ing optimal interval, effectively resulting in a set of near-
duplicate partial files:

P = Pi ∪ Pj = {pi ∈ Ci} ∪ {pj ∈ Cj} (10)

where the root elements pi∗ and pj∗ are distinguishable, and
the original cluster is known.

To identify the donor audio, we revisit the dissimilar-
ity calculation process diss(·) outlined in our audio phy-
logeny approach [12]. This process is applied to compare
all elements of Pj against the root pi∗ , and all elements of
Pi against the root pj∗ , thereby obtaining two dissimilarity
vectors:

D
(j)
i = diss(pi, pj∗) ∀pi ∈ Ci (11)

D
(i)
j = diss(pj , pi∗) ∀pj ∈ Cj (12)

Donor audio, donor tree, composition root and composition
tree can then be determined by identifying the donor file

ā(Ti,Tj) =

{
ai† ∈ Ci ifmin(D

(j)
i ) < min(D

(i)
j )

aj† ∈ Cj otherwise
(13)

where

i† = argmin
i

(D
(j)
i ) (14)

j† = argmin
j

(D
(i)
j ) (15)

i.e., by selecting the connection with the lowest dissimilar-
ity.

Once the selection process is completed, all non-
corresponding partial connections Pij in the partial-
duplicate matrix P are discarded unless they relate to the
identified donor files ā(Ti,Tj) and the related composition
roots ai∗ or aj∗ .

The outcome of the provenance graph building is a di-
rected acyclic graph, exemplified at the top right of Fig-
ure 2: Each phylogeny tree can be identified by its clus-
ter number (color in the figure), and within each tree every
node is restricted to have a single parent, albeit possibly
having multiple descendants. Between pairs of trees, only
a unique directed connection is permitted from an arbitrary
node of the donor tree to the root node of the composition
tree, with the result that composition root trees may have
multiple inbound partial connections.

4. Evaluation
In this section, we introduce a dataset designed for the eval-
uation of audio provenance analysis for selected usage sce-
narios, released together with this publication2. In addition,
we elaborate on the evaluation metrics and summarize the
results achieved by our proposed framework using the pro-
posed dataset.

2https://doi.org/10.5281/zenodo.10960056
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Figure 3. Dataset for the Singular Composition Scenario

4.1. Test Set Creation

In the following, we will outline two scenarios, Singular
Composition and Multi-Source Composition, which reflect
two common composition cases for audio/video media con-
tent.

Singular Composition (SC) outlines a scenario where a
single source is segmented and integrated with other con-
tent. This happens, for instance, when fragments of inter-
views or statements are reused in various contexts. For this
purpose, the creation process for the SC test dataset involves
starting with a source of interest (SoI), a music source (MS),
and a non-reference source (NS), as illustrated in Fig. 3. We
construct a phylogeny tree from the SoI and the MS to re-
flect the various versions that might be discovered online
or on different devices, and utilized in compilations, while
the NS represents content not accessible for analysis, like
restricted or private archive material. Two compilations are
generated from randomly selected nodes of the SoI and MS
phylogeny trees and a NS by merging their segments as il-
lustrated in Fig. 3, where the first compilation contains one
segment from SoI and the second includes two. The SC sce-
nario does not aim at hiding the splicing of segments from
different sources, hence audio segments are combined using
simple concatenations with a 0.1-second crossfade to elim-
inate perceivable clicks. We create 40 sets under the SC
scenario, featuring 80 audio files each.

Multi-Source Composition (MSC) introduces a second
scenario where segments from two sources are utilized to
create new content. This scenario draws inspiration from
malicious content creation, such as a manipulated statement
from a politician. The MSC test dataset creation involves
two SoIs and a NS. Phylogeny trees are constructed for each
SoI to represent possible variants used in compilations, with
the NS representing synthetic or inaccessible content. Com-
positions in MSC involve merging segments from both SoIs
with the NS, as specified in Fig. 4. Aligned with the ma-
licious intentions of the creator in this scenario, we create

compositions by first applying cross-fade and then introduc-
ing background environmental noise to conceal the splic-
ing, thereby “pretending” an original recording. Moreover,
all reused content (SoIs and non reference one) originates
from the same speaker. Each MSC test dataset comprises
three phylogeny trees with 20 nodes each, with roots in the
two SoIs and the MSC compilation. We create a total of 40
of these datasets, with 60 audio files each.

The choice of these composition scenarios was influ-
enced not only by their application relevance, but also by
the goal to encompass a wide array of composition charac-
teristics. This includes combining music and speech, utilis-
ing segments from the same source, merging segments from
the same speaker but different sources, and mixing refer-
ence with non-reference material. The scenarios also dif-
ferentiate between forests with two compositions (SC) and
forests with a single composition (MS).

For the sake of a streamlined evaluation, the duration of
all reused segments was set to 4 seconds. This duration
ensures that the segments are suitable for audio phylogeny
analysis while keeping the composed signals short. The
generated phylogeny trees include 20 near duplicates nodes
created by applying transformations such as MP3 and AAC
encoding (320, 192 and, 128 kbps), and fading with a range
of 0 to 3 seconds. Notably, unlike the transformation sets
for generating audio phylogeny trees commonly referenced
to in the literature, our selected set does not include trim-
ming; the trim operation was omitted because it could be
identified by the partial matching component, making it ir-
relevant for the reconstruction of phylogeny trees.

4.2. Evaluation metrics

Similar to the approach in [23], we utilize generalized F1
measures for the evaluation of both retrieved nodes and
edges, named Vertices Overlap (V O) and Edges Overlap
(EO), respectively. Moreover, acknowledging the impor-
tance of accurately detecting roots for analyzing cross-tree
connections (as outlined in Sec. 3.2.2), we also examine
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Figure 4. Dataset for the Multi Source Composition Scenario

whether the roots of all near-duplicate sets within an ex-
amined heterogeneous set were correctly identified (R).
Thanks to these three measures, we can assess the effi-
ciency of both the clustering process and the overall graph
reconstruction (including near-duplicate and partial cross-
tree edges). To compare the ground truth graph G and re-
constructed graph G

′
, we calculate:

EO = 2
|E ∩ E

′ |
|E|+ |E′ |

(16)

V O = 2
|V ∩ V

′ |
|V |+ |V ′ |

(17)

R(G,G
′
) =

{
1, If R = R

′

0, Otherwise
(18)

where V , E, R denote nodes, edges and root of ground truth
graph respectively, and V

′
, E

′
, and R

′
denote nodes, edges

and root of reconstructed graph.
Given the particular focus on cross-tree edges –three per

test set in the SC scenario and two in the MSC scenario,
which constitute only 0.03% of the total set of edges E– the
effectiveness of reconstructing these crucial edges can be
somewhat masked by the global measure EO. To mitigate
this and provide a clearer insight into our framework capa-
bility in reconstructing cross-tree connections, we introduce
additional metrics:

Accurate Partial Detection (PD): This metric assesses
the quantity of partial connections detected by the partial
audio matching component relative to the ground truth num-
ber of connections. In test datasets outlined in Sec. 4.1, the
ground truth number of connection is 3 in the SC scenario,
while being 2 in the MSC scenario.

Accurate Directed Partial Detection (PDCi,a∗
j
): This

metric measures the quantity of total connections that are
correctly oriented and link the correct donor cluster to the
correct root node of a composition. It is relative to the
ground truth number of connections.

R V O EO PD PDCi,a∗j PDa
i† ,a

∗
j

scenario SC 1 1 0.85 1 0.92 0.53
scenario SC (*) 1 1 0.89 1 0.925 0.51

scenario MSC 1 1 0.83 0.44 0.15 0.01
scenario MSC (*) 1 1 0.88 0.44 0.47 0.1

Table 1. Evaluation results averaged over 40 trees per each evalu-
ated scenario of Single Composition (SC) and Multi Source Com-
position (MSC). Rows marked with (*) represent results obtained
with retrained DNN for transformation detection.

Accurate Donor-Composition Connection (PDa
i† ,a

∗
j
):

Representing the most rigorous criterion, this metric calcu-
lates the quantity of partial connections that accurately link
the correct donor node to the correct root of the composition
cluster. Again, it is relative to the ground truth number of
connections.

4.3. Results

In the table presented in Tab. 1, we summarize the evalu-
ation results based on the criteria detailed in Sec. 4.2, for
both scenarios examined in Sec. 4.1. The results reflect the
average performance across all 40 heterogeneous audio sets
per scenario, hence all metric scores range from zero to one,
where one indicates optimal performance.

The optimal scores of V O and R in both scenarios
demonstrate that all nodes (vertices) of ground truth graphs
are included in reconstructed graphs. Furthermore, this
confirms the accurate identification of the roots of each
near-duplicate cluster within the reconstructions. The met-
rics evaluating correct edges overlap EO in reconstructed
graphs also reveal high scores in both scenarios, although
slightly lesser than those reported by our previous work in
[12], likely due to the consideration of cross-tree connec-
tions in our evaluation.

In the SC scenario, the partial matching component ef-
fectively identified the correct number of partial cross-tree
connections for every test set evaluated, achieving a PD
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value of 1.0. Conversely, the MSC scenario posed a greater
challenge. The application of cross-fading between con-
tent segments and background noise resulted in a PD value
of 0.44, indicating that only 44% of the expected cross-
tree matches were identified. This disparity significantly
impacted the overall performance metrics for partial con-
nections within the MSC scenario. In the SC scenario, a
high value of 0.92 was noted for partial matches correctly
connecting the donor cluster to the composition’s root node
(PDCi,a∗

j
), while this metric dropped to 0.15 in the MSC

scenario. We attribute this decline not only to the difficulty
in detecting cross-tree connections, but also to an over-
looked transformation: The addition of background noise,
which was not included in the detectable transformations in
the DNN used for transformation detection within the audio
phylogeny method, as mentioned in [12].

Recognizing the necessity to incorporate this additional
content transformation, we took advantage of the extensibil-
ity of the audio phylogeny approach by retraining the DNN
to detect background noise addition as a transformation.

The results labeled with (*) in Table 1 show the improve-
ments achieved by this adjustment. For the SC scenario, the
retraining had minimal impact, as evidenced by the similar
outcomes in both cases. However, for the MSC scenario,
the retrained model’s performance PDCi,a∗

j
improved sig-

nificantly to 0.47, indicating a substantial improvement in
identifying correct cross-tree connections when the addi-
tional noise transformation was considered. This adjust-
ment makes the performance of the MSC scenario compa-
rable to the performance of the SC scenario for the metric
PDCi,a∗

j
: After retraining the DNN, the ratio between the

number of accurately directed partial connections relative
to the number of detected partial connections is 100% in
both cases. This underscores the importance of comprehen-
sive transformation detection for complex audio provenance
scenarios.

The measure (PDa
i† ,a

∗
j
), which denotes whether the

correctly directed cross-tree connection originates from the
accurate node within the donor cluster, is indeed the most
demanding test of our framework capabilities. For the SC
scenario, this metric scores at 0.53, showing that over half
of the cross-tree connections are correctly traced back to
their correct origin within the donor cluster. Conversely, the
MSC scenario, even after incorporating the retrained DNN,
achieves only a score of 0.1. While this value may seem
low, it is essential to acknowledge the inherent difficulty of
this task. In scenarios where the task involves distinguish-
ing between near-duplicate files, the challenge is intensi-
fied by the close resemblance among these files. Often, the
only variances consist of subtle transformations like fade
in/out, which, for segments extracted from the middle of a
file, rarely alter the fundamental characteristics of the con-
tent.

5. Conclusion and Outlook

In this paper, we have presented an innovative audio
provenance analysis framework, providing a novel solu-
tion within the current landscape for examining heteroge-
neous sets of audio files. Starting with a collection of me-
dia files lacking prior information on content similarity, our
framework successfully generates an acyclic directed graph.
This graph not only identifies sources –or the least changed
versions– within near-duplicate clusters, but also maps out-
bound connections that indicate partial content reuse. Re-
markably, for all detected partial connections, our system
can accurately detect the direction of content reuse – distin-
guishing between donor and recipient clusters within these
relationships.

However, pinpointing the exact node within a near du-
plicate cluster as the donor of a content segment to a com-
position node remains a substantial challenge. In the cur-
rent system configuration, this precise identification was
accomplished in 53% of all cases in the SC scenario and
only in 10% of all cases in the more demanding MSC sce-
nario. This issue constitutes a challenging area for future
research, with several aspects of the current framework that
could be optimized to enhance performance, such as refin-
ing the dissimilarity calculations between segments to be
more nuanced or noise-aware.

Another challenge identified is the detection of partial
matches if background noise is present, where performance
significantly drops, as evidenced by the 44% success rate
in the MSC scenario compared to the 92% in the absence
of noise in the SC scenario. This disparity highlights the
necessity for further refinement of the audio fingerprinting
technique we originally proposed in [20], which, although
effective for identifying perceptually identical content, ex-
hibits limitations under noisy conditions. Future improve-
ments could involve adjusting the existing fingerprint pa-
rameters or developing a new fingerprint more robust to
background noise.

In conclusion, our work can be considered a significant
advancement in the field of audio provenance analysis, tack-
ling a previously uncharted task. We have not only de-
veloped a practical solution but also created and shared a
dataset suitable for benchmarking. In our discussion of
the evaluation results, we have highlighted the framework
strengths and weaknesses, and related avenues for subse-
quent research to achieve further improvements.
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