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Abstract
In this work, we introduce OMG-Fuser, a fusion

transformer-based network designed to extract information
from various forensic signals to enable robust image forgery
detection and localization. Our approach can operate with
an arbitrary number of forensic signals and leverages ob-
ject information for their analysis – unlike previous meth-
ods that rely on fusion schemes with few signals and of-
ten disregard image semantics. To this end, we design a
forensic signal stream composed of a transformer guided
by an object attention mechanism, associating patches that
depict the same objects. In that way, we incorporate object-
level information from the image. Each forensic signal
is processed by a different stream that adapts to its pe-
culiarities. A token fusion transformer efficiently aggre-
gates the outputs of an arbitrary number of network streams
and generates a fused representation for each image patch.
We assess two fusion variants on top of the proposed ap-
proach: (i) score-level fusion that fuses the outputs of mul-
tiple image forensics algorithms and (ii) feature-level fu-
sion that fuses low-level forensic traces directly. Both vari-
ants exceed state-of-the-art performance on seven datasets
for image forgery detection and localization, with a rela-
tive average improvement of 12.1% and 20.4% in terms
of F1. Our model is robust against traditional and novel
forgery attacks and can be expanded with new signals with-
out training from scratch. Our code is publicly available at:
https://github.com/mever-team/omgfuser

1. Introduction
Digital image forgery [32] is increasingly becoming more
accessible and efficient due to the pervasive availability
of sophisticated image editing algorithms as part of free
or low-cost image editing applications for desktops and
smartphones. Notably, multiple works [47, 53] have
found that the ability of humans to detect forged images
hardly exceeds the performance of random guessing,
especially when the forgery is of decent or high quality.
Despite the significant advances in the field of image
forensics [32, 57, 64], existing detection methods are

Figure 1. OMG-Fuser combines an arbitrary number of heteroge-
nous forensic signals for robust image forgery analysis guided by
the image semantics.

greatly challenged when tested in the wild without strong
assumptions about the processing history of an image
[61, 64]. To this end, the main focus of our work is to
robustly detect the forged regions within images, along
with an overall decision for the image, formally defined as
image forgery localization and detection respectively [67].

A common practice for image forensics analysts is to
utilize various image forensics methods to increase the
chances of detecting forgery. However, in such cases, an-
alysts need to judge based on their experience what tool to
trust, an issue further exacerbated by the recent deep learn-
ing approaches that operate as black boxes. This has given
rise to approaches that fuse multiple forensic signals to cap-
ture more robust forensic clues. Such approaches can be
classified into two main categories [50]. (i) Feature-level fu-
sion, which fuses low-level features extracted from the input
image that usually represent different domains [24, 37, 68].
However, these purpose-built feature fusion architectures
are only effective in detecting specific types of forgery.
(ii) Score-level fusion [50], which combines the outputs of
multiple different forensics methods into a single output
[7, 20, 50]. However, theoretical limitations or the em-
ployed training approaches prevent current score-level fu-
sion approaches from effectively combining the outputs of
recent deep learning algorithms. Additionally, while image
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semantics could greatly help the fusion process, the impact
of such a direction is underexplored in the literature [58].

To this end, we propose the Object Mask-Guided Fu-
sion Transformer (OMG-Fuser), capable of capturing im-
age forensic traces from an arbitrary number of input sig-
nals by leveraging the image semantics and fusing them in
multiple processing stages into a single robust forgery de-
tection and localization output. Our fusion network com-
prises two main modules: the Forensic Signal Streams and
the Token-Fusion Module. In the former, every input sig-
nal is propagated through a different stream to capture its
unique traces. Our main novelty in this stage includes the
Object Guided Attention mechanism that exploits external
instance segmentation masks to drive the extraction pro-
cess to attend only to image regions that depict the same
objects so as to generate comprehensive object-level rep-
resentations. Any pretrained instance segmentation model
can be employed [22], and we utilize a recently proposed
class-agnostic model [33]. The latter module is responsible
for the fusion of any arbitrary number of forensic signals.
The Token-Fusion Transformer (TFT) combines the various
representations of an image region generated by the foren-
sic signal streams into a single representation via several
transformer blocks. The fused outputs are analysed by the
Long-range Dependencies Transformer (LDT) that captures
the relations between the representations of the different im-
age regions. For training the proposed network, we propose
the Stream Drop augmentation. This randomly discards
some network streams during training to prevent the net-
work from over-attending on specific forensic signals. Our
proposed approach is employed both for feature and score
level fusion, combining RGB information with two and five
forensic signals, respectively. We demonstrate its effec-
tiveness on five popular datasets, compared with several
handcrafted and deep learning state-of-the-art approaches.
Moreover, we demonstrate its robustness against common
perturbations and recent neural filters. An overview of the
approach is presented in Fig. 1.

In summary, our contributions include the following:

• We propose a fusion transformer for robust image forgery
detection and localization that analyzes an arbitrary num-
ber of image forensic signals based on image semantics.

• We introduce the object guided attention that uses object-
level information to drive the attention process.

• We design a token-fusion transformer that combines an
arbitrary number of patch tokens into a single compre-
hensive representation for each image region.

• We introduce the stochastic augmentation process, named
stream drop, for avoiding over-attending on particular
streams while training multi-stream networks.

• We improve the state-of-the-art by 12.1% and 20.4% F1
on image forgery detection and localization, respectively.

2. Related Work

2.1. Image Forgery Detection and Localization

Image editing operations introduce subtle but detectable
traces [57]. Most early works in the field of image foren-
sics focused on detecting traces of a single type of forgery
using handcrafted signal processing operations. These in-
clude, for instance, disturbances related to the Color Filter
Array (CFA) [4, 17, 51] or noise inconsistencies using the
popular PRNU pattern [9, 43, 66]. Others employ filtering
and frequency analysis [11, 21] or extract and analyze noise
residuals [44]. Also, many works focus on detecting arti-
facts introduced by lossy compression algorithms, such as
JPEG [6, 16, 31, 39, 48].

Recent advances in deep learning have reshaped the field
of image forensics. Instead of handcrafted features that cap-
ture a narrow range of artifacts and are prone to naive post-
processing operations, recent methods employ deep neural
networks that learn to capture more robust forensic traces
for detecting forged regions. Such methods [10, 24, 29, 37]
dominate the state-of-the-art, outperforming the previous
approaches usually by a large margin. Several CNN-based
architectures have been proposed, targeting one [2, 15, 41]
or more [10, 52, 65] types of forgery, while more recently,
LSTM-based [5] and transformer-based [24, 42, 55] ar-
chitectures have emerged. Even though deep learning ap-
proaches can capture more complex artifacts, the employed
network architectures and training procedures still limit
their detection capability to a narrow range of forensic ar-
tifacts, e.g. focusing only on noise anomalies [28, 62] or
capturing JPEG compression artifacts [37].

2.2. Fusion Approaches

According to Phan-Ho et al. [50], fusion approaches in the
image forensics literature can be classified into two broad
categories: feature-level and score-level fusion.

Feature-level fusion approaches combine feature rep-
resentations incorporating information from different do-
mains into a comprehensive one that can be employed for
detecting a broader range of forgery cases. A seminal work
in the field by Zhou et al. [68] proposed a two-stream net-
work architecture: one network stream acts on the RGB im-
age to detect forgery artifacts, and the other captures noise-
related information by processing the output of SRM filters.
Many state-of-the-art methods have employed such a fea-
ture fusion approach, each using different inputs and build-
ing purpose-specific fusion architectures for better captur-
ing traces such as compression-related artifacts [37, 58],
noise disturbances [12, 24] or anomalous edges [12]. How-
ever, while current feature fusion approaches significantly
boost detection performance in the target forgery type, they
often fail when deployed in the wild [61, 64] and are de-
signed for fusing a small number of specific input signals.
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Figure 2. Overview of OMG-Fuser. Forensic signals are fused into a robust forgery localization mask and detection score. To achieve
that, it combines information from the RGB image and its instance segmentation maps. Each forensic signal and the RGB image are first
processed by separate network streams through independent Object-Guided Transformers. Then, the proposed Token Fusion Module fuses
the different streams, leading to features with a progressively increasing level of information granularity, from patch-level (in the early
stages) to object-level (in intermediate stages) and to image-level (in the final stages). A localization and a detection head process the
extracted forensic tokens to generate the final outputs.

Score-level fusion approaches combine the outputs of
multiple forgery detection and localization algorithms to
leverage the benefits of each one into a single output. A
widely adopted practice in the field is to utilize statisti-
cal approaches, such as the Dempster-Shafer Theory (DST)
[18, 20] or the Bayes’ Theorem [34, 35] to derive a unified
prediction from multiple outputs of different image foren-
sics algorithms. However, these require strong theoretical
guarantees regarding the compatibility relations and statisti-
cal independence between the fused methods, requirements
that are very tough to meet in recent deep-learning networks
that operate as black boxes. Hence, they are not compatible
with the current state-of-the-art algorithms. As a more gen-
eral solution, learning approaches have recently been pro-
posed for fusing the outputs of multiple image forensic al-
gorithms [7, 19, 54]. However, they still rely on forensic
signals generated by handcrafted signal processing opera-
tions as input and lack mechanisms for effectively leverag-
ing image semantics and for preventing over-attendance on
the best signals, all of which make them unsuitable for fus-
ing state-of-the-art deep learning-based forensic signals.

Finally, recent works [58, 69] highlight the beneficial
impact of utilizing semantic relations within images for
forgery detection. They design trainable network com-
ponents tailored to capture information related to image
semantics. However, learning to incorporate information
about all the possible objects encountered in-the-wild into

such a network demands huge amounts of training data. To
the best of our knowledge, we are the first in the field of im-
age forensics to employ a pre-trained instance segmentation
model to introduce object-level information into the atten-
tion mechanism, which requires no further training on large-
scale datasets. Furthermore, there is no similar prior work in
the image forensics domain that builds a transformer-based
architecture that can address feature-level and score-level
fusion – prior related works [7, 24, 54, 58, 68] focus on one
of the two categories, and usually are limited in terms of the
number of input signals that can be combined.

3. Approach Overview
This section presents our proposed Object Mask Guided
Fusion Transformer (OMG-Fuser), a network architecture
for fusing multiple image forensic signals by leveraging im-
age semantics. Fig. 2 illustrates the proposed architecture.

3.1. Problem formulation

Given an RGB image xrgb ∈ RH×W×3 and a number of N
forensic signals xsig

i ∈ RH×W×Ci , i ∈ {1...N}, the goal
is the OMG-Fuser network to predict a pixel-level forgery
localization mask ŷloc ∈ (0, 1)H×W×1 and an image-level
forgery detection score ŷdet ∈ (0, 1). H and W denote the
height and width of the input image, respectively, while Ci

denotes the number of channels of the ith forensic signal.
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3.2. Forensic Signal Streams

Each of the N forensic signals xsig
i capture different ar-

tifact types. To capture their characteristic elements, we
pass each signal through a different network stream, de-
noted as Forensic Signal Stream (FSS). It consists of two
main components, i.e., patch representations and an object-
guided transformer.

Patch representations: Given that FSS is built upon
transformer blocks, we need to convert the 2D input signals
to a set of tokens. Following the common practice in the
field [14, 58, 63], a convolutional neural network (CNN)
with four strided layers is applied to the input. Its out-
put x̄sig

i ∈ RH′×W ′×D consists of feature representations
extracted from the input forensic signals corresponding to
specific image patches. H ′ = H/p and W ′ = W/p are
the output’s spatial dimensions, p denotes the size of the
patches in the initial image, and D is the latent dimension-
ality. Finally, we reshape x̄sig

i from RH′×W ′×D to RL×D,
where L = H ′W ′, to form our token sequence, which is
our patch-level representations.

Object-Guided Transformer (OGT): This is the key
component to infuse object-level information in the patch
representations, effectively converting them to object-level
representations. Inspired by Vision Transformer (ViT) [14]
and Masked-Attention [8], we design a process that utilizes
instance segmentation maps generated by an instance seg-
mentation model to restrict the transformer’s attention to to-
kens belonging to the same objects.

Given an input image, a number of 2D instance segmen-
tation maps xseg

j ∈ {0, 1}H×W×1, j ∈ {1...K} are gener-
ated corresponding to a set of objects S = {o1, o2, ..., oK}
depicted in the image. Using these instance segmentation
maps, we can extract a subset Su ⊂ S for each image patch
u, containing all objects depicted in the corresponding p×p
area in the original image. An object belongs to a patch if at
least one pixel of the patch has been annotated with the cor-
responding object label. Hence, we define the object-guided
attention mask M ∈ {−∞, 0}L×L based on the patches
that contain the same objects and in order to be used during
the attention calculation in the next operation. The mask
generation can be formulated as

M(u,v) =

{
0 if Su ∩ Sv ̸= ∅
−∞ otherwise

, (1)

where u, v ∈ {1...L} denote two arbitrary image patches.
In that way, during the attention calculation, image patches
that depict the same objects will attend to each other, while
others will be ignored.

It is noteworthy that instance segmentation models do
not always generate maps covering all image pixels. Pixels
that have not been annotated with any instance labels are
considered as background and are annotated with a corre-

Figure 3. Object-Guided Attention Mask: Limits the attention of
the transformer only between patches that depict the same objects.
The four attention regions defined by the mask for an example
image are depicted to the right. The background is considered as
another object. For illustration purposes, the number of patches on
both axes has been limited to eight.

sponding label. In that way, we allow the network to focus
on regions with no detected instances, which is especially
useful in forgery cases where entire objects have been re-
moved from the original image, i.e., inpainting. The atten-
tion regions defined by the object-guided attention mask for
a sample case are displayed in Fig. 3.

Object-Guided Attention (OGA): We extend the self-
attention mechanism [56] with our object-guided attention
masks to guide tokens to attend only to tokens belonging
to the same objects and ultimately derive object-level repre-
sentations. Let an arbitrary token sequence z ∈ RL×D and
its queries, keys and values Q,K, V ∈ RL×Dh be its pro-
jections for the self-attention. Dh denotes the dimension-
ality of the latent representation of the attention process.
Then, the OGA calculation can be done as follows

Q = zWq, K = zWk, V = zWv (2)

OGA(z) = σ((QKT +M)/
√
Dh)V, (3)

where Wq,Wk,Wv ∈ RD×Dh are the projection matrices,
and σ denotes the softmax function. In that way, our masks
force this process to attend only to token pairs with zero-
value elements in the mask M .

In our implementation, we follow the multi-head version
of self-attention [56]. To build our OGT, we use trans-
former blocks similar to ViT [14]. We first apply our
OGA mechanism, followed by a Feed Forward network that
acts on each token separately, consisting of an MLP with
GELU activation [26]. Both operations are applied with a
residual connection and a Layer Normalization [3] before
their application. Finally, each forensic signal xsig

i is pro-
cessed by a dedicated stream that extracts patch representa-
tions that are processed by an OGT, consisting of B1 trans-
former blocks, which outputs object-level representations
zsigi ∈ RL×D for the image patches.
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RGB Stream: To encode and analyze the RGB image,
we opt for using transformer-based backbone networks pre-
trained on large-scale image collections [25, 56] to capture
relevant information in the RGB domain. Specifically, the
xrgb image is propagated through a pretrained vision back-
bone network [49], which composes our RGB Stream, to
extract representations for the image regions. The output of
this processing is denoted as zrgb ∈ RL×D.

3.3. Token Fusion Module

Up to this point, the network has processed each of the N
forensic signals and the RGB image using a separate stream,
in a total of N + 1 network streams. Practically, we have
N+1 tokens for each image patch; hence, our goal is first to
fuse all this information to a single representation for each
patch and then capture the relation between the fused patch
tokens. To this end, we propose the Token Fusion Mod-
ule (TFM), which comprises two main components: (i) the
Token Fusion Transformer (TFT) for satisfying the former
requirement, and (ii) the Long-range Dependencies Trans-
former (LDT), for satisfying the later requirement. In that
way, we transform the object-level features to image-level
ones, which can be utilized for various downstream image
forensics tasks.

Token Fusion Transformer (TFT): To shape the patch
tokens generated from the RGB stream and the FSS into a
form that our transformer can process, we stack all tokens
together as follows:

z = [zsig1 ; zsig2 ; ...; zsigN ; zrgb] ∈ R(N+1)×L×D (4)

where z is the patch token tensor and [·; ·] denotes the stack-
ing function on the outermost dimension. Hence, the N +1
tokens originating from the same image patch but from dif-
ferent streams are organized together. To fuse patch tokens
derived from the same image patch, we follow the common
practice in transformer literature [14, 56]: in particular, we
employ a learnable fusion token zft ∈ RL×D repeated and
stacked with the other patch tokens for each image patch.
The goal is to refine the fusion tokens through the attention
process of the TFT so as to incorporate relevant information
from the N + 1 tokens generated by the different streams.
For the implementation of the TFT, we use B2 transformer
blocks [14]. Also, the TFT attention is applied to the outer-
most dimension of tensor z, which is considered the token
sequence dimension. This can be formulated as follows:

[z̄ft; z̄] = TFT ([zft; z]), (5)

where z̄ft ∈ RL×D are the fused tokens. After TFT, only
the z̄ft is considered for further processing, and the refined
tensor z̄ is discarded.

Long-range Dependencies Transformer (LDT): The
fused tokens at the TFT output incorporate the forensic in-

formation coming out of all the N + 1 streams. How-
ever, the information is aggregated so far only at the ob-
ject level. Hence, we introduce the LDT component to take
into account the forensic information at a global level and
suppress wrongly captured inconsistencies while highlight-
ing subtle but crucial traces. The LDT employs the trans-
former architecture [14] to refine the fused tokens z̄ft into
forensic tokens zfor ∈ RL×D, by enabling the attention
between all the L tokens. In that way, forensic tokens in-
corporate image-level information that derives from the re-
lations between them, capturing long-range dependencies.
For the implementation of LDT, a total of B3 transformer
blocks [14] are used.

3.4. Output Generation

To generate the outputs for the two target forensics tasks, we
employ two specialized heads to further process the foren-
sic tokens zfor. The first is the localization head, consist-
ing of five transposed convolution layers, that generates the
forgery localization output ŷloc. The second is the detection
head, employing a four-block transformer [14] and a fully
connected layer to predict the detection score ŷdet.

3.5. Training process

Loss functions: To equally weight the error for the pristine
and tampered regions, despite their expected different size
on each sample, we employ the balanced Binary Cross En-
tropy (bBCE) loss LbBCE , for equalizing the contribution
of both regions in the loss. We compute the bBCE by aver-
aging the binary cross entropy loss computed separately for
each of the two regions, i.e., pristine and tampered. Fur-
thermore, to generate cleaner forgery localization masks,
we also employ the Dice loss [24, 46] Ldice into the local-
ization loss Lloc. Regarding forgery detection loss Ldet, we
employ the BCE loss. Thus, with a, b and c being weighting
hyperparameters, the total training objective becomes

L = (a · LbBCE + b · Ldice)︸ ︷︷ ︸
Lloc

+c · Ldet. (6)

Stream Drop: On given training sets, some signals per-
form better than others. Thus, if we naively combine all
streams, the network will learn to over-attend almost exclu-
sively on the best-performing ones in the training set, which
can significantly limit the generalization performance of the
model. To mitigate this issue, inspired by the idea of Drop-
Path [30] proposed for dropping residual paths, we intro-
duce the Stream Drop (SD) mechanism for dropping entire
streams of multi-stream networks during training to force
the network to learn to capture useful information out of
any input stream. To this end, each token in Eq. (4) is rede-
fined based on the SD mechanism, which randomly drops a
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Approach CASIAv1+ Columbia Coverage NIST16 OpenFor. CocoGl. DID Overall

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

Fe
at

ur
e

Fu
si

on

SPAN [28] 21.4 83.3 72.5 98.1 42.5 86.5 0.4 56.2 0.2 52.8 20.8 75.0 7.5 61.5 23.6 73.3
IFOSN [61] 58.9 90.3 51.9 89.9 20.1 68.6 25.6 76.1 16.1 66.3 34.7 74.8 11.7 55.8 31.3 74.5
PSCC-Net [40] 62.1 84.2 26.2 66.8 29.2 80.1 10.9 58.8 18.1 60.8 48.2 83.3 44.6 74.7 34.2 72.7
MVSSNet++ [12] 58.5 81.9 63.1 86.9 46.0 85.9 24.5 78.3 20.3 69.6 44.5 81.5 19.1 56.0 39.4 77.1
TruFor [24] 71.7 95.7 67.6 95.9 52.7 89.4 28.2 76.0 69.4 88.8 44.3 86.4 42.9 83.2 53.8 87.9
CATNetv2 [37] 70.2 96.3 83.4 95.2 35.0 75.7 16.0 62.4 70.1 81.8 41.2 78.0 75.2 95.2 55.9 83.5
OMG-FuserF (Ours) 84.5 97.2 86.1 97.2 63.1 91.4 34.2 79.1 72.2 92.1 53.9 88.3 77.0 95.4 67.3 91.5

Sc
or

e
Fu

s. DST-Fusion [20] 75.3 94.8 85.4 93.5 48.8 79.2 14.7 56.9 20.4 50.7 38.6 80.9 24.9 72.8 44.0 75.6
AVG-Fusion 77.5 97.3 87.6 98.9 52.1 91.3 18.5 83.1 27.2 90.8 42.8 87.8 19.0 90.5 46.4 91.4
OW-Fusion [7] 78.8 97.0 85.8 96.0 47.7 88.5 31.7 74.4 70.7 87.4 48.0 80.7 53.7 90.2 59.5 87.7
OMG-FuserS (Ours) 85.1 98.1 92.9 98.7 70.1 96.0 37.5 82.1 74.1 94.1 56.2 89.4 76.6 96.1 70.4 93.5

Table 1. Comparison on image forgery localization. Pixel-level F1 and AUC scores are presented for each algorithm and dataset. The best
value per column is highlighted in bold, and the second best is underlined.

Approach CASIAv1+ Columbia Coverage NIST16 CocoGl. Overall

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

Fe
at

ur
e

Fu
si

on

PSCC-Net [40] 54.0 86.9 26.6 80.8 29.7 65.7 63.6 62.0 52.9 77.8 45.4 74.6
TruFor [24] 80.1 91.7 98.3 99.6 56.2 77.0 28.7 62.7 48.6 75.2 62.4 81.2
SPAN [28] 61.8 74.5 98.4 99.9 75.8 82.6 16.3 56.7 71.7 78.0 64.8 78.3
IFOSN [61] 69.7 73.9 67.3 88.2 65.7 55.7 67.2 66.4 62.2 61.1 66.4 69.0
MVSSNet++ [12] 72.2 85.5 78.1 98.3 66.1 71.3 65.8 58.9 67.6 67.9 70.0 76.4
CATNetv2 [37] 86.1 94.4 83.1 95.2 64.0 67.9 69.4 75.0 64.8 66.6 73.5 79.8
OMG-FuserF (Ours) 90.7 96.5 99.2 99.9 78.8 83.5 71.4 78.2 72.0 81.7 82.4 88.0

Sc
or

e
Fu

s. DST-Fusion [20] 80.3 93.83 92.3 97.9 69.0 78.4 44.4 75.1 66.0 78.5 70.4 84.7
OW-Fusion [7] 85.3 93.3 80.1 97.7 66.1 72.4 69.8 75.5 69.3 72.2 74.1 82.2
AVG-Fusion 86.1 93.0 94.5 99.7 73.3 80.7 69.0 76.7 69.2 78.2 78.4 85.7
OMG-FuserS (Ours) 91.0 98.0 99.4 99.9 81.0 84.5 71.9 80.2 72.6 82.7 83.2 89.5

Table 2. Comparison on image forgery detection. Image-level F1 and AUC scores are presented for each algorithm and dataset. The best
value per column is highlighted in bold, and the second best is underlined.

stream with probability pdrop. SD can be formulated as

zk =

{
zk/pdrop P (1− pdrop)

0 P (pdrop)
. (7)

4. Experiments
4.1. Experimental setup

OMG-Fuser provides a network for combining both the
score-level outputs of multiple image forensics algorithms
as well as multiple low-level image forensic signals.
Thus, we experiment with two different variants of our
architecture: (i) one that incorporates five recent forgery
localization algorithms [12, 24, 28, 37, 61] (OMG-FuserS),
and (ii) one that directly fuses two recently proposed
learnable forensic cues, namely the DCT stream [37] and
the Noiseprint++[24] at the feature-level (OMG-FuserF ).
We train both variants on 40k forged samples and 32k
authentic samples compiled from the datasets provided in
[13, 36, 45], while we evaluate them on CASIAv1+ [12],
Columbia [27], Coverage [59], NIST16 [23], OpenForen-
sics [38], CocoGlide [24] and DID [60] datasets. We em-
ploy six recent competitor methods with publicly available
implementations for the feature fusion category [12, 24, 28,

37, 40, 61]. Regarding score-level fusion, we reimplement
two popular methods that support the fusion of multiple sig-
nals [7, 20], along with a baseline average fusion approach,
using the same input signals as OMG-FuserS . We use the
SAM [33] pretrained model for instance segmentation.
DINOv2 [49] model is used as the vision backbone, which
is fine-tuned on our OMG-FuserF variant, but kept frozen
on OMG-FuserS . Moreover, we employ the F1-score with a
threshold of 0.5 as the main indicator of performance when
deployed in the wild and the AUC as an auxiliary threshold-
agnostic metric. More information regarding implementa-
tion details, datasets, and algorithms, along with localiza-
tion results in terms of the F1 metric using the best threshold
per image, is provided in the supplementary material.

4.2. Comparison with the state-of-the-art

Image forgery localization evaluation results are presented
in Tab. 1. The reported F1 and AUC metrics are computed
on the pixel-level. We see that our implementations out-
perform all state-of-the-art methods in score- and feature-
level fusion. Moreover, in the case of score-level fusion, we
show that previous approaches, either based on some statis-
tical frameworks or learning approaches without semantic
information, perform poorly on the recent deep learning-
based forensic signals, even worse than averaging the sig-
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(b) JPEG Compression (c) Resize (d) Gaussian Blur (e) Gaussian Noise

Figure 4. Robustness evaluation on common perturbations. The pixel-level F1 is reported. Straight lines denote the feature-level ap-
proaches, and dashed lines the score-level approaches. The top approaches of each category are shown for readability.

Ablation Study Loc. Det.

F1 AUC F1 AUC

OMG-FuserS 70.4 93.5 83.2 89.5

Si
gn

al
s

w/o SPAN 69.2 91.5 82.3 89.1
w/o IFOSN 68.5 91.1 81.5 88.9
w/o MVSSNet++ 67.6 90.2 81.0 88.3
w/o CATNetv2 63.6 89.7 78.1 87.6
w/o TruFor 63.5 89.1 78.2 85.8
w/o RGB 53.6 87.0 76.8 84.7

C
om

po
n. w/o OGA 61.1 88.7 79.7 85.8

w/o TFT 63.5 88.4 78.1 86.3
w/o LDT 60.0 89.3 79.6 85.7
w/o Stream Drop 66.5 90.5 81.1 87.3

OMG-FuserF 67.3 91.5 82.4 88.0

Si
gn

al
s w/o Noiseprint++ 60.7 85.2 72.9 83.4

w/o DCT 62.0 85.3 73.4 83.7
w/o RGB 64.3 82.8 77.6 84.7

Table 3. Ablation Study. The average pixel-level F1 and AUC
scores are reported across all evaluation datasets.

nals. This effectively shows that our network is capable of
effectively fusing multiple forensic signals by exploiting the
object-level information of the image, and at the same time,
it is capable of handling low-level forensic traces. The high
performance in feature-level fusion enables future works on
new forensic signals to use our network to decrease the bur-
den of developing purpose-built fusion architectures.

Image forgery detection evaluation results are pre-
sented in Tab. 2. Following [24], for methods that do not
output an image-level forgery detection score, we com-
pute it as the max of the corresponding forgery localiza-
tion mask. Also, we omit datasets that contain only forged
samples. Both OMG-Fuser implementations outperform all
state-of-the-art methods by a significant margin.

4.3. Ablation Study

In order to better understand the contribution of each of the
major components of our architecture, we performed sev-
eral ablation studies in two directions. First, we evaluated
the contribution of each of the fused forensic signals by
training our network from scratch and removing the inputs

(a) Feature-level Fusion (b) Score-level Fusion

Figure 5. Robustness against neural filters for removing JPEG ar-
tifacts. The pixel-level F1 is reported.

of the network one at a time. Similarly, we proceeded by
evaluating the contribution of each of the key components
of our architecture by: replacing the OGA with the standard
unmasked self-attention [56], replacing the TFT with an av-
erage pooling layer, removing the LDT and Stream Drop
components. To better understand the impact of each com-
ponent on signal fusion, we performed the later study on the
OMG-FuserS , which fuses the output of several forensic al-
gorithms. The results of the ablation study are presented
in Tab. 3. Removing a single input signal affects the per-
formance of the network adversely. Thus, the network is
capable of learning to exploit even minor additional infor-
mation introduced by new input streams. Moreover, we see
that removing any key component of the architecture con-
siderably impacts performance, highlighting that they are of
crucial importance for effective signal fusion.

4.4. Robustness against Perturbations and Filters

To assess the robustness of our architecture against common
online perturbations, we performed another set of exper-
iments, where we applied different levels of JPEG com-
pression, resizing, Gaussian noise, and Gaussian blur to the
input images. We used the challenging CASIAv1+ dataset,
as it contains already compressed samples with many dif-
ferent depicted objects. The results of this study for the task
of image forgery localization are presented in Fig. 4, where
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Figure 6. Qualitative evaluation results. From left to right, the image in question, the ground truth mask, the outputs of five recent methods,
and the outputs of the two variants of our architecture are displayed.

the pixel-level F1 is reported. We see that the two variants
of our architecture consistently outperform the state-of-the-
art methods, both in feature-level and score-level fusion.
Moreover, we evaluate our implementations against the
recently added neural filter in Adobe Photoshop [1] for re-
moving JPEG artifacts and present the results in Fig. 5. Our
method demonstrates its robustness even in this challenging
forgery attack, outperforming all competing approaches.

4.5. Stream Expansion

The design of the TFT allows the expansion of an already
trained model with additional streams. In Tab. 4, we report
the overall performance across all the evaluation datasets
when expanding our architecture in three different ways.
Starting from a variant of OMG-FuserS trained without
the TruFor stream, we expand it i) by training only the
additional stream and keeping the rest of the network
frozen, ii) by fine-tuning the network for 15% of the initial
training epochs, and iii) by training the network from
scratch. We see that in the first two cases, the network
achieves a performance very close to third by requiring only
a portion of the computational resources. This suggests
that our model has learned to fuse various forensic signals
effectively; therefore, it can be expanded with new signals
without training from scratch.

4.6. Qualitative Evaluation

In Fig. 6, we present a qualitative evaluation of the two
variants of our architecture on samples containing one, two,
or no forged regions. In all the cases, both our variants lead
to more robust results than all competing methods, clearly
identifying the forged regions of the image and reducing
false positives. The fusion process has a minimal effect

Expansion Loc. Det.

F1 AUC F1 AUC

4-stream model 63.5 89.1 78.2 85.8

stream-only train 68.8 92.1 82.4 88.6
full fine-tuning 69.0 92.7 82.7 89.1

training from scratch 70.4 93.5 83.2 89.5

Table 4. Evaluation of expanding the network with a new stream.
The average scores are reported across all the evaluation datasets.

on computation time, adding less than 100ms to the total
process executed on commodity hardware. More details
about timings are provided in the supplementary material.

5. Conclusions
In this paper, we introduced a novel transformer-based net-
work architecture for fusing an arbitrary number of image
forensic signals based on the object-level information of the
image. We demonstrated that both the effective fusion of
signals and object-level information is essential for robust
forensic analysis. Also, the modularity of our architecture
was shown to be effective for score-level fusion of five re-
cent image forgery localization algorithms and feature-level
fusion of two recently proposed learnable forensic cues,
outperforming all state-of-the-art methods on the tasks of
image forgery detection and localization, while being robust
to several traditional and novel forensic attacks. Finally, our
network can facilitate future work as its expansion with new
signals does not necessitate training from scratch.
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