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Abstract

Advances in machine learning and computer vision have
led to significant improvements in automated facial recog-
nition. Many real-world forensic settings, however, are con-
fronted with challenging low-quality and low-resolution im-
ages that often confound even state-of-the art facial recog-
nition. We investigate if and when advances in neural-based
image enhancement and restoration can be used to restore
degraded images while preserving facial identity for use in
forensic facial recognition.

1. Introduction

Although automatic facial recognition has its roots in the
mid 1960s [2, 3], it wasn’t until fairly recently that the ac-
curacy of facial recognition has achieved levels allowing it
to be credibly deployed in real-world forensic settings [22];
albeit, not without concerns regarding human-rights viola-
tions [25], privacy [10, 24], and bias [4, 8,20]. It has been
argued that automatic facial recognition is as or more ac-
curate than human-level recognition [18] (see [19, 27] for
some opposing views). These advances in automatic facial
recognition have been largely fueled by advances in ma-
chine learning along with access to increasingly larger and
more diverse datasets.

Parallel advances in machine learning have also fu-
eled a revolution in image enhancement in which noisy,
low-resolution, or blurry images can be seemingly mirac-
ulously restored to their high-resolution and high-quality
originals [6, 11,21,30]. Because automatic facial recogni-
tion can struggle with low-quality images [9], and because
low-resolution and blurry images are not uncommon in real-
world scenarios, we wondered if these image enhancement
tools would improve facial recognition accuracy in the face
of low-quality images.

On the one hand, as shown in the top portion of Fig-
ure 1, a super-resolution image enhancement [14] appears

(b)

Figure 1. An example of (a) an original image, (b) a 4x low-
resolution version of this image, and (c) the result of enhancing
the degraded image in panel (b). In one case (top) the image en-
hancement appears to respect the original facial features, while in
another case (bottom), the enhancement introduces or distorts fa-
cial features relative to the original.

to be able to recover many facial features from a 4x down-
sampled version of the original. On the other hand, as
shown in the bottom portion of this figure, the same im-
age enhancement appears to hallucinate facial features not
present in the original.

To this end, we examine how image enhancement in
the form of super-resolution and de-blurring impacts fa-
cial recognition. This study makes use of two large and
diverse facial sets, two popular deep-learning facial recog-
nition systems and 12 different GAN- and diffusion-based
image enhancement techniques. We conclude with recom-
mendations for the use (and not) of image enhancement in
forensic facial recognition.

2. Face Enhancement

We begin by describing two typical image enhancements
that a forensic analyst might utilize: super-resolution in
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which a low-resolution image is up-sampled to a higher
resolution while restoring original image details; and de-
blurring in which optical or motion blur is removed from an
image. Each of these problems has received considerable
academic and industry attention [30, 31]. Recent neural-
based approaches, however, have made significant progress
in terms of recovering the original content from even highly
degraded inputs. We will begin by reviewing several of
these state-of-the-art neural approaches to image enhance-
ment.

2.1. Super-resolution

We explore three distinct neural-based techniques for
super-resolution. These techniques span a range of differ-
ent underlying mechanisms from generative adversarial net-
works (GANs) to convolutional neural networks (CNNs),
Transformers, and combinations of all three.

2.1.1 EDSR

The enhanced deep residual neural network for single image
super-resolution (EDSR) [15] achieves impressive results
through the use of several clever model architecture opti-
mizations. The authors of EDSR build on Ledig et al.’s [13]
successful application of the ResNet architecture to super-
resolution tasks. Specifically, EDSR is a modified version
of Ledig et al.’s model in which the batch normalization lay-
ers are removed, leading to a significant improvement in the
fidelity of the super-resolution images. This improvement is
due to the tendency of batch normalization layers to restrict
the full range of network representations as a by-product of
feature normalization. Perhaps more importantly, removing
batch normalization layers tends to yield a significant reduc-
tion in GPU memory utilization. This optimization, in turn,
allows for a larger overall model which generally correlates
with improved performance.

Additionally, the EDSR model architecture addresses the
common problem of increasing training instability as fea-
ture map size increases by both adding constant scaling lay-
ers after the final convolutional layers, and removing acti-
vation layers after residual block layers. The EDSR model
also takes advantage of interim model training by initializ-
ing the final model with pre-trained parameters.

2.1.2 Swin-IR

Vision Transformers have recently been introduced as an al-
ternative to CNN-based image restoration methods. These
Transformers address the problems of CNN’s content-
independent relationship between input images and the con-
volution kernel, and CNN’s struggle with capturing long-
range dependencies [16]. Transformer-based models, due
to their use of self-attention layers, are able to represent

global relationships between different contexts. This tech-
nique, however, still relies on a fixed-size patching strategy,
each of which is processed independently. This leads to
limitations in that neighboring patches cannot share context
and, as a result, patch-border artifacts tend to appear in the
restored images.

By combining both architectures, the Swin Trans-
former [16] addresses both of these challenges as well as
the inefficiencies of CNN-based approaches, while also im-
proving upon the basic Transformer technique. These new
architectures are able to accept large image resolutions as
inputs to the pipeline as a result of the local attention prop-
erty of CNNs. Simultaneously, Swin Transformers benefit
from the long-range dependency modeling capabilities of
the shifted window process.

Swin-IR [14] improves upon the Swin Transformer by
applying a three-phased process: shallow feature extraction,
deep feature extraction, and a high-quality image restora-
tion method. The shallow feature extraction utilizes a con-
volution layer which is then applied directly to the image
reconstruction as the primary low-frequency input. The
deep feature extraction is accomplished through the intro-
duction of Residual Swin Transformer blocks, which ap-
ply the shifted window method for local attention. Both of
these features are then combined via a convolution layer for
feature optimization and aggregation. The reconstruction
is completed as deep and shallow features are combined to
form a high-quality image.

2.1.3 LDM

Diffusion models (DM) have also proven to be surprisingly
effective on a variety of image restoration tasks. The gen-
eral approach of diffusion image models is to leverage de-
noising autoencoders in order to segment image formation
into sequential and progressive steps [21]. This process,
however, relies on processing images directly in pixel space,
which is computationally expensive and requires massive
computing infrastructure, typically available to only a few
well-resourced organizations.

Latent diffusion models (LDM) were introduced to ad-
dress this shortcoming. As the name suggests, LDMs op-
erate in a lower-dimensional latent space which supports
the ability to train the image restoration models on more
standard and accessible computing resources [21]. Begin-
ning with a pretrained (in pixel space) diffusion model, an
LDM follows the standard, two-phase DM process of per-
ceptual compression for low-frequency learning, followed
by semantic learning and composition in the semantic com-
pression phase. An autoencoder is trained in the latent space
to provide a low-dimension representation which is a per-
ceptual twin of the image space. LDMs then leverage the
lower model complexity to restore an image in a single net-
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Figure 2. A representative set of real (top) and synthetically-generated (bottom) faces.

work pass, still in the latent space.

2.14 CodeFormer

The blind face restoration technique CodeFormer has been
employed for two primary tasks: reduce or remove percep-
tible image degradation and match degraded image features
to a desired image quality and style [32]. This technique
employs a Transformer-based architecture to create a rep-
resentation for low-quality images that is specifically con-
textualized for human faces. The CodeFormer architecture
is defined by three distinct components: (1) a quantized au-
toencoder trained for the purpose of creating a contextual
codebook for the face reconstruction task; (2) to correct for
the tendency of algorithmic feature matching to fail when
processing corrupted textures, a Transformer is utilized to
provide references to more global representations; and (3) a
controllable feature transformation is leveraged to flexibly
manage context flow from the low-quality sample processed
by the encoder to the decoder feature set.

2.2. De-blurring

We explore three distinct neural-based techniques for de-
blurring. These techniques span a range of different un-
derlying mechanisms from generative adversarial networks
(GANSs) to CNNs, Transformers, and combinations of all
three.

2.2.1 MPRNet

Image restoration has historically been highly dependant
on labor intensive hand-crafted and explicitly curated train-
ing data [31]. As was the case with many of the super-
resolution models described above, researchers have more
recently turned to CNNss as a method for organically learn-
ing image representations from large datasets [31]. Most
of these CNN-based approaches, however, employ a single-
stage design, which is suboptimal for many complex com-
puter vision problems.

MPRNet leverages a multi-stage approach, employing
an encoder-decoder for multi-scale learning, while apply-

ing a final stage that functions directly on the original im-
age resolution in order to capture fine-grained spatial de-
tail [31]. MPRNet also leverages a supervised attention
module (SAM) sandwiched between stage pairs in order to
facilitate continuous learning of features, additionally uti-
lizing ground-truth to fine-tune progressive stages based
on the previous stages. Finally cross-stage feature fu-
sion (CSFF) is applied, which true to name, combines the
learned features from early stages (of different scales) to
progressively later stages.

2.2.2 HINet

This second image deblurring technique builds on MPRNet
described in the previous section. A half instance normal-
ization network (HINet) approach [6] was originally pro-
posed as an effort to avoid the computational cost of a high
number of multiplier-accumulator operations within other
multi-stage image restoration architectures such as MPR-
Net. Since the sampled small image patches within train-
ing batches are highly variant, batch normalization is not a
popular technique for low-level image formation tasks. In-
stance Normalization (IN) instead is able to calculate and
balance this variance of image features without leveraging
the batch process which makes the resulting networks more
tolerant to changes in scale.

The improved performance observed by HINet was pri-
marily achieved through two innovations: the addition of
half-instance normalization (HIN) blocks and the imple-
mentation of a multi-stage network architecture that applies
these HIN blocks as stacked layers in each encoder subnet-
work stage. The HINet model also employs the use of CSFF
and applies a SAM between these stages. These steps have
the result of enriching features at differing scales (which
MPRNet originally advanced) while preserving the perfor-
mance gain of the HIN blocks.

2.2.3 Restormer

As discussed earlier, though efficient, CNNs struggle when
it comes to capturing long-range, complex correlations from
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Figure 3. Example of a facial forensic lineup consisting of a probe image (left) and six standardized images, one of which (*) matches the

identity in the probe image, and the rest of which are decoys.

inputs. This is because CNNs usually have smaller re-
ceptive fields than a typical Transformer [30]. Although
Transformer-based models largely mitigate these limita-
tions, they do so at the cost of network complexity and
computational efficiency, particularly with respect to high-
resolution images. The restoration Transformer model
Restormer addresses these complexity issues.

Restormer’s mitigation is accomplished through the in-
troduction of a new representation-learning approach ap-
plied both locally and globally on high-resolution image
samples [30]. This approach avoids segmentation of the in-
puts into smaller local patches, thus preserving global im-
age context. This approach also involves the application of
a multi-deconvolution self-attention layer (Dconv), which is
an efficient upsampling process capable of fusing both local
and global context between pixels. A gated-DConv feed-
forward network approach is utilized to perform a highly
controllable transformation of features, biasing the inclu-
sion of high-information features into the subsequent repre-
sentation. The improvements introduced by Restormer al-
low for Transformer-based models to be practically utilized
for image restoration tasks.

3. Datasets

We make use of two datasets for our evaluations. The
first real-world dataset is derived from the CASIA-Webface
dataset, consisting of 491,414 images derived from 10,575
identities. These images are of various size, quality, pose,
subject clothing, and environment, Figure 2 (top row). Due
to the initial quality of the dataset, some manual curation
was necessary including the removal of duplicate images
and the removal of incorrectly labeled images.

A second, synthetically-generated dataset, is also used
as it affords more fine-grained control over differences
in each subject’s appearance within and across identities.
Specifically, we employ Synthesis AI’'s commercial soft-
ware (https://synthesis.ai) which uses a combi-
nation of classic rendering and generative synthesis to cre-
ate photorealistic human faces. All images are rendered at
a resolution of 512 x 512 pixels. A total of 200,000 im-
ages were rendered consisting of 8,000 unique identities
with varying head poses, expressions, head wear, facial hair,

hairstyles, glasses (opaque and clear), masks, backgrounds,
and environmental lighting, Figure 2 (bottom row).

4. facial recognition
4.1. Forensic Lineup

We evaluate two popular facial recognition systems,
FaceNet [23] and ArcFace [9]. FaceNet utilizes an incep-
tion ResnetV1-based model architecture, trained and evalu-
ated on either the CASIA-WebFace [28] or Visual Geome-
try Group Face Dataset 2 (VGGFace?2) [5] datasets. For our
analysis, we utilized the VGGFace2-trained version. The
network yields a 128D embedding from each input image.
This results in an output such that the squared L2 distances
in embedding space represent face similarity, where similar
faces have small distances and dissimilar faces have large
distances.

ArcFace utilizes a 512D normalized embedding feature,
organized into distinct clusters representing individual iden-
tities. The model architecture then employs an additive an-
gular margin loss, yielding better identity separability and,
in turn, recognition accuracy. ArcFace is trained and eval-
uated on CASIA-Webface, VGGFace2, and a curated and
tightly-cropped-to-faces version of MS1MVO [1].

Over the past decade, the improvement of facial recog-
nition models for forensic identification tasks has been dra-
matic. However, much of the evaluation of the performance
of such models has been conducted in controlled lab set-
tings that do not necessarily replicate the data diversity and
task difficulty inherent in real-world forensic settings.

In order to address this shortcoming, a new forensic
lineup methodology was proposed [17]. In this task, a sin-
gle image (the probe) is compared against a lineup of six
perceptually similar faces (as measured by the latent repre-
sentation of each face). The face in the lineup that is most
similar to the probe, as measured by any standard distance
metric in any latent representation is considered a presump-
tive match. This lineup approach ensures that the compari-
son group across a large database is always similar.

Evaluation against both the synthetic and real-world
datasets (Section 3) reveals that previously reported facial
recognition accuracy for these two face-recognition models
exceeding 95% fall to as low as 65% in this more controlled
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FaceNet ArcFace

model resolution accuracy (%) accuracy (%)
Original 1x 78.2 83.8
Baseline J 4x 74.0 82.7
TorchSRedsr |} 4 x + f 4x 80.7 87.3
TorchSR ninasr b2 | 4 X + {} 4% 81.6 87.2
Swin-IR | 4 x + 4% 81.5 87.5
LDM |4 x + f4x 58.7 69.6
CodeFormer || 4 x + {} 4% 73.5 82.0
Baseline { 8x 47.1 56.2
TorchSR edsr |} 8 x + ) 8% 69.7 80.4
TorchSR ninasr b2 | 8 x + 1} 8% 69.1 80.2
Swin-IR || 8 x + 1} 8% 69.4 79.4
LDM |} 8 x + ) 8% 58.4 68.3
CodeFormer || 8 x 4 {} 8% 51.6 58.2

Table 1. Facial recognition accuracy for images at their original
resolution (1 x), at reduced resolution ({} 4% and |} 8x), and these
reduced resolution super-resolved to the original resolution ({} 4 X
4+ 4x and | 8 X 4 1 8x).

and challenging forensic lineup task.

We employ this same forensic lineup task in evaluat-
ing the impact of super-resolution and de-blurring on facial
recognition.

4.2. Super-Resolution

Operating on the real-world CASIA-Webface dataset
(Section 3), the accuracy on the forensic lineup task for
FaceNet and ArcFace is 78.2% and 83.8%, (top row of Ta-
ble 1). With six images in the lineup, chance performance
is1/6 = 16.7%.

As shown in Table 1, the average accuracy on this lineup
task for FaceNet reduces to 74.0% and 47.1% for probe im-
ages reduced in resolution by 4x and 8x. For ArcFace,
accuracy reduces to 82.7% and 56.2%.

Shown in the upper portion of Table 1 are the accuracies
after down-sizing each probe image by 4x and then apply-
ing different super-resolution enhancements to return each
image to its original resolution (Section 2.1). For FaceNet,
the average accuracy on the super-resolved probe images
ranges from 81.6% (an improvement of 7 percentage points
as compared to the baseline of operating on the 4x lower-
resolution image) to 58.7% (a degradation of 15 percent-
age points compared to baseline). For ArcFace, the pattern
is similar where the average accuracy ranges from 87.5%
(an improvement of 5 percentage points over baseline) to
69.6% (a degradation of 13 percentage points compared to
baseline).

Shown in the lower portion of Table 1 are the accura-
cies after down-sizing each probe image by 8x followed
by super-resolution. For FaceNet, the average accuracy on
the super-resolved probe images is consistently higher than
baseline of operating on the 8x lower-resolution image,
ranging from an improvement between 4 and 22 percent-
age points. For ArcFace, the average accuracy on the super-

Figure 4. Examples of (a) an original image, (b) a 8x low-
resolution version of this image, and (c) the result of up-sampling
using CodeFormer the low-resolution image back to its original
resolution. Note that although the super-resolution image restores
high-resolution features, the enhancement has introduced or dis-
torted facial features relative to the original leading to an apparent
different identity.

resolved probe images is consistently higher than baseline
ranging from an improvement between 2 and 24 percentage
points.

In most cases super-resolution improves facial recog-
nition accuracy as compared to operating on the lower-
resolution images. Somewhat surprisingly for the 4x res-
olution, in most cases super-resolution yields slightly im-
proved accuracy relative to the original resolution (first row
of Table 1). For the 8x resolution, however, results are
more mixed with some models (TorchSR) able to achieve
accuracies close to the original resolution while other mod-
els (CodeFormer) significantly under perform.

At 4x up-sampling, some of super-resolution algorithms
perform better than the original image and better than oper-
ating on the baseline lower-resolution image. On the other
hand, one super-resolution algorithm (LDM) yields lower
accuracy as compared to the original image and to oper-
ating on the baseline lower-resolution image. At 8X up-
sampling, all of the algorithms perform worse than original
resolution but much better than baseline. The appropriate
super-resolution algorithm can, we conclude, be an asset to
forensic facial recognition.

These results, however, hide a potentially dangerous as-
pect of some super-resolution algorithms. Shown in Fig-
ure 4 are three original images, these images down-sampled
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by 8x, and these down-sampled images up-sampled to the
original resolution using CodeFormer (Section 2.1.4). In
these examples, the super-resolved images appear to be of
high quality with clear and undistorted features, but the
identity of the person is not the same as in the original.
In practice it can be difficult to identify this type of failure
case.

Although a more in depth analysis is required, we do
not find a systematic bias in the hallucinating of facial fea-
tures in which, for example, a single identity is consistently
generated or in which hallucination is dependent on race or
gender. A more in-depth analysis will be required to fully
explore any other systematic biases.

While, for the most part, the super-resolved images ap-
pear of high quality, they will occasionally hallucinate facial
features. We have not found a way of determining when
this will happen. Care, therefore, must be taken to consider
this potential pitfall when using image super-resolution in a
forensic setting.

4.3. De-blurring

Operating on the original resolution images from the
real-world CASIA-Webface dataset (Section 3), the base-
line accuracy on the forensic lineup task for FaceNet and
ArcFace is 78.2% and 83.8% (chance performance is 1/6 =
16.7%).

We induce optical blur by blurring the probe image with
a symmetric box-car kernel ranging in size from 3 x 3 to
23 x 23. We induce motion blur by blurring the probe image
with an asymmetric Gaussian kernel in the same size range
with an aspect ratio of 1 : 3 in terms of the horizontal and
vertical Gaussian variance, and random orientation.

With no de-blurring intervention, the average accuracy
on the lineup task for FaceNet in the presence of optical blur
steadily reduces from 77.6% for a 3 x 3 kernel to 22.3% for a
23 x 23 kernel (see top row (Baseline) of Table 2). A similar
pattern emerges with ArcFace where accuracy ranges from
83.6% to 24.7%.

Motion blur impacts facial recognition less than optical
blur. With no de-blurring intervention, the average accuracy
on the lineup task for FaceNet in the presence of motion blur
steadily reduces from 77.6% for a 3 x 3 kernel to 55.6% for a
23 x 23 kernel (see top row (Baseline) of Table 2). A similar
pattern emerges with ArcFace where accuracy ranges from
83.5% to 70.7%.

As seen in Table 2, generally speaking, for both mo-
tion and optical blur, de-blurring from most models affords
an improvement in facial recognition accuracy as com-
pared to operating on the baseline blurred probe images.
For the best-performing model (RestormerLocal-HIDE) de-
blurring is able to surpass baseline accuracy across all blur
types and amounts. There is, however, one exception where
CodeFormer consistently yields results worse than baseline.

Perhaps not surprisingly, overall accuracy is worse for
optical blur than for motion blur, most likely because the
asymmetric motion blur is simply less severe than the sym-
metric optical blur. Generally speaking, we did not find the
same type of facial feature hallucination seen with some
super-resolution examples (Figure 4). In particular, for
larger amounts of blur, the de-blurring algorithm just fails
to completely remove the blur. This is probably a more de-
sirable failure case as it can be clear from the de-blurred
image that the image has not been fully enhanced.

We next wondered if we could improve on these re-
sults by re-training the best-performing model architec-
ture (RestormerLocal-GoPro) on a more representative
dataset. Because this model was trained on GoPro video
and not necessarily on faces, we replaced 10% or 50%
of the Restormer dataset with images from the VGGFace
dataset [5]. Adapting the same method detailed in the origi-
nal Restormer model [29], we utilized a four-GPU cluster to
train four iterations of the Restormer model. These two new
models were then used to evaluate accuracy on the same
task. As shown in the last two rows of Table 2, accuracy
from these retrained models has little impact on accuracy
across all blur types and amounts.

Combined, we find that even with large amounts of blur,
the appropriate de-blurring model can be an asset to forensic
facial recognition.

S. Synthetic Faces

Because they afford more control and diversity, synthetic
faces are often used to evaluate and train facial recognition
systems. Though not our central focus, we explored the
impact of de-blurring and super resolution on synthetically-
generated faces. The synthetic faces were generated using
Synthesis AI’s commercially available software (https:
//synthesis.ai) [26]. This rendering engine lever-
ages a hybrid of generative Al and traditional 3D modeling
to generate photorealistic human faces across a variety of
demographics, clothing, scenes and environmental condi-
tions (see Section 3 and bottom row of Figure 2).

With respect to resolution, accuracy for FaceNet on the
original resolution synthetic faces is 75.4%, similar to real
faces (78.2%). For images downsized by 4x and 8, accu-
racy for FaceNet drops to 60.8% and 25.4% (as compared
to 74.0% and 47.1% for real images). Accuracy for Arc-
Face on the original resolution synthetic faces is 96.8%, 13
points higher than real faces (83.8%). For images down-
sized by 4x and 8x, accuracy for ArcFace drops to 90.9%
and 39.4% (as compared to 82.7% and 56.2% for real im-
ages).

Using one of the best performing super-resolution mod-
els (Swin-IR), and using the same processing and analy-
sis as with real faces, accuracy for FaceNet is 61.9% and
54.8% for images downsampled and upsampled by 4x and
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motion blur optical blur
model model-dataset 3 7 11 15 19 23 3 7 11 15 19 23
FaceNet Baseline | 77.6 76.7 73.8 69.1 63.1 556 | 77.6 728 58.1 42.6 303 223
FaceNet HINetLocal-GoPro | 77.3 777 759 728 680 613 | 780 746 633 475 356 26.7
FaceNet MPRNetLocal-GoPro | 77.1 76.8 757 734 70.1 63.7 || 77.5 742 652 502 372 26.7
FaceNet HINetLocal-HIDE | 77.7 77.8 76.0 727 679 614 | 772 744 63.6 476 350 26.1
FaceNet MPRNetLocal-HIDE | 77.6 77.0 760 73.6 699 642 || 76.9 73.6 639 488 36.0 269
FaceNet RestormerLocal-HIDE | 78.1 77.8 775 755 719 66.1 || 774 749 643 49.1 378 29.8
FaceNet HINetLocal-REDS | 76.4 757 73.4 702 650 57.6 | 76,7 717 575 41.7 31.0 24.0
FaceNet CodeFormer | 60.5 552 46.7 39.1 326 268 | 569 404 282 204 165 13.8
FaceNet RestormerLocal-GoPro | 77.7 773 774 752 713 656 | 783 752 647 497 378 292
ArcFace Baseline | 83.5 83.5 82.6 805 76.7 70.7 || 83.6 820 70.8 493 323 247
ArcFace RestormerLocal-GoPro | 844 84.0 84.0 832 82.0 79.1 || 84.7 838 779 658 497 350
FaceNet RestormerLocal-GoPro (10%) | 78.1 77.6 760 723 674 60.7 || 77.3 735 62.0 454 344 252
FaceNet RestormerLocal-GoPro (50%) | 77.0 773 75.1 71.3 643 579 | 779 774 763 482 374 283

Table 2. Facial recognition accuracy for images that have been motion (left) and optically (right) blurred with kernels in size ranging from
3 % 3 to 23 x 23, and then de-blurred. The baseline accuracy corresponds to performing facial recognition directly on the blurred images.
The last two rows correspond to the accuracy after the de-blurring model was retrained on facial images.

motion blur optical blur
model model-dataset  data set 3 7 11 15 19 23 3 7 11 15 19 23
FaceNet Baseline synth | 754 71.8 625 51.6 419 325 | 743 58.1 342 223 153 13.1
FaceNet RestormerLocal-GoPro synth | 75.6 747 71.8 644 544 443 | 749 66.1 447 277 193 147
FaceNet Baseline real | 77.6 767 73.8 69.1 63.1 556 | 776 728 58.1 42.6 303 223
FaceNet RestormerLocal-GoPro real | 777 773 774 752 713 656 | 783 752 647 49.7 378 29.2
ArcFace Baseline synth | 969 959 935 859 743 60.7 || 966 889 555 320 223 183
ArcFace RestormerLocal-GoPro synth | 96.8 96.8 959 934 873 76.1 | 96.8 935 742 488 315 235
ArcFace Baseline real | 83.5 835 826 80.5 76.7 70.7 || 83.6 820 70.8 49.3 323 247
ArcFace RestormerLocal-GoPro real | 844 840 84.0 832 820 79.1 || 847 838 779 658 49.7 350

Table 3. Facial recognition accuracy for synthetic (top) and real (bottom) images that have been motion (left) and optically (right) blurred
with kernels in size ranging from 3 x 3 to 23 x 23, and then de-blurred. The baseline accuracy corresponds to performing facial recognition

directly on the blurred images.

8x, as compared to 61.5% and 29.8% on the downsampled
images. For ArcFace, accuracy is 89.2% and 82.2% for im-
ages downsampled and upsampled by 4x and 8%, as com-
pared to 90.9% and 39.4% on the downsampled images.

With respect to de-blurring, generally, with the excep-
tion of CodeFormer, all the de-blurring models performed
slightly better than baseline when the images were optically
or motion blurred. For small kernel sizes, the improve-
ment was relatively slight over baseline, but for larger ker-
nel sizes, the improvement was more significant. Shown
in top portion of Table 3 are the accuracies for one of
the best performing de-blurring models, RestormerLocal-
GoPro; for comparison, the accuracies for real images from
Table 2 are reproduced here.

For FaceNet, as we saw above, accuracy on original res-
olution and quality images is similar for synthetic and real
images. The impact of motion blurring, however, is differ-
ent for synthetic and real images, with the impact on syn-
thetic images being more significant for blur kernels larger
than 11 x 11 (top/left portion (Baseline) of Table 3). When
de-blurring is applied, accuracy is improved and is similar

to real images for kernel sizes between 3 x 3 and 11 x 11;
for larger kernels, the improvement is less pronounced as
compared to real images (see rows 2 and 4 of Table 3). A
similar pattern emerges for optical blur (top/right portion
of Table 3) but the impact of blurring is even more severe
with a difference between synthetic and real emerging after
a blur kernel size of 7 x 7.

The story for ArcFace is different. First, as we saw
above, accuracy on original resolution and quality images
is significantly higher for synthetic images than real images.
For both motion and optical blur, accuracy for synthetic im-
ages degrades slightly more for larger kernels as compared
to real images. When de-blurred, accuracy for synthetic im-
ages recovers similar to real images.

Combined, these results suggest that although the use of
synthetic images can be desirable, and holds promise for
training and evaluating facial recognition systems, its use
in real-world applications is complex. Our results demon-
strate that there is a significant, and at times difficult to in-
terpret, interplay between the facial recognition model, im-
age enhancement model, and image quality. This interplay
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yields significantly different facial recognition performance
between synthetic and real images. We conclude that syn-
thetic images are not a simple proxy for real images. As
described in [17], however, the quality and resolution of
synthetic images can be calibrated to more closely match
real images. Nevertheless, care should be taken when in-
corporating synthetic images into the training or evaluation
of facial recognition tasks.

6. Discussion

Having explored the impact of super-resolution and mo-
tion/optical de-blurring on forensic facial recognition, we
find that under certain conditions, and with the appropriate
choice of enhancement model, these tools can be an asset.
At the same time, this type of image enhancement is not
a panacea, and care must be taken when deploying these
techniques to carefully understand their efficacy in the pres-
ence of different levels of image degradation, the type of
degradation, the nature of the desired enhancement and the
underlying face-recognition model.

On the other hand, the failure cases we observed are con-
cerning. We observed that at times, image enhancement
can hallucinate facial features and facial identity (Figure 4).
What is particularly worrying about these hallucinations is
that there is no obvious way to determine that such a halluci-
nation has occurred by only looking at the enhanced image.

Further analysis will be required to assess the efficacy of
other forms of image enhancement in the form of, for exam-
ple, de-noising and in-painting, and the interplay between
different forms of image degradation.

Our initial attempt to retrain a generic de-blurring model
on faces did not yield an improvement. Further analysis
is also required to determine if facial recognition will be
improved by more specialized image enhancement mod-
els [12] and/or explicitly training a facial recognition model
on a wide range of degraded images [7]. Because there is an
interplay between image enhancement and the underlying
facial recognition model, it is important that any evaluation
be performed holistically.
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