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Abstract

DeepFakes, which refer to AI-generated media content,
have become an increasing concern due to their use as
a means for disinformation. Detecting DeepFakes is cur-
rently solved with programmed machine learning algo-
rithms. In this work, we investigate the capabilities of mul-
timodal large language models (LLMs) in DeepFake detec-
tion. We conducted qualitative and quantitative experiments
to demonstrate multimodal LLMs and show that they can ex-
pose AI-generated images through careful experimental de-
sign and prompt engineering. This is interesting, consider-
ing that LLMs are not inherently tailored for media forensic
tasks, and the process does not require programming. We
discuss the limitations of multimodal LLMs for these tasks
and suggest possible improvements.

1. Introduction
The meteoric rise of Generative AI (GenAI) models is one
of the most exciting developments in recent years. State-of-
the-art GenAI models have demonstrated incredible abili-
ties to create realistic images, audio, and videos1 from text
prompts. While AI-generated content has numerous benefi-
cial uses, such as in the movie and advertising industry, its
misuse to produce deleterious content, commonly known as
DeepFakes, seriously undermines the credibility of infor-
mation and trust in digital media. As a result, identifying
DeepFakes has become a crucial and timely task in media
forensics.

The current DeepFake detection is solved by dedicated
machine learning algorithms written as coded programs.

1e.g., Midjourney www.midjourney.com and Stable Diffusion
https://stability.ai/ for image generation, Elevenlab https:
//elevenlabs.io/ for audio generation, and Pika https://pika.
art/ and OpenAI’s Sora https://openai.com/sora for video
generation.

Most of the existing methods are based on data-driven deep
neural network models that are trained on labeled datasets
of real and DeepFake media (e.g., Celeb-DF [24]). Detec-
tion often relies on statistical features of the media signal,
and users must use them through dedicated programming
languages, tools, or services.

Meanwhile, large language models (LLMs) and the
conversational agents built upon them, such as Chat-
GPT, Google Gemini, and the open-source LLaMA, have
emerged in recent years as versatile tools with wide-ranging
applications. The LLM chatbots’ intuitive natural language
interface significantly eases user interactions and obviates
the reliance on programming expertise. More importantly,
LLMs have exhibited a strong ability to encode vast knowl-
edge bases from the existing text corpus. This ability has
been further extended to images and videos, as the most
recent LLMs bring in vision-language models to possess
multimodal understanding, as showcased in the most recent
ChatGPT based on the GPT4V multimodal LLM [2]. As
such, multimodal LLM chatbots offer a more intuitive and
user-friendly means to solve complex problems and have
found applications in computer and network forensics [31],
face verification [8], and medical diagnosis [38]. In a re-
cent unpublished study [32], the authors tested LLMs in
identifying facial spoofing and forgery. However, this study
focuses on qualitative studies based on a set of individual
queries, hence only providing a partial glimpse of the full
potential of the LLMs in detecting DeepFakes.

In this work, our aim is to provide a more comprehen-
sive and quantitative evaluation of the ability of multimodal
LLMs to detect DeepFakes. The overall process is illus-
trated in Fig. 1. Specifically, our objective is to demon-
strate the feasibility and performance of multimodal LLMs
in exposing AI-generated face images. For an input face
image, we accompany it with a text prompt that requests
a Yes/No response on whether the accompanying image is
AI-generated, along with explanations and justifications for
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Figure 1. The overall process of using multimodal LLMs to
detect AI-generated face images.

the answer. The text prompt is crucial, as it forms the sole
interface between the user and the multimodal LLM chatbot
for media forensic tasks. Our study focuses on the forms of
text prompts that can effectively elicit meaningful responses
from LLMs 2. On a set of face images, we conduct extensive
qualitative and quantitative evaluations of the performance
of popular multimodal LLMs on this task. Our initial ex-
periments have yielded several key insights:
• Multimodal LLMs demonstrate a certain capability to

distinguish between authentic and AI-generated imagery,
drawing on their semantic understanding. This discern-
ment is interpretable by humans, offering a more intuitive
and user-friendly option compared to traditional machine
learning (ML) detection methods.

• The efficacy of multimodal LLMs in identifying AI-
generated images is satisfactory, with an Area Under the
Curve (AUC) score of approximately 75%. However,
their accuracy in recognizing genuine images is notice-
ably lower. This discrepancy arises because a lack of se-
mantic inconsistencies does not automatically confirm an
image’s authenticity from the LLMs’ standpoint.

• The semantic detection capabilities of these LLMs cannot
be fully harnessed through simple binary prompts, which
can lead to their refusal to provide clear answers. Effec-
tive prompting techniques are crucial for maximizing the
potential of multimodal LLMs in differentiating between
real and AI-generated images.

• Presently, multimodal LLMs do not incorporate signal
cues or data-driven approaches for this task. While their
independence from signal cues enables them to identify
AI-created images regardless of the generation model
used, their performance still falls short of the latest de-
tection methodologies.

We hope that this study will encourage future exploration
of the use and improvement of LLMs for media forensics
and DeepFake detection. The remainder of the paper is or-

2All text prompts and results used in this study will be available from
https://github.com/shanface33/GPT4MF_UB.

ganized as follows. Section 2 provides an overview of the
relevant literature on LLMs and Deepfake face detection.
Section 3 presents the methodology of our study. Compre-
hensive evaluation results and analysis are given in Section
4, and Section 5 concludes the article..

2. Background

2.1. Large Language Models

Large Language Models (LLMs) are large-scale founda-
tional deep neural network models (characterized by bil-
lions of parameters) that perform natural language-related
tasks. Their basic function is to predict the next words in
sentences based on previous words. LLMs typically adopt
the transformer architecture [34], distinguished by its atten-
tion mechanism that evaluates the importance of different
words for understanding the text. This architecture provides
a more advanced memory structure for handling long-term
dependencies than traditional recurrent neural networks, es-
pecially when the model was pre-trained on a large text
corpus and later fine-tuned with minimal modifications for
specific datasets. LLMs are typically trained on gigantic
volumes of unlabeled text from the Internet. The training
process for LLMs capitalizes on the statistical patterns of
human languages and can be subsequently tuned to other
applications.

The popularity of LLMs is largely attributed to the fam-
ily of generative pretrained transformers (GPTs) developed
by OpenAI. The GPT-1 model, which debuted in 2018, has
117 million parameters and is the first practical LLM that
achieved human-level language understanding in tasks such
as textual entailment and reading comprehension. Subse-
quently, GPT models have quickly evolved with scaled-up
capacity and improved performance of task-agnostic and
few-shot learning challenges. The GPT4V model, intro-
duced by OpenAI in 2022, has a whopping 175 billion pa-
rameters. Considering that the total corpus on the Inter-
net up to 2022, which more or less represents all human-
generated texts throughout history, is about 500 billion to-
kens, one can think of the GPT-4 model as a compression
model of all human knowledge captured in written texts [8].
In this sense, it is perhaps not so surprising that GPT -4
can achieve human-level performance in text-understanding
tasks. LLM models have recently been extended for cross-
modal understanding. In late 2023, OpenAI released the lat-
est GPT-for-vision (GPT4v) model [2], which accepts im-
ages as input and text prompts. This has been followed up
by other LLMs from major companies, such as Google Bard
+ Gemini [33].

Ordinary users were exposed to the power of LLMs
through conversational agents (chatbots) that use LLMs to
engage in natural dialogues for question answering, text
summarization, recommendations, and assistance of writ-
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure 2. Which of these images are real and AI-generated?
Answer: .(e)Fake,(d)Real,(c)Fake,(b)Fake,(a)Fake

.(j)Real,(i)Fake,(h)Real,(g)Real,(f)Fake

ing and debugging code, etc. The most well-known LLM-
based chatbot is OpenAI’s ChatGPT. Since its introduc-
tion in November 2022, ChatGPT has rapidly become the
fastest growing consumer app ever, having over 100 million
monthly active users within just two months of its release.
Besides providing an intuitive conversational user interface,
the chatbots also help improve the underlying LLMs by us-
ing reinforcement learning from human feedback to gain
user feedback.

2.2. DeepFake Faces: Generation and Detection

AI-generated realistic human face images are the earliest
and the most well-known examples of DeepFakes. Deep-
Fake faces are created with generative adversarial networks
(GANs) and diffusion models. They have a high level of
realism in fine details of skin and facial hairs and challenge
human’s ability to distinguish from images of real human
faces (Fig. 2). DeepFake faces have been used as pro-
file images for fake social media accounts in disinformation
campaigns [1, 5, 6, 28].

Existing DeepFake face detection methods are mostly
formulated as binary classification problems. Based on
the features used, these methods fall into three major cat-
egories. Methods in the first category (e.g., [4, 14, 23, 25,
40]) are based on inconsistencies exhibited in the physi-
cal/physiological aspects in the DeepFake images. Meth-
ods in the second category (e.g., [13, 21, 22, 26, 37]) use
signal-level artifacts introduced during the synthesis pro-
cess. The majority of current detection methods (e.g.,
[3, 7, 9, 12, 16, 27, 39]) fall into data-driven methods that
directly use various DNNs trained on real and DeepFake
samples to capture specific artifacts. There also exist sev-
eral large-scale benchmark datasets to evaluate DeepFake
detection performance [7, 17, 30, 35].

Current DeepFake face detection methods are typically
developed using programming languages like Python and
specialized libraries to construct neural network models or
other machine learning algorithms (e.g., Scikit-Learn, Py-
Torch, TensorFlow). These models are then trained on
datasets of labeled data. However, the programming lan-
guage interface represents a significant hurdle for both the

Table 1. Detailed information of the evaluation dataset from
DF 3 [17]. ‘SG2’ stands for the StyleGAN2 model, ‘LD’
represents the Latent Diffusion model, and ‘PP’ed’ means
post-processed data.

Real Raw PP’ed
SG2 LD SG2 LD

Number 1,000 1,000 1,000 1,000 1,000
Image Size 5122 5122 5122 2562 2562

Format PNG PNG JPEG PNG, JPEG PNG, JPEG

developers and users of these detection algorithms.

3. Methodology
Our study aims to evaluate the utility and efficacy of multi-
modal LLMs in media forensics, and we choose the prob-
lem of identifying AI-generated images of human faces as
the main focus. The rationale is as follows. Firstly, while
the multimodal LLMs are technically equipped to analyze
video and audio content, their optimal performance is ob-
served with images. Secondly, detecting realistic DeepFake
face images is one of the most thoroughly studied topics.
It can be used to compare the capabilities of a multimodal
LLM with state-of-the-art methods. Thirdly, prior research
identified a wealth of semantic indicators. Human can iden-
tify semantic inconsistencies in faces, making the study
much more accessible to viewers. We can use these estab-
lished semantic cues to craft targeted prompts to enhance
detection efficacy. We choose to use OpenAI’s GPT4V Vi-
sion model (i.e., GPT4V-vision-preview 3) as the subject of
the study. It provides an API that greatly streamlines exper-
imental procedures, especially for Python-based implemen-
tations. This feature is instrumental in simulating conver-
sational contexts on a large scale. We design experiments
in which GPT4V model assesses whether a face image is
AI-generated based on the text prompts in Fig. 1. We also
consider Google Gemini 1.0 Pro API for comparison (note
that the Gemini web app has restrictions on analyzing im-
ages containing human faces).

Data: Our experiments are based on a set of 1, 000 real
face images from the FFHQ dataset [19] dataset and an-
other 2, 000 images created with generative AI models from
the DF 3 dataset [17]. All images contain a single human
face. Two AI generative models are considered, namely
StyleGAN2 [20] and Latent Diffusion [29]. We also adopt
two evaluation protocols from the DF 3 dataset [17]. This
includes assessing the basic detection performance of raw
data and evaluating the robustness of post-processed Deep-
Fake data through mixed operations such as JPEG Com-
pression, Gaussian Blur, face blending, adversarial attacks,
and multi-image compression. Detailed information on the
data used is given in Table 1. A few examples of the real
and AI-generated images are shown in Fig. 3.

3https://platform.openai.com/docs/guides/vision
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Real
(FFHQ)

SG2
(Raw)

LD
(Raw)

SG2
(PP’ed)

LD
(PP’ed)

Figure 3. Examples of evaluation data. ‘SG2’ stands for
the StyleGAN2 model, ‘LD’ represents the Latent Diffusion
model, and ‘PP’ed’ means post-processed data.

Text Prompts: Text prompts embody the instruction and
request to the LLM to detect DeepFake faces. Properly
designed prompts can bring forth the power of semantic
knowledge in the LLMs to this task. We consider prompts
of different levels of richness of contexts and additional in-
formation in our experiments:
• Prompt #1: Tell me if this is an AI-generated image. An-

swer yes or no.
• Prompt #2: Tell me if this is a real image. Answer yes or

no.
• Prompt #3: Tell me the probability of this image being

real. Answer a probability score between 0 and 100.
• Prompt #4: Tell me the probability of this image being

AI-generated. Answer a probability score between 0 and
100.

• Prompt #5: Tell me if this is a real or AI-generated im-
age.

• Prompt #6: Tell me if synthesis artifacts are in the face.
Must return with 1) yes or no only; 2) if yes, explain
where the artifacts exist by answering in [region, artifacts]
form.

• Prompt #7: I want you to work as an image forensic ex-
pert for AI-generated faces. Check if the image has the ar-
tifact attribute listed in the following list and ONLY return
the attribute number in this image. The artifact list is [1-
asymmetric eye iris; 2-irregular glasses shape or reflec-
tion; 3-irregular teeth shape or texture; 4-irregular ears or
earrings; 5-strange hair texture; 6-inconsistent skin tex-
ture; 7-inconsistent lighting and shading; 8-strange back-
ground; 9-weird hands; 10-unnatural edges].

The first two simple binary prompts ask for straightforward
Yes/No answers. The third and fourth ones go beyond bi-
nary answers and also ask for a numerical value of like-
lihood. The fifth one makes the LLM to choose between
two alternatives of the image to be real or DeepFake. These
prompts are simple prompts and would be a user’s first at-

tempt at interacting with LLMs for this task. However, our
experiments (detailed later) show that such simple prompts
are not effective – in many cases, the LLM declines to re-
spond to the requests due to a lack of context or safety
concerns. When the LLM did respond, the responses were
not informative. Prompt #6 goes beyond simple binary an-
swers: we ask the LLM to identify signs of synthesis and, in
addition, request it to justify the answers. This additional re-
quest can lead the LLM to be more guided, resulting in the
lowest rejection rate. Prompt #7 goes even further, which
includes a more detailed list of clues about possible aspects
of which DeepFake faces exhibit semantic inconsistencies.
Overall, the more context-rich prompts have lower rates of
rejections. On the other hand, the more detailed prompts
may lead to lower accuracies. This is possibly because it
limits the cues for the LLM to consider, so the LLM may
not be able to correctly identify DeepFakes with artifacts
not exactly included in the list. In addition, Prompt #7 uses
more tokens (72) than #6 (31), which increases the cost of
running the LLMs. Because of these reasons, we subse-
quently conducted our experiment based on prompt #6.
Performance Metrics: For each text-image prompt, we
query the LLM multiple times and calculate a numerical
score by averaging the results (No = 0 and Yes = 1). This
approach offers two benefits. Firstly, it diminishes the vari-
ability in LLM responses to identical queries, attributable
to the probabilistic nature of the underlying LLMs. Sec-
ondly, using numerical decision scores enables the applica-
tion of performance metrics beyond mere accuracy, such as
the area under the ROC (AUC) score. Compared to clas-
sification accuracies, the AUC score is less affected by im-
balanced data, provides a more comprehensive performance
evaluation, and allows us to compare the LLM’s perfor-
mance with existing programmed detection methods. AUC
score is a real number in [0, 1], with higher values corre-
sponding to better performance. As the LLM may decline
to respond to a query, another important performance metric
is the rejection rate, which measures the fraction of queries
that the LLM declines. We also report the single-class ac-
curacy at the fixed threshold of 0.5.
Model Parameters: All batch tests were performed
through API calls. In the evaluation with the GPT4V APIs,
we adopted settings similar to those described in [8]. For
the Gemini model, we used Gemini-1.0-pro-vision, which
is free of charge and supports up to 60 requests per minute.
The total cost of this study is approximately $130, and it
took around 30 days.

4. Experiment Results

4.1. Qualitative and Quantitative Results

We show several examples of using GPT4V model with
Prompt #6 to determine if an input image contains a Deep-
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“Tell me if there are synthesis artifacts in the face or not. Must return with 1) yes or no only;
2) if yes, explain where the artifacts exist by answering in [region, artifacts] form.”

"Yes, [Hair, inconsistent texture and blending with
the background; Glasses, slight irregularities in
the frame; Skin, overly smooth areas lacking in
texture]”

Prompt: 

“Yes. [Region: Hair; Artifacts: The hair on the left side
of the image appears slightly blurred and lacks texture
consistency compared to the right side. Region:
Glasses; Artifacts: The frame of the glasses on the left
seems to merge unnaturally with the hair. Region:
Background; Artifacts: The transition between the
person and the background is a bit abrupt and lacks
depth, which could indicate manipulation.]”

"Yes, [Hair, unnatural transitions and colors; Right
eye (from viewer's perspective), slight mismatch in
alignment; Overall, slight blurring and
inconsistencies indicative of synthesis or editing]"

“Tell me if there are synthesis artifacts in the face or not. Must return with 1) yes or no only;
2) if yes, explain where the artifacts exist by answering in [region, artifacts] form.”

Prompt: 

"No.”

AI-Generated Faces

"Yes, [Left eye (on the image), slight
discoloration and blurring; hairline and
hair, some strands appear unnaturally
straight and patterned; overall image,
contrasting edges and color saturation
suggest possible enhancements or
alterations]"

"No.”
"Yes.\n\n[Hair, inconsistent strand
patterns and slight blurring; teeth,
unnaturally uniform and symmetrical;
skin, overly smooth texture on the
face]."

"Yes. [Hair, some strands look
unnaturally sharp and pixelated; Skin
texture, certain areas appear overly
smooth or inconsistent]"

"No.”

"No.”

\

"No.”

Real Faces

"No.”

Figure 4. Examples of GPT4V for DeepFake face detection. Left: Results for AI-generated images from the DF 3

dataset [17]. Right: Results for real faces from the FFHQ dataset [19]. The responses for AI-generated faces are la-
beled in pink , while those for the real faces are labeled in green . Both success (w/ ) and failure (w/ ) cases are shown.

“Tell me if there are synthesis artifacts in the face or not. Must return with 1) yes or no only;
2) if yes, explain where the artifacts exist by answering in [region, artifacts] form.”

yes\n> [chin, mole]

Prompt: 

no

yes, [left eye, mole]

“Tell me if there are synthesis artifacts in the face or not. Must return with 1) yes or no only;
2) if yes, explain where the artifacts exist by answering in [region, artifacts] form.”

Prompt: 

no

AI-Generated Faces

no

yes, [cheek, blue] no

yes, [cheek, green
and blue artifacts]no

[no, N/A]

Real Faces

yes, [cheek, mole]no

Figure 5. Examples of Gemini 1.0 Pro for DeepFake face detection. Left: Results for AI-generated images from the DF 3

dataset [17]. Right: Results for real faces from the FFHQ dataset [19]. The responses for AI-generated faces are labeled in
pink , while those for real faces are labeled in green . Both success (w/ ) and failure (w/ ) are shown. We can see that

even though some yes/no results are accurate, the supporting evidence is not.

Fake face in Fig. 4. The left column corresponds to cases
when the input images are generated with various AI mod-
els, and the right column is for the cases of real images.
Both success (with check marks) and failure cases (with
crosses) are shown. These results indicate that the GPT4V
model achieved a reasonable detection accuracy on this
task. We also offer comparison outputs of Gemini 1.0 Pro in
Fig. 5, which is less reliable in providing accurate insights
for image forensics tasks.

The quantitative results corroborate this observation.
Fig. 6 shows the receiver operational curves (ROCs) and
the corresponding AUC scores obtained using API calls (as
described in Section 3) over the evaluation dataset with the
same prompt – GPT4V has a 79.5% AUC on raw latent
diffusion-generated face images and 77.2% AUC score on
StyleGAN-generated face images. The performance con-
firms that the GPT4V model obviously did not make ran-
dom guesses on this task (corresponding to a ROC as a diag-
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(a) (b)

Figure 6. ROC curves of GPT4V and Gemini 1.0 Pro on
the DeepFake detection based on averaging the predictions
of five rounds of queries, (a) on raw data, (b) on post-
processed Deepfake data.

onal line and a 50% AUC score). Compared to the GPT4V
model, Gemini shows a slight decrease in performance.

To put these performances into the context of the state-
of-the-art DeepFake face detection methods, we compare
them with existing methods in Table 2 for AUC scores and
Table 3 for classification accuracies. Note that all these
baseline detectors were trained on a image forensics dataset
[35] with 360K ProGAN-generated images [18] and 360K
real images [42]. As it shows, the performance of GPT4V
and Gemini 1.0 is on par or slightly better than the early
methods [10, 35], but is not competitive with more recent
detection methods [11, 16, 17]. This may be attributed
to some fundamental aspects between the two approaches.
Existing effective DeepFake detection methods can capture
signal-level statistical differences between training real and
AI-generated images. In contrast, multimodal LLM’s deci-
sion is mostly based on semantic-level abnormalities, re-
flected by the additional explanation in natural language
in the responses. Therefore, even though the LLM is not
specifically designed and trained for DeepFake face detec-
tion, the world knowledge encapsulated in the LLM can be
transferred to this task. The semantic reasoning leads to
results that are more comprehensible to humans. The de-
tection is less susceptible to post-processing operations that
can disrupt signal-level features – this is confirmed with the
changes in performances when post-processing is included
in Tables 2 and 3, where classification accuracies on Deep-
Fake face even increase for post-processed images. Another
factor contributing to this performance enhancement is the
inclusion of post-processing operations such as face blend-
ing and adversarial attacks, which introduce more distinc-
tive visual artifacts to the images.

On the other hand, we note that most errors of GPT4V
occur on real images – per Table 3, the classification accu-
racies on real images are around 50%, drastically different
from those of AI-generated images, which is above 90%.
Some intuitions can be obtained when we examine the real
face images for these error cases, as shown in Fig. 4. These
cases include semantic features unusual for “typical” face

Table 2. Comparison of AUC (%) in detecting DeepFake
faces. ‘SG2’ stands for the StyleGAN2 model, and ‘LD’
represents the Latent Diffusion model.

Method Raw data Post-processed
SG2 LD SG2 LD

CNN-aug [35] 96.5 58.6 53.2 52.4
GAN-DCT [10] 53.4 75.4 44.4 56.0
Nodown [11] 99.6 97.1 47.4 44.9
BeyondtheSpectrum [13] 98.1 77.3 45.4 46.9
PSM [16] 99.2 82.5 73.1 71.3
GLFF [17] 97.5 86.7 80.6 79.4
Gemini 1.0 (zero-shot) 76.6 75.1 77.5 81.5
GPT4V (zero-shot) 77.2 79.5 88.7 89.8

Table 3. Comparison of single-class Accuracy (%) in de-
tecting DeepFake faces. ‘SG2’ stands for the StyleGAN2
model, and ‘LD’ represents the Latent Diffusion model.

Method Real Raw data Post-processed
SG2 LD SG2 LD

CNN-aug [35] 89.8 71.9 0.3 38.3 5.5
GAN-DCT [10] 92.5 3.7 7.0 20.8 29.4
Nodown [11] 81.3 96.3 0.1 3.3 4.50
BeyondtheSpectrum [13] 67.6 42.0 8.0 11.9 15.1
PSM [16] 78.0 89.8 0.1 4.4 3.3
GLFF [17] 89.9 82.9 0.2 7.6 8.1
Gemini 1.0 (zero-shot) 83.3 45.1 48.2 53.2 61.2
GPT4V (zero-shot) 51.2 86.5 90.3 98.3 99.2

images. For instance, different age group (baby in the first
case) or unique hair color (second case) to style (third case).
This suggests that the semantic abnormality identified by
GPT4V may not be specific to DeepFake faces. This prob-
lem may be solved by refining the model. In contrast, the
Gemini model achieves a classification accuracy of 83.3%
on real images, dropping to around 50% on generated faces.
The examples in Fig. 5 show that the Gemini model’s re-
sponse lacks rationality in analyzing the synthesis artifacts.

4.2. Ablation Studies

The quality of the prompt plays a central role in perfor-
mance. In addition to the prompts used in the experiments,
we have also studied other prompts with simpler structures
and compared their performance. Firstly, we quantitatively
compare different text prompts in detecting 1,000 raw Styel-
GAN2 faces. Table 4 reports the rejection rate and accuracy
of GPT4V with all seven prompts described in Section 3.
The findings indicate that prompts related to direct image
forensics result in high rejection rates, particularly those
based on likelihood assessments and prompts requiring a
choice between real or fake. Prompts #6 and #7 result in
fewer rejections with comparable prediction accuracies be-
cause they extend beyond mere yes-or-no responses by ask-
ing the model to identify signs of synthesis. Fig. 7 shows
four examples predicted by GPT4V using different prompts.
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Table 4. Comparison results (%) of using different prompts for GPT4V in detecting 1,000 StyleGAN2 faces. Note that the
Accuracy is measured by comparing the number of correct predictions to the total number of samples that were not rejected.

Metric Prompt #1 Prompt #2 Prompt #3 Prompt #4 Prompt #5 Prompt #6 Prompt #7
Rejection Rate 60.2 66.9 100 100 95.8 4.7 33.1

Accuracy 97.49 94.86 - - 88.10 83.83 86.54

“Tell me if there are synthesis artifacts
in the face or not. Must return with 1)
yes or no only; 2) if yes, explain
where the artifacts exist by answering
in [region, artifacts] form.”

Prompt #1 

"Sorry, I can't assist
with that request."

"Tell me if this is an AI-
generated image.
Answer yes or no."

"Tell me the probability
of this image being
real. Answer a
probability score
between 0 and 100."

"I'm sorry, but I can't
assist with verifying or
making judgments
about the authenticity
of images."

Yes. [Region: Hair; Artifacts: The hair on the
left side of the image appears slightly blurred
and lacks texture consistency compared to
the right side. Region: Glasses; Artifacts: The
frame of the glasses on the left seems to
merge unnaturally with the hair. Region:
Background; Artifacts: The transition between
the person and the background is a bit abrupt
and lacks depth, which could indicate
manipulation.]

"Based on the image provided, there is one artifact
present from the list:\n\n5-strange hair texture"

"Sorry, I can't assist
with that request."

"Sorry, I can't assist
with that request."

"No." "The image you've provided does not demonstrate
any of the artifact attributes listed, so I cannot return
a corresponding number."

"I'm sorry, but I can't
provide assistance in
determining or
speculating whether
an image is AI-
generated or not."

"No."

"Upon examining the provided image, the artifact that
stands out is related to the glasses. The reflection and
shape of the glasses, especially the asymmetry in the
reflection which does not match the expected
environmental context, suggest the presence of artifact
number 2 from the provided list: "irregular glasses
shape or reflection."

"Sorry, I can't help
with identifying or
making assumptions
about people in
images."

Prompt #4  Prompt #6 Prompt #7
"I want you to work as an image forensic expert for AI-generated
faces. Check if the image has the artifact attribute listed in the
following list and ONLY return the attribute number in this image. The
artifact list is [1-asymmetric eye iris; 2-irregular glasses shape or
reflection; 3-irregular teeth shape or texture; 4-irregular ears or
earrings; 5-strange hair texture; 6-inconsistent skin texture; 7-
inconsistent lighting and shading; 8-strange background; 9-weird
hands; 10-unnatural edges]."

"I'm sorry, but I can't
provide a probability score
or validate whether an
image is real or AI-
generated. My capabilities
don't include
authenticating images or
detecting their origins."

"Yes. [Teeth, uneven shapes and
inconsistent shading; Eyes, slightly
unnatural reflections]"

"I'm sorry, but I cannot assist with identifying or
confirming the presence of artifacts in images, including
those that might indicate whether a face is AI-generated.
My capabilities do not include analyzing images to that
level of detail or providing forensic examination
services."

"No."

Image

Figure 7. Examples of GPT4V for DeepFake face detection. We show success (w/ ) and failure (w/ ), and rejected cases
(shown in dark cyan ). The responses for AI-generated faces are labeled in pink , while those for the real faces are labeled
in green . The Figure is best viewed in color. Zoom in and refer to texts for details.

Figure 8. Comparative analysis of AUC scores (%) across
different query rounds of GPT4V in DeepFake Detection.

GPT4V misclassified visually realistic fake faces and inter-
prets unusual semantic features in real faces as synthesis ar-
tifacts. Next, we show the influence of the number of query
attempts on detection performance. Fig. 8 demonstrates

Figure 9. Comparative analysis of AUC scores (%) using
different data size of GPT4V in DeepFake Detection.

that increasing query attempts correlates with higher AUC
scores. This indicates that repeated querying might serve as
an ensemble method for enhancing performance. Finally,
we explore how the dataset size affects the detection per-
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Decomposition-based Prompting
"Is this an AI-generated face?"

"No."

"Analyze the eye part: tell me if synthesis
artifacts are in the eye regions. Must return
with 1) yes or no only; 2) if yes, explain
what the artifacts are. "

"Yes. [Artifacts: The hair strands have some areas where the texture seems
unnaturally smooth and lacks detail compared to typical hair, suggesting
digital manipulation or synthesis.]"

"Analyze the hair part: tell me if synthesis artifacts are in the hair regions. Must return
with 1) yes or no only; 2) if yes, explain what the artifacts are. "

"Analyze the lower face part: tell me if
synthesis artifacts are in the mouth and nose
regions. Must return with 1) yes or no only; 2)
if yes, explain what the artifacts are. "

"No, there are no synthesis artifacts in the 
eye regions."

"No, there are no synthesis artifacts in the 
nose and mouth regions."

Few-shot Prompting
"These three images are all real faces."

"These three images are AI-generated faces. The baby has weird cloth patterns, the
smiling woman has asymmetrical earrings, and the man has distorted bachground
and weird left ear."

“Tell me if there are synthesis artifacts in
the face or not. Must return with 1) yes or
no only; 2) if yes, explain where the
artifacts exist by answering in [region,
artifacts] form.”

"No."

"Yes. [Hair, the texture and edges appear
slightly unnatural and inconsistent; Ears,
the inner details seem overly smooth and
lack definition]."

“Tell me if there are synthesis artifacts in
the face or not. Must return with 1) yes or
no only; 2) if yes, explain where the
artifacts exist by answering in [region,
artifacts] form.”

Figure 10. Potential improvement in detecting Deepfake images. The responses for AI-generated faces are labeled in pink ,
while those for the real faces are labeled in green . Success case (w/ ) and failure case (w/ ) are shown.

formance of GPT4V. Fig. 9 presents the comparison results
using different numbers of evaluation data, with each set
containing an equal balance of real and generated images.
As the dataset grows, the performance for the StyleGAN2
and Latent Diffusion models tends to converge.

4.3. Improvements
So far, we have only tested simple queries. It has been
demonstrated that using better prompts constructed with
chain-of-thought prompts [36], few-shot prompting [41],
which provide step-to-step guides in an interactive conver-
sation with the LLM can elicit more relevant responses.
The API interface of GPT4V and Gemini 1.0 does not al-
low multiple rounds of dialog because no consistent con-
text is stored across API calls. Therefore, such interactive
guidance can only be used with the web interface through
a manual interaction, i.e., they cannot be automated using
API calls. We provide two exploratory approaches in Fig.
10: one employs decomposed local images, a method we
refer to as decomposition-based prompting, and the other
utilizes a few-shot prompting technique. By supplying de-
composed parts of images, we direct the model’s attention
towards finer local patterns and reveal subtle visual anoma-
lies. Further, using few-shot prompting with brief synthe-
sis instructions imparts crucial forensic knowledge to the
model, enabling the model to correctly classify two sam-
ples that were previously misidentified. These initial results
suggest that using more crafted prompts can improve per-
formance. However, we will wait for the LLMs to enable
consistent API calls.

5. Conclusion

In this study, we investigate the potential of leveraging mul-
timodal LLMs for tasks related to media forensics. Our re-
search will broaden the application of multimodal LLMs to
include a wider array of media forms, particularly focus-
ing on video analysis. Rather than simply applying image-
based detection techniques to video frames, a more inte-
grated approach would involve direct video content process-
ing. Additionally, we aim to enhance the detection of text-
image mis-contextualization [15], where images and text
are misleadingly paired to spread false information. Future
endeavors will also explore developing more sophisticated
prompting strategies and integrating these models with con-
ventional signal or data-driven detection techniques.

Impact Statement. This work explores the use of multi-
modal LLMs in media forensics. We realize that LLMs may
hallucinate information due to the biases in training data.
Therefore, human users should always verify the results to
avoid potential mistakes.
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