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Abstract

Robust steganography and invisible watermarking tech-
niques in printed images are crucial for anti-counterfeiting
systems within the multimedia industry for copyright pro-
tection, security of documents (e.g. passports), and brand
protection graphic elements. Conventional steganography
models, mainly designed for digital non-lossy media, en-
counter challenges in recovering messages from images de-
graded by printing and scanning or social media compres-
sion, particularly due to limitations associated with utiliz-
ing image regions characterized by the lowest and highest
frequencies. In this paper we introduce StampOne, a novel
printer-proof steganography model utilizing Generative Ad-
versarial Networks (GANs). StampOne ensures balanced
frequency density between encoder and decoder inputs, re-
ducing disparities between original and encoded images.
Our method, through integration with diverse U-shape net-
works (image-to-image), emphasizes the significance of fre-
quency domain analysis in robust steganography. It facil-
itates the development of robust steganography models ca-
pable of withstanding diverse noise types, including JPEG
compression, contrast variations, brightness fluctuations,
aliasing, blurring, and Gaussian noises. It surpasses previ-
ous models in both quality of encoded images and printer-
proof capabilities.

1. Introduction
The proliferation of generated (fake) content in digital, and
also physical, media, brought not only opportunities but
also many threats and challenges to the society. Particularly

*This work has been supported by Fundaçao para a Ciência e a Tec-
nologia (FCT) under the project UIDB/00048/2020.

in physical objects, fake content can be used for the manip-
ulation of ID documents (passports, driver’s license among
others) by attacking the document’s portrait [6, 12, 24].
Other examples of manipulation of printed media with fake
generated content include the proliferation of fake (printed)
news or the attack on brand protection labels.

The integration of image watermarking and steganogra-
phy [10, 36, 37] presents a promising avenue for addressing
this problem, facilitating the robust embedding of an invisi-
ble signature within an image. Portable mobile devices can
then be used for a 1st-level forensic verification of the in-
tegrity of the signature, and thus the veracity of the scanned
image.

While our work shares similarities with both image
watermarking and steganography, our primary focus lies
specifically within the domain of steganography. Image
steganography is a technique for concealing a confiden-
tial message within a cover image or video, while ensur-
ing that the encoded content remains indistinguishable to
the human eye from the original. We can classify steganog-
raphy into two categories: robust and non-robust. Robust
steganography models are capable of withstanding printer-
scan and/or digital noise, whereas non-robust models are
designed for noise-free digital environments. Furthermore,
the main challenge of robust steganography models is main-
taining high perceptual quality of the encoded images, since
the necessary changes to the image at the pixel level, usu-
ally referred to as artifacts, need to be stronger to resist to
the degradation imposed by the transmission channel.

Existing steganography models have several limitations
mainly concerning the size of the embedded message, the
level of similarity between encoded and real photos, decod-
ing accuracy, and resistance against fraudulent techniques.
Moreover, in robust steganography, the choice of neural net-
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Figure 1. (A) compares the spectral density of original and encoded images using StampOne and a non-robust steganography algorithm.
StampOne shows a higher correlation between high-frequency components in the encoded images and the original ones, unlike non-robust
steganography GANs (such as [4]), which exhibit a lower correlation. (B) illustrates the spectral density of original and recovered messages
using the StampOne decoder. The messages (2D binary) show a sharper decline in high-frequency components, which implies a harder
task for the decoder in handling these frequencies. (C) presents the spectral density of original images and printed original photographs
obtained from two different office printers (Brother L3270CDW and Epson ET8500). Subsequently, the printed images were scanned for
analysis. Printers introduce noise and elevate the spectral density of high-frequency components. Additional analysis on image gradients
is available in the supplementary materials for further examination of the observed differences.

work architecture is more constrained than in other machine
learning applications, due to the severe noise conditions that
might be encountered [37].

This paper focuses on high-level robust steganography,
such as it was proposed by StegaStamp [37] and Code Face
[36], striking a balance between high-quality encoded im-
ages and decoding accuracy to overcome the aforemen-
tioned limitations. We have explored a hypothesis for con-
cealing messages in images by transferring the message and
the image (input of the networks) to a specific balanced fre-
quency space. This idea is inspired by previous works that
focused on frequency ranges to enhance GANs model per-
formance [18, 26, 35, 45].

The analysis of the frequency domain brought a new per-
spective to the problem. On one hand, in Figure 1, specif-
ically in plots (A) and (B), we demonstrate the frequency
bias issue that can be found in steganography models and
the impact of digital transformations on high-frequency
components of the encoded images. On the other hand,
the noises arising from several sources, such as social me-
dia (JPEG compression), camera sensors (lighting and blur-
ring), and printers (dithering and Gaussian noise), just to
mention some of the known noise sources, have often a di-
rect impact on the high-frequency components of the en-
coded images. We illustrate these behaviors in Figure 1 (C),
using printed images as examples.

StampOne was designed to address the frequency-related
issues associated with image degradation in strong noisy
conditions. Our method utilizes preprocessing models for
the encoder and decoder, incorporating gradient transform,
wavelet transform, and ”Depthwise” layer [38] to normalize

and balance frequencies of the input data (original images,
message, and encoded images). Furthermore, we have de-
vised a dedicated network for message preparation, aiming
to embed messages into original images and adjust the input
size of the encoder network. For the sake of clarity along the
document, we denote this network as the Message Prepara-
tion Network (MPN), as depicted in Figure 2.

StampOne effectively learns and generates the high and
the low frequencies components (balance frequency den-
sity) in both the encoded images and the recovered mes-
sages, as demonstrated in Figures 1 (A) and (B). The quality
of the encoded images is notably enhanced across multiple
models. Remarkably, the decoder exhibits improved per-
formance, even when decoding small encoded images. We
validate our method by testing it with several variants of U-
shape networks. Notably, our model with AttentionVNet
[30] surpasses the previous state-of-the-art (StegaStamp) in
10% considering the decoding performance.

In summary, the main contributions of this work are:
1. We introduce a novel approach that utilizes gradient and

wavelet processing to convert input data into a specific
frequency range for both the encoder and decoder, en-
suring consistent frequency normalization independent
of the U-shape architecture.

2. We tackle the frequency density balance problem in
GANs, achieving superior image decoding and better
overall image quality.
In Section 2, we conduct a comprehensive review of cur-

rent image steganography models, examining their limita-
tions and drawbacks. This analysis forms the basis for our
proposed approach. In Section 3, we present the impor-
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Figure 2. The complete end-to-end training networks of StampOne consist of several components, including StampOne preprocessor
stages, a U-shaped encoder, a steganography discriminator, an encoder loss function, a U-shaped decoder, a spectral discriminator, and a
decoder loss function. Additionally, the architecture incorporates the Spatial Transformer Network (STN) [23], that improves the decoder’s
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Figure 3. The depicted network is responsible for preparing mes-
sages to be embedded within images. The Message Preparation
Network (MPN) implementations shown in the figure consistently
yield reliable outcomes for both digital and printed images.

tance of exploring the frequency domain in deep learning
networks and outline the specific architectures of our en-
coder and decoder. In Section 4, we extensively evaluate
our results, comparing them with existing robust steganog-
raphy models that have been previously published.

2. Related Work

Within the realm of steganography, the insertion of secrets
can take place in either the spatial [31] or frequency domain
[5, 19, 20, 39] of the image, employing hand-crafted [19] or
learning-based techniques [7, 36, 37]. We review the two
different steganography types (Robust and Non-robust) re-
lated to our work:

Non-robust steganography, Barni et al. [5] proposed
an approach that leverages the Discrete Wavelet Transform
(DWT) to enhance encoded images loss function in specific

regions of an image. To create the encoded image, the DWT
weights of the message are adjusted and added to the DWT
of the original image (DWTencoded = DWTimage + w ×
DWTmessage).

Wavelet Obtained Weights (WOW) [19] and Universal
Wavelet Relative Distortion (UNIWARD) [20] present an
embedding algorithm that utilizes the Syndrome-trellis code
[16] and Wavelet coefficients to hide messages in textured
or noisy areas of the images. The embedding algorithm
evaluates the costs associated with altering pixels between
encoded and original images.

Another model based on Discrete Fourier Transform
(DFT) is proposed by Matthieu Urvoy et al. [39]. In this
model, a message is embedded in the Fourier domain of the
images. The coefficients of encoding are organized into two
symmetrical square patches, which can be represented as a
sum of sine waves (sinusoidal grating).

Robust steganography, StegaStamp [37] is the first
printer-proof steganography model capable of decoding
messages from physically printed images. The authors in-
troduced a novel noise simulation pipeline to replicate print-
ing and digitization distortions based on HiDDeN [48]. To
minimize the noticeable quality gap between the encoded
and cover images during training, the method employs the
LPIPS perceptual loss [46]. The authors eliminated the
bottleneck block within the encoder architecture of UNet,
which compels the network to conceal messages within the
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high-dimensional frequency domain of images. This ap-
proach significantly enhances the visual appearance of the
encoded samples. However, the model faces limitations due
to the structural constraints of its encoder. Consequently,
developing a robust steganography model based on alterna-
tive U-shape structures becomes challenging, as the hidden
message’s integrity may be compromised in the presence of
noise.

Code Face [36] is a comprehensive Machine Readable
Coding (MRC) method for encoding and decoding secret
messages in small face photos for ID documents. It im-
proves the encoded image quality by minimizing the facial
feature distance between encoded and original face pho-
tographs.

RoSteALS [7] leverages the diffusion model in conjunc-
tion with VQGAN [15] to translate both the cover image
and message into latent code space. Subsequently, these la-
tent representations are fused and processed through a gen-
erator to create encoded images, which is developed based
on the diffusion model. While the model does not exhibit
robustness in printer tests, its performance remains compet-
itive with the state-of-the-art concerning robustness against
digital noises like JPEG compression and changes in reso-
lution.

3. Methodology

3.1. Importance of frequency balancing techniques

In the existing models [5, 14, 20, 31, 37, 43], it is com-
monly observed that hiding messages within the texture or
background of an image and avoiding the edges, reduces
the visual perception of artifacts for the majority of encoded
images. Suppressing information at higher frequencies im-
proves the invisibility of artifacts in the encoded images but
reduces the robustness in the decoding process, especially
considering printed images. Conversely, concealing mes-
sages in lower frequencies leads to more noticeable artifacts
[19, 20], albeit improving the resilience of the hidden mes-
sages. Thus, a balance should be found respecting the fre-
quency range in which the hidden information should be
encoded. It is crucial to address the frequency bias issue
in GANs; the spectral density of the high-frequency data
in GAN-generated images significantly deviates from that
of the original images [28, 32]. This discrepancy can have
adverse effects on down-sampling and up-sampling blocks
in the network, making the output prediction sensitive to
minor changes in input images [18, 26, 35, 45]. This prob-
lem is exacerbated in models exhibiting outputs resembling
chessboard patterns or binary code [11].

In Figure 1, we compute the Fast Fourier Transform
(FFT) spectral density of the images and divide them into
low and high frequencies, following a methodology akin
to that of [14]. Figure 1 (A) demonstrates this frequency

mismatch between the inputs and generated outputs of both
robust and non-robust steganography models (such as [4]).
The non-robust steganography model is designed from an
Attention−VNet (pix2pix) [34], here mentioned for refer-
ence purposes. In Figure 1 (B), one can observe a signif-
icant decline in the amplitude of high frequencies in 2D
binary messages, a phenomenon that poses challenges for
decoding steganography networks with low-amplitude fre-
quencies. To further investigate the impact of printing and
digital types of noise, we computed the spectral density of
printed and original images, as depicted in Figure 1 (C).
These types of noise introduce additional patterns in high-
frequency components, thereby increasing the spectral den-
sity.

To overcome these challenges, we propose a hypothesis
that involves preprocessing the input data to achieve a bal-
anced frequency density. This is accomplished by address-
ing three key factors in our encoder and decoder networks:
Firstly, balancing input frequency in robust steganography
GANs using Sobel operation. Secondly, concealing mes-
sages beyond lowest and highest frequency regions of cover
images with DWT. Lastly, amplifying high frequency for
the decoder more than the encoder using a spectral discrim-
inator [18]. The binary 2D messages outputted by our de-
coder contribute to this imbalance, prompting us to employ
a discriminator to amplify high frequencies.

3.1.1 Highlighting high frequency component

By passing the networks’ inputs through a gradient opera-
tion [14, 31], we highlighted high frequency for the encoder
and the decoder (we have only the edges of the images). In
this way, the neural network has the capability to prioritize
learning the highest frequency content over the lowest fre-
quency content, to reduce undesirable aliasing effects, while
preserving important content as much as possible. To rein-
force the high frequencies, we can also use high-frequency
pass filters [44] to remove the lowest frequency, but our ex-
periments show that the Sobel operation is a more stable
operation.

3.1.2 Discrete wavelet transform

We employ Haar wavelet transforms [5] to partition the in-
put gradients into five distinct sub-bands. The top sub-
band, denoted as IG, corresponds to the gradients of the
original images. The subsequent sub-band, LL, captures
low-frequency details, while the remaining sub-bands (LH ,
HL, and HH) primarily represent vertical, horizontal,
and diagonal edges, respectively, thereby capturing high-
frequency information. By applying the wavelet transform
to RGB images, the number of channels in the input data
is increased from 3 to 15, considering that each of the five
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wavelet sub-bands contains three channels (RGB). This fre-
quency representation of the gradient inputs allows us to
emphasize the high-frequency features and facilitates an im-
proved generalization of the model.

3.2. Encoder

The general architecture of the encoder is shown on the top
of Figure 2. It consists of three elements, a preprocessing
block, an U-shape network, and three layers of Convolution
in the last block (CNN block).

Preprocessing block: to address the first two aforemen-
tioned factors explained in the previous section. We pre-
process the inputs of the encoder and the decoder networks
by reshaping the 256-bit binary sequences into a (16 × 16)
2D matrix in grayscale image format. The 2D message
is then converted to 3D in RGB image format, and both
the message and the cover image are subjected to gradient
and wavelet operations. The wavelet transform is applied
to obtain the dimensions of 16 × 16 × 15 for the message
and 256 × 256 × 15 for the original image. The ”Depth-
wise” layer is employed to assign distinct weights to each
of the DWT sub-bands, following the wavelet transform.
The highlighted message in the wavelet domain is then sent
to the message preparation network (MPN).

MPN, which can be comprised of a set of two, three, or
four layers, depending on the message size, is responsible
for translating the message into a format compatible with
the subsequent processing steps. We designed four MPN
as detailed in Supplementary Material. The model demon-
strating the most promising results is depicted in Figure 3.
It shows robustness against various types of noise while pre-
serving acceptable perceptual quality in its encoded images.

The high-level features from both RGB and frequency
signals are added by concatenating the images and mes-
sages in the gradient and wavelet domains. This fused rep-
resentation serves as the input for the next block, the U-
shape network.

U−shape network: We leverage the advantage of
our preprocessing method by integrating it into vari-
ous image-to-image networks, including UNet [33], VNet
[34], Eff−UNet [3], LeViT−UNet [42] ResUNet [41],
Swin−UNet [8], Attention−UNet [30], Attention−VNet
and UNet++ [47]. While these architectures were origi-
nally designed to operate in the spatial domain, we pro-
pose using them in the decomposed high-frequency domain,
represented by the gradient and wavelet coefficients. Our
approach demonstrates superior performance in generating
encoded images with higher visual quality and more ac-
curate high-frequency content, surpassing StegaStamp and
Code Face. We refer UNet as a network that employs max-
pooling in their down-sampling blocks [33], and VNet as
a network that uses only Convolution layers, such as the
pix2pix model [34], in its down-sampling blocks. The de-

tails of these networks are beyond the scope of this research.
CNN block, comprising three 2D convolution layers, is

incorporated to enhance the network’s ability to generate re-
alistic encoded images. The activation functions utilized in
the first two layers are ”Leaky ReLU”, while the activation
function in the final layer is ”Snake”.

3.3. Decoder

Preprocessing block: the decoder follows a similar struc-
ture as the encoder. The gradient and wavelet transformers
of the encoded images are passed through the ”Depthwise”
layer and Spatial Transformer Network (STN) [23]. In the
”Depthwise” layer, each channel of the image frequency
wavelet is assigned with a weight to emphasize the high-
frequency components of the encoded image. The STN is
used to prevent warping and rotation when printing and cap-
turing encoded images by a camera sensor.

U−shape network: the U-shape network is applied,
which involves an identical mirror design for both the en-
coder and the decoder.

CNN block: following the U-shape architecture, a CNN
down-sampling operation is performed in the final block.
The number of downsampling layers is determined by the
size of the message. The output size of the U-shape network
is 256×256×3 resolution, which is subsequently resized by
the downsampling blocks to match the size of the message
(16× 16× 3 for a 256-bit message). To enhance the preci-
sion of the decoder, a convolutional 1D layer is employed at
the end of the decoder network. The final convolutional 2D
layer (filiters=3), using the Snake function [49], recovers
the hidden message from the decoder’s output. In our com-
putational framework, we employ a distinct structure at the
termination of the decoder network, deviating from conven-
tional approaches such as a simplistic CNN akin to StegaS-
tamp. This decision is driven by two key rationales. Pri-
marily, avoiding a linear layer mitigates the network’s ex-
ponential growth in proportion to the size of the messages,
thereby optimizing computational resources. Secondly, em-
pirical analyses affirm the superior efficacy of this structural
alteration, demonstrating improved performance outcomes.

3.4. Steganography and spectral discriminators

In the case of steganography GANs, the discriminator
should be trained to focus on minimizing the difference be-
tween the encoded and original images. With this goal in
mind, we calculate Wasserstein adversarial loss (LSD) [2]
between the discriminator feature output of the encoded and
the original images. This discriminator is introduced by the
StegaStamp model.

The standard GAN frameworks do not perform well in
capturing and reconstructing high-frequency information
from specific image datasets, such as chessboard (binary)
patterns. These patterns contain crucial edges and details,
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requiring the generation of accurate high-frequency com-
ponents [11, 14, 18, 28, 35]. In tackling this challenge,
we employ a spectral discriminator (FFD) inspired by the
SWAGAN model [18]. It is trained simultaneously with the
encoder, decoder, and steganography discriminator to lever-
age both frequency space decomposition and pixel values of
the recovered and actual messages. The SWAGAN model
employed Wavelet Transform of the input. However, we
have chosen to use Fast Fourier Transform (FFT) of the in-
put instead of Wavelet Transform.

3.5. Loss functions

Encoder Loss Function: The encoder loss function (Len)
incorporates color histogram (lColor) [1], perceptual loss
(LPIPS) (lP ) [46], and steganography discriminator (lSD).
It is defined as follows:

Len = λColor × lColor + λP × lP + λSD × lSD (1)

where, the weights of each component, denoted by λColour,
λP , and λSD, are adjusted to balance their respective con-
tributions.

Color Histogram is based on Log-Chroma space and
computes the Euclidean norm of the histogram features (H)
between encoded and original images. LPIPS uses a pre-
trained pyramid network to extract image features from dif-
ferent layers, and the average of these features is used to
measure perceptual differences.

Decoder Loss Function: The decoder loss function
(Lde) includes cross-entropy (lSC) and QS-Attn Contrastive
loss (lQSDe) [21] components, along with the spectral dis-
criminator (lFD). It is defined as follows:

Lde = λSC × lSC + λQSDe × lQSDe + λFD × lFD (2)

where the weights of the loss function components, denoted
by λSC , λQSDe, and λFD, are adjusted accordingly. The
QS-Attn Contrastive loss function employs a self-attention
network to select anchor features and encourages dissimilar
anchors to spread apart, while grouping similar anchors.

3.6. Noise simulation

To enhance decoder robustness in real-world scenarios, we
conducted perturbation or noise self-attack simulations dur-
ing the network training. Various operations were applied to
the images in order to simulate these types of noise, includ-
ing those arising from digital sources, printers, and camera
sensors [13]. Various operations were applied to the images
in order to simulate these types of noise, including gray
transfer, JPEG noise compression, Gaussian noise, affine
noise transformation, sharpen transformation, linear pixel
interpolation, color dithering, random brightness, random
contrast, random hue shift, medium blur, and perspective
warp.

4. Experiments
4.1. Datasets, training details and metrics

Datasets: To perform our training experiments, We uti-
lized sub-sets of two main datasets for training: COCO [25]
and DeepFashion [27] datasets, which consisted of approx-
imately 123k and 800k images, respectively. To evaluate
the performance of our encoder and decoder model under
different noise, we randomly selected 1000 images from
the COCO test dataset. For printer-proof testing, we se-
lected two different datasets of various image datasets. The
first dataset comprised randomly chosen 30 images from
the BSDS500 dataset [29] and 10 images from the Urban
dataset [22]. The results of this dataset are provided in the
Supplementary Material. For the second test set, we specif-
ically selected 40 face images from the VGGFace2 dataset
[9], tailored for face image testing.

Training details: During the training process, we used
a batch size of 10. The coefficients for the encoder loss
function in Equation 1 were set as follows: λColor = 1, λP

= 2, and λSD = 1. For the decoder loss function coefficients
in Equation 2, we set λSC = 1, λQSDe = 1, and λFD = 1.

The models were trained on a single NVIDIA GeForce
RTX 3090 GPU, utilizing the Adam optimizer with an ini-
tial learning rate of 0.0001. The learning rate was decreased
by 10% every 20000 steps.

Metrics: In assessing the quality of the encoded out-
put against the original cover image, we utilize a compre-
hensive set of metrics including Structural Similarity In-
dex Measure (SSIM) [40], deep learning perceptual similar-
ity score as measured by LPIPS [46] and Color Histogram
(ColorHisto)[1]. For the secret decoding, we report stan-
dard bit accuracy (Bit acc), with cyclic error correction code
using Bose–Chaudhuri–Hocquenghem (BCH) codes [17].

4.2. Baseline comparison

Code Face and StegaStamp achieved a message retrieval
capacity of 0.13× 10−3 bpp (100 bits in 400× 400 pixels).
This success relied on error-correcting codes.

RoSteALS model conceals a secret of 100 bits of length
within an image of resolution 256 × 256 × 3, where the
model’s capacity is 0.5× 10−3.

StampOne outperforms Code Face, StegaStamp, and
RoSteALS with a capacity of 0.13 × 10−2 bpp (256 bits)
into image of resolution 256 × 256 × 3, which is approxi-
mately 10 times higher than Code Face and StegaStamp. We
consider the two most robust models of StampOne, namely
the models utilizing Attention−VNet (M1) and UNetPlus
(M2) architectures.

Non-robust model is constructed using two
Attention−Vnet architectures (utilized in pix2pix [34]) for
both the encoder and decoder components. Additionally, it
incorporates a steganography discriminator and loss func-
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Table 1. (A) Encoded image quality Metrics. (B) Decoders’ performances on 40 printed encoded images captured with Samsung S22 Ultra
smartphone. M1 and M2 refer to StampOne models employing Attention−VNet and UNetPlus architectures, respectively. M3 denotes a
non-robust model constructed using two instances of Attention−VNet. The initial four rows consist of high-level robust models, while the
final two rows encompass non-robust models, serving as reference points when decoding messages from printed encoded images.

(A) Encoded images quality (B) Bit acc (%) - VGGFace2 [9]
Methods SSIM (⇑) LPIPS (⇓) ColorHisto (⇓) 6×6 cm 5×5 cm 4×4 cm 3×3 cm 2×2cm

StegaStamp [37] 0.93 ± 0.001 4.92 ± 1.6 6.11 ± 10.5 78 72 70 65 48
Code Face [36] 0.95 ± 0.0002 3.06 ± 0.9 7.32 ± 6.1 55 55 50 38 15
StampOne (M1) 0.98 ± 0.00002 1.25 ± 0.4 5.38 ± 4.9 100 100 100 95 62
StampOne (M2) 0.96 ± 0.00007 2.74 ± 2.38 6.30 ± 4.07 88 85 72 63 43

Non-robust (M3) 0.92 ± 0.001623 1.04± 1.69 2.80 ± 60.8 0 0 0 0 0
RoSteALS [7] 0.95 ± 0.0006 0.04 ± 0.0003 0.09 ± 0.003 0 0 0 0 0

Table 2. Impact of three types of image under different noise types. 1000 images from COCO test dataset are used for the decoder
performance evaluation. Bit accuracy (%) during decoding from encoded images is evaluated under various types and levels of noise. M1
and M2 represent StampOne models utilizing the Attention−VNet and UNetPlus architectures, respectively. On the other hand, M3 refers
to a non-robust model constructed through the utilization of two instances of Attention−VNet.

JPEG (%) Gaussian (Std 0 to 1) Resolution (Pixel)
Methods 70 60 50 0.08 0.06 0.04 (60 × 60) (80 × 80 ) (100 × 100 )

StegaStamp [37] 100 100 100 100 100 100 55 80 91
Code Face [36] 80 88 88 55 75 86 2 11 36
RoSteALS [7] 87 90 94 23 35 53 96 97 98
StampOne (M1) 100 100 100 98 100 100 74 98 100
StampOne (M2) 97 99 100 88 96 99 72 94 99

Non-robust (M3) 0 0 0 13 46 84 0 0 22

Table 3. The bit accuracy (%) during decoding from encoded im-
ages is assessed across varying degrees of contrast and brightness.
M1, M2, and M3 refer to the models listed in Table 2.

Contrast (0 to 1) Brightness (-1 to 1)
Methods 0.05 0.1 0.15 -1 1

StegaStamp [37] 2.0 39 77 100 100
Code Face [36] 0 1 30 90 90
RoSteALS [7] 20 67 85 91 95
StampOne (M1) 100 100 100 100 100
StampOne (M2) 100 100 100 100 100

Non-robust (M3) 0 0 15 0 0

tions similar to those employed in StampOne. However,
during its training phase, we did not incorporate MPN
preprocessing or a spectral discriminator. This model is
mentioned for reference.

4.3. Impact on perceptual quality

Table 1 (A) illustrates the quality of encoded images.
Among Code Face and StegaStamp evaluation, StampOne
exhibits the best performance, with AttentionVnet and UN-
etPlus referred in the table. Additional details regarding
StampOne with other networks can be found in the supple-
mentary material. Regarding the SSIM of the encoded im-

ages, StampOne consistently outperforms other existing ro-
bust models. While StampOne ranks second for ColorHisto
and LPIPS metrics, RoSteALS surpasses it in these metrics.
However, RoSteALS is unable to recover any message from
printed encoded images.

4.4. Robustness

Forty selected images from VGGFace2 underwent encod-
ing and subsequent printing at diverse dimensions, span-
ning from 2 cm by 2 cm to 6 cm by 6 cm (width×height),
employing a consumer Brother L3270CDW printer. To
simulate real-world conditions, we conducted the decoding
tests in an uncontrolled lighting environment and recorded
videos using a Samsung S22 smartphone. The perfor-
mance of our decoders, including AttentionVNet and UN-
etPlus, was compared against other models such as StegaS-
tamp and Code Face. Table 1 (B) illustrates that our model
with AttentionVNet achieved superior performance com-
pared to the other networks, demonstrating its effectiveness
in printer-proof steganography applications. We repeat the
test with other smartphones in the supplementary material.

To evaluate the performance of the decoder, we con-
ducted experiments under various noise distortions, includ-
ing JPEG compression, Gaussian noise, different resolu-
tions, and contrast and brightness variations. The decoder’s
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Figure 4. The results of encoding a message with capacities of 256 bits, 900 bits, 1024 bits, or 4096 bits are presented. The first row
depicts the residual image added to the original images to generate the encoded images.

effectiveness was measured by calculating the percentage
of accurately decoded messages from the encoded images.
The results are detailed in Tables 2 and 3. Our preprocess-
ing techniques, implemented with AttentionVNet and UN-
etPlus, consistently exhibited the best performance across
these experiments. Notably, StegaStamp demonstrates su-
perior robustness, equaling our StampOne model, specif-
ically under JPEG compression, Gaussian, and brightness
(both darkest and lightest). See supplementary material for
results with other Ushape in StampOne.

The concept of high-level robust steganography, ie. be-
ing able to decode messages from encoded images with dig-
ital and printed noise, can be understood through the Table 1
(B), where the messages can be successfully decoded from
printed encoded images.

4.5. Effects of the message size on the quality of
encoded images

Our model is capable of concealing up to 4096 bits of infor-
mation within a cover image of size (256×256 pixel), which
is 20 times more than the current robust steganography
models, StegaStamp, Code Face and RoSteALS [7, 36, 37].
We presented encoded image samples with different capac-
ity sizes in Figure 4. When increasing the capacity, the
Structural Similarity Index (SSIM) between original and en-
coded images decreases in encoded images as shown in Ta-
ble 4. However, LPIPS and ColorHisto are greater for 900
bits model than for 1024 bits model.

Table 4. The encoded image quality of StampOne AttentionVnet
is assessed across different message sizes encoded within them.

Message Size SSIM (⇑) LPIPS (⇓) ColorHisto (⇓)

256 (bits) 0.98 ± 0.00002 1.25 ± 0.4 5.38 ± 4.9
900 (bits) 0.94 ± 0.0003 5.2 ± 11.1 10.0 ± 7.0
1024 (bits) 0.92 ± 0.0004 4.14 ± 8.5 8.7 ± 5.70
4096 (bits) 0.91 ± 0.001 11.1 ± 18.2 14.2 ± 12.8

5. Conclusion

Despite the recent advancements in robust steganography
models, they still exhibit limitations such as the maximum
size of the encoded message, the trade off between the de-
coding accuracy and the perceptual quality of encoded im-
ages, and restricted flexibility in neural network architec-
ture selection. To overcome these limitations, we introduce
StampOne, a novel approach that performs a preprocess-
ing on the frequency domain that can be used in diverse
network architectures to improve printer-proof steganogra-
phy models compared to existing methods, achieving en-
coder and decoder performance enhancements of up to 10%
against previous state-of-the-art models, StegaStamp and
Code Face. The proposed model can conceal messages
up to 4096 bits, although our current optimization focuses
on robust preprocessing network hyperparameters for mes-
sages up to 256 bits. Future work will extend this opti-
mization for larger message capacities and explore various
robust steganography models with balanced network input
frequencies. Additionally, we aim to investigate alternative
methods like diffusion model and normalizing flows, to en-
hance robustness and versatility.
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