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Abstract

The detection of deepfakes is crucial for mitigating the
societal impact of falsified video content. Despite the de-
velopment of various algorithms for this purpose, chal-
lenges arise for detectors in real-world scenarios, espe-
cially when users capture deepfake content from screens
and upload it online or when detectors operate on external
devices like smartphones, requiring the capture of potential
deepfakes through the camera for evaluation. A significant
challenge in these scenarios is the presence of Moiré pat-
terns, which degrade image quality and complicate conven-
tional classification methods, notably deep neural networks
(DNNs). However, the impact of Moiré patterns on the ef-
fectiveness of deepfake detection systems has not been ad-
equately explored. This study aims to investigate how cap-
turing deepfake videos via digital screen cameras affects
the accuracy of detection mechanisms. We introduced the
Moiré patterns by capturing the display of a monitor us-
ing a smartphone camera and conducted empirical eval-
uations using four widely recognized datasets: CelebDF,
DFD, DFDC, and FF++. We compare the performance of
twelve SOTA detectors on deepfake videos captured under
the influence of Moiré patterns. Our findings reveal a per-
formance decrease of up to 33.1 and 31.3 percentage points
for image- and video-based detectors. Therefore, highlight-
ing the challenges posed by Moiré patterns and other nat-
urally induced artifacts is critical for improving the effec-
tiveness of real-world deepfake detection efforts. To facili-
tate further research, we will release the Moiré pattern im-
pact version of CelebDF, DFD, DFDC, and FF++ datasets
with this paper. Our code is available here: https:
//github.com/Razaib-Tariq/deepmoire

1. Introduction

In the digital age, the phenomenon of deepfakes—a port-
manteau of deep learning and fakes—has emerged as a
double-edged sword. On one side, it represents the pinnacle
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Figure 1. Original vs. Moiré Pattern: Comparison between
an original frame (without Moiré pattern) and a camera-captured
frame (with Moiré pattern).

of digital creativity, enabling filmmakers, artists, and con-
tent creators to push the boundaries of imagination [25]. On
the other, it poses a formidable challenge to the very fabric
of truth, offering tools for creating highly convincing digital
forgeries [4]. These manipulated images and videos, often
indistinguishable from genuine content to the untrained eye,
have the potential to distort reality, manipulate perceptions,
and undermine trust in digital communication [44].

This burgeoning capability to distort reality has cat-
alyzed an arms race in digital forensics, spurring re-
searchers and technologists to develop methods capa-
ble of distinguishing authentic content from manipulated
ones [46]. The field of deepfake detection is a testament
to this effort, evolving rapidly from rudimentary analysis
of visual anomalies [58] to sophisticated machine learning
models that scrutinize content at a granular level [13]. Yet,
as detection methods become more advanced, so too do the
techniques for creating deepfakes [37, 55], perpetuating a
cycle of technological escalation.
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Undoubtedly, the urgency of developing robust detection
tools cannot be overstated [26, 30, 54, 56]. And, there is a
need for detection methodologies that are not only effec-
tive in controlled environments but adaptable to the varied
and imperfect conditions of real-world usage [54]. Amidst
this, the challenge of Moiré patterns introduces a nuanced
complexity to the detection of deepfakes, particularly high-
lighting the gap between detection capabilities in controlled
settings (via benchmark datasets) and practical application
challenges. Moiré patterns, often visually intricate and
striking artifacts that arise from the camera’s capture of dig-
ital displays, exemplify one of the unforeseen hurdles in ap-
plying effective deepfake detection in everyday scenarios.

Consider a scenario increasingly common in today’s dig-
ital landscape: an individual encounters a video on a com-
puter screen that raises suspicion of being a deepfake. To
verify its authenticity, they turn to a deepfake detection ap-
plication on their smartphone, capturing the video through
the phone’s camera for analysis. This act of capturing,
seemingly straightforward, unwittingly introduces Moiré
patterns into the image or video (see Fig. 1). These patterns,
a byproduct of the mismatch between the screen’s pixel grid
and the camera’s sensor, distort the digital content in ways
that are often overlooked by human observers but can sig-
nificantly impede the performance of detection algorithms.
The Moiré patterns mask the subtle cues that many deepfake
detectors rely on, potentially leading to misidentification or
false confidence in the content’s authenticity.

This real-world challenge underscores a critical vulner-
ability in our collective defense against digital disinforma-
tion: the efficacy of deepfake detection tools is contingent
not only on their algorithmic sophistication but also on their
resilience to the imperfect conditions under which they are
deployed. The introduction of Moiré patterns through the
simple act of capturing a screen with a camera exemplifies
the kind of practical challenge that can undermine the in-
tegrity of digital media verification processes, highlighting
the need for detection techniques that are robust against a
variety of real-world complications.

This study aims to understand this critical gap. By con-
ducting a comprehensive evaluation of the impact of Moiré
patterns on a wide array of detection algorithms across mul-
tiple datasets, we seek to highlight the vulnerabilities of
current methodologies and contribute to the development of
more resilient detection techniques. The main contributions
of our work are as follows:
• Comprehensive Analysis of Moiré Pattern Impact: We

conducted an extensive empirical study using four deep-
fake datasets and twelve deepfake detectors to assess how
Moiré patterns, introduced by camera-captured deepfake
videos displayed on digital screens, affect the perfor-
mance of deepfake detectors. This is crucial for under-
standing real-world application challenges.

• Moiré Pattern Datasets: For our evaluation, we devel-
oped the first Moiré Pattern-impacted version of the deep-
fake datasets for FF++ [45], CelebDF [36], DFD [24] and
DFDC [9], which we will release with this work.

• Identification of Vulnerabilities and Recommenda-
tions: Through comparative analysis, we highlighted the
specific vulnerabilities of state-of-the-art deepfake detec-
tors to Moiré patterns. Also, we made recommendations
for future research directions, including the need for more
diverse training datasets that include more real-world sce-
narios such as Moiré-impacted videos and other artifacts.

The paper is structured as follows: We examine related
work on deepfake detection and the challenges associated
with the Moiré pattern in Section 2. Following this, Sec-
tion 3 outlines the motivating scenarios, evaluation method-
ology, and experimental settings. In Section 4, we present
our evaluation results along with key insights. Section 5
offers a comprehensive discussion of our findings. Finally,
Section 6 concludes the paper.

2. Related Work
This section will examine the various techniques used to
identify deepfakes, as well as the challenges caused by the
Moiré pattern.
DEEPFAKE DETECTION. The pursuit of reliable deep-
fake detection has led to the development of sophisticated
methodologies, evolving in complexity and specificity to
counter the advancing technology of digital manipulation.
This section elaborates on two primary branches of detec-
tion techniques.

Image-based Detector: At the heart of image-based
deepfake detection lies the meticulous analysis of still im-
ages, seeking out the subtle fingerprints left behind by ma-
nipulation algorithms. Employing machine learning mod-
els, notably convolutional neural networks (CNNs), these
detectors are trained on extensive datasets composed of both
genuine and altered images [17, 18, 20–22, 28, 29, 31–
33, 50–52]. Throughout the training process, the model
becomes adept at discerning between authentic and ma-
nipulated content, extracting critical features such as dis-
crepancies in facial landmarks [41], unnatural texture pat-
terns [34], and anomalies in color distributions [1] or statis-
tical measures [57] that are characteristic of deepfake ma-
nipulations.

Upon evaluating a new image, the detector applies its
learned expertise to extract these defining features, calcu-
lating a probability score that reflects the likelihood of the
image being a product of deepfake technology. This score
represents the culmination of the detector’s analysis, with
thresholding techniques often employed to translate this
probability into a definitive classification—images surpass-
ing a certain likelihood threshold are flagged as deepfakes,
while those below are considered authentic.
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Video-based Detectors: Building upon the foundational
principles of image-based detection, video-based deepfake
detectors introduce an additional layer of analysis by in-
corporating the temporal dimension inherent to video con-
tent. These detectors undertake a dual approach: conduct-
ing frame-by-frame evaluations akin to image-based detec-
tion for spatial analysis and extending their scrutiny to the
temporal dynamics and continuity between frames.

Frame-level analysis in video detectors mirrors the tech-
niques used by their image-based counterparts, with an
emphasis on identifying manipulation within each frame.
However, video-based detectors distinguish themselves by
also analyzing the motion and consistency of objects or
facial features over time, searching for discrepancies that
might indicate manipulation [53]. This temporal analysis
leverages techniques such as motion tracking [35], frame-
to-frame comparison [10], and the detection of unnatural
changes or discontinuities [16], which are often telltale
signs of deepfake interventions. The detector aggregates
the results from individual frames and temporal analysis to
decide the authenticity of the entire video.

Moreover, some video detectors enrich their analysis by
examining the video’s audio track, identifying anomalies
or inconsistencies that might suggest tampering [12]. This
comprehensive approach also includes audio-visual syn-
chronization checks [38], assessing the coherence between
audio and image to further bolster the authenticity assess-
ment [39]. Overall, both image and video deepfake detec-
tors aim to identify manipulation artifacts or inconsistencies
that distinguish deepfake content from authentic content,
with video detectors extending this analysis to temporal dy-
namics and audio-visual coherence. We use both image and
video-based detectors in our evaluations.
CHALLENGES POSED BY MOIRÉ PATTERNS. While
considerable progress has been made in detecting deep-
fakes, less attention has been paid to the impact of Moiré
patterns and other naturally induced artifacts on the detec-
tion accuracy of deepfake detectors. These patterns, often
introduced when digital content is re-captured through an-
other device, can significantly alter the visual information
detectors rely on [42]. A few studies have begun to ad-
dress similar challenges, such as artifact detection in digital
photography and video compression artifacts [2], but the
specific issue of Moiré patterns in the context of deepfake
detection remains underexplored.

Addressing Moiré Patterns: Recent efforts to mitigate
the effects of Moiré patterns have primarily focused on im-
age preprocessing techniques, such as digital filtering and
artifact reduction algorithms [48]. However, these solu-
tions often require a delicate balance between artifact re-
moval and preserving the fidelity of the underlying content,
a challenge that becomes even more complex in the dy-
namic context of video [43]. The adaptation of these tech-

Figure 2. Moiré Pattern-impacted Dataset Generation: The
setup is to display videos from various datasets on a computer
screen. These videos are captured using a smartphone camera,
leading to the recording of the authentic Moiré pattern that ap-
pears on the computer screen.

niques specifically for deepfake detection, where preserving
subtle details is crucial as detectors rely on many artifacts
in deepfake videos to detect them, represents a novel area
of research with significant implications for the field.

3. Methodology
In this section, we cover the motivating scenario, evaluation
settings, including evaluation datasets, the Moiré pattern in-
troduction process, and detectors used in our evaluation.

3.1. Motivating Scenario

As discussed earlier, in the evolving landscape of digital
media, the proliferation of deepfake technology has neces-
sitated the development of sophisticated detection mecha-
nisms. These mechanisms are designed to discern the au-
thenticity of digital content, a task of paramount importance
in the era of information warfare and digital disinforma-
tion [60]. However, the practical application of deepfake
detection technologies often encounters unforeseen chal-
lenges that diminish their effectiveness. An ideal example
of such a challenge is the introduction of Moiré patterns
during the digital content verification process.
SCENARIO OVERVIEW. Imagine an individual who
stumbles upon a video on a digital platform or social media
that, due to its content or context, raises suspicion of being
a deepfake. Seeking to verify its authenticity, the individ-
ual opts to use a deepfake detection application available on
their smartphone. To facilitate the analysis, the individual
captures the video directly from a computer screen using the
smartphone’s camera. This act of capturing, a seemingly in-
nocuous step, inadvertently introduces Moiré patterns into
the captured content.
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TECHNICAL IMPLICATIONS. Moiré patterns arise from
the interference between the pixel grid of the digital screen
and the camera’s sensor array, manifesting as visually com-
plex patterns that can significantly alter the appearance of
the captured content [5]. For deepfake detection algorithms,
particularly those leveraging spatial information for pattern
recognition and abnormality detection, Moiré patterns in-
troduce noise and artifacts that can obscure the subtle ma-
nipulations indicative of deepfakes. This not only leads to
potential false negatives—where deepfakes are mistakenly
identified as authentic content—but also false positives, un-
dermining the reliability and trustworthiness of the detec-
tion mechanism.
RESEARCH SIGNIFICANCE. This scenario underscores
a critical gap in the current state of deepfake detection
methodologies—the discrepancy between their accuracy
under ideal conditions on benchmark datasets and their
practical effectiveness in real-world applications. The pres-
ence of Moiré patterns exemplifies the kinds of environmen-
tal and operational variables that can significantly impact
detection performance. Addressing this challenge requires a
nuanced understanding of both the nature of Moiré patterns
and their interaction with deepfake detection algorithms.
OBJECTIVE. Motivated by this scenario, our study aims
to systematically evaluate the impact of Moiré patterns on
the performance of various deepfake detectors across multi-
ple datasets. By simulating the process of capturing digital
content through a smartphone camera, we introduce real-
world conditions into our evaluation, offering insights into
the robustness of detection algorithms against such artifacts.
Our goal is to highlight the necessity for detection method-
ologies that are not only theoretically sound, but also prac-
tically resilient, capable of adapting to the imperfect inputs
that typify everyday digital content verification efforts.
SCOPE. It is crucial to note that screen captures on the
same devices do not introduce Moiré patterns. Hence, we
do not consider this scenario as it is expected that typi-
cal deepfake detectors will function adequately under these
conditions. Instead, we focus specifically on scenarios,
where potential deepfake media is displayed on one de-
vice (such as a computer screen or television) and deepfake
detectors are utilized on another device (such as a smart-
phone). We maintain a narrow scope for the motivating sce-
nario to facilitate thorough evaluation. However, we will
discuss the implications of this setting in Section 5.

3.2. Evaluation Settings

To accurately evaluate the effect of Moiré patterns on deep-
fake detection performance, we devised a meticulous ex-
perimental setup. This setup incorporates four deepfake
datasets and twelve deepfake detection methods.
DATASET SELECTION AND PREPARATION. We se-
lected four popular deepfake benchmarking dataset for

Table 1. Dataset Distribution: We generated a total of 536 Moiré
pattern (MP) videos using the original (OG) real and deepfake
videos from FF++, DFD, DFDC and CelebDF datasets.

Datasets Total Videos OG-Videos MP-Videos
Real Fake Real Fake

DF (FF++) 100 25 25 25 25
F2F (FF++) 100 25 25 25 25
FS (FF++) 100 25 25 25 25
NT (FF++) 100 25 25 25 25
DFDC 328 82 82 82 82
DFD 108 28 28 28 28
CelebDF 232 58 58 58 58

our experiments: (i) FaceForensics++ (FF++) [45], (ii)
Celebrity Deepfake (CelebDF) [36], (iii) Deepfake Detec-
tion (DFD) [24] and (iv) Deepfake Detection Challenge
(DFDC) [9]. For each dataset, videos were systematically
processed to generate two variants: the original, unaltered
videos and their counterparts with Moiré patterns. This
dual-version setup facilitates a direct comparison of detec-
tor performances under standard and compromised condi-
tions, providing a clear lens through which the impact of
Moiré patterns on detection accuracy can be assessed. Note
that we utilized the uncompressed version of all datasets,
ensuring that no additional compression artifacts were in-
troduced, thereby isolating the evaluation to Moiré patterns.
However, it is important to acknowledge that employing
compressed versions could significantly amplify the impact
of performance degradation.
DEVELOPMENT OF MOIRÉ PATTERN DATASET. To
authentically introduce Moiré patterns, we designed a
dataset generation procedure as shown in Fig. 2. This in-
volved the playback of selected videos from our datasets
on a high-resolution digital screen, followed by their re-
capture using a smartphone camera. This process is de-
signed to mimic a realistic scenario in which an individual
uses a handheld device to capture digital content displayed
on another screen.

Experimental Setup: We employed a high-resolution
(1080p) digital screen to exhibit the selected deepfake
videos. These videos were subsequently captured using
a high-definition smartphone camera (Samsung S22 Plus),
positioned to simulate a natural recording scenario typical
of an average user. Through this configuration, we amassed
a corpus of 536 videos featuring the Moire pattern, each
lasting approximately 10 seconds. However, the additional
processing time required for file opening and saving re-
sulted in a 30-second duration for recording each video. To
maintain the device’s operational integrity, we conducted
multiple 30-minute recording sessions.

Controlled Variables: To ensure consistency across
recordings, we meticulously controlled several variables.
These included the distance between the camera and the
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screen, the angle of capture, and ambient lighting condi-
tions. Additionally, we standardized the camera settings,
such as aperture, shutter speed, and ISO, to minimize po-
tential variations that could affect the visibility of Moiré pat-
terns. Notably, we deliberately fixed the camera in a consis-
tent position to capture only the front-facing angle, thereby
reducing variability between the captured video and the
original footage. It is important to emphasize that the only
alteration in the captured video is the introduction of the
Moiré pattern. We intentionally deferred addressing vari-
ations such as different smartphone cameras, screen types,
capture angles, motion blur, and other factors for more ex-
tensive exploration in future studies.
VIDEO SELECTION. We curated a subset of videos from
FF++, CelebDF, DFD, and DFDC datasets. To ensure un-
biased selection, we employed a Python script for random
sampling across these datasets. Details regarding the num-
ber of videos used in our experimentation are outlined in
Table 1. Maintaining a balanced representation, we adhered
to a 1:1 ratio of real to fake videos. Each original video
and its corresponding moire pattern variant were matched
with their respective deepfake counterparts. Thus, for ev-
ery original video, our dataset comprises four distinct cate-
gories: the original real video, its deepfake counterpart, the
real video featuring a moire pattern, and the corresponding
moire-patterned deepfake video, respectively.
SELECTION OF DEEPFAKE DETECTORS. In recog-
nizing the diverse landscape of deepfake detection tech-
nologies, we selected a comprehensive array of detectors
for evaluation. This selection spans both image-based and
video-based models, incorporating a variety of underlying
algorithms to ensure a broad assessment of current detec-
tion capabilities.

Image-based Detectors: These models focus on analyz-
ing individual video frames for signs of manipulation. Their
selection was based on demonstrated efficacy in identify-
ing deepfake artifacts within still images, reflecting a wide
range of detection strategies.

1. Self-Blended Images (SBIs) [47] serve as synthetic
training data, aiding robust classifier training by mim-
icking common deepfake manipulation artifacts.

2. Multi-attentional Deepfake Detection (MAT) [61] em-
ploys a fine-grained classification approach through a
multi-attentional framework.

3. Rossler et al. (XNet) [45] adapt XceptionNet by re-
placing the final layer and training for enhanced perfor-
mance.

4. ForgeryNet (FN) [15] adapt XceptionNet and modifies
for applications such as image and video classification,
spatial and temporal localization, and enhancing facial
manipulation detection in real-world scenarios.

5. Capsule-forensics (CF) [40] excels in capturing hier-
archical relationships and spatial hierarchies in data,

particularly beneficial for detecting forged media con-
tent. It integrates dynamic routing algorithms and intro-
duces random noise during training to enhance robust-
ness against various forgery attacks.

6. The ID-unaware Deepfake Detection Model
(CADDM) [11] incorporates an Artifact Detection
Module (ADM) and utilizes the Multi-scale Facial Swap
(MFS) method during training. ADM identifies artifact
areas in images, reducing reliance on global identity
features, while MFS generates synthetic images with
annotated artifact areas for training enhancement.

7. Coccomini et al. (CCViT) [7] combine convolutional
and transformer architectures for deepfake detection,
leveraging EfficientNet B0 as a pre-trained convolutional
network. This approach introduces a simple yet efficient
voting scheme for inference, aggregating scores from
multiple faces in videos to determine the presence of ma-
nipulation.

8. Attention-based Deepfake detection Distiller
(ADD) [27] utilize frequency attention and multi-view
attention distillation techniques within a Knowledge
Distillation framework to enhance the detection of
highly compressed deepfake images.

Video-based Detectors: Leveraging temporal informa-
tion across video frames, these detectors are designed to
uncover inconsistencies or artifacts indicative of video ma-
nipulation. Their inclusion allows us to assess the added
value of temporal analysis in improving detection accuracy,
especially in the presence of Moiré patterns.

1. Altfreezing [59] introduces a training strategy suitable
for data with temporal elements. It involves partitioning
the model’s weights into spatial and temporal groups and
alternately freezing one group’s weights during training.

2. A fully temporal convolution network (FTCN) [62]
emphasizes temporal cues in video face forgery detec-
tion. Unlike conventional methods, it prioritizes learn-
ing temporal features by constraining spatial-related pro-
cessing. This focus enables it to effectively capture
short-term flickering and inconsistencies in manipulated
face videos.

3. LRNet [49] integrates precise geometric features with
temporal modeling. It preprocesses face images to ex-
tract geometric information, refines landmarks using the
Lucas-Kanade algorithm and a Kalman filter, and incor-
porates them into feature sequences for classification by
a two-stream Recurrent Neural Network (RNN). We em-
ployed LRNet with blazeface (BF) and retinaface (RF)
configurations.

4. LipForensics [14] entails pre-training a convolutional
neural network (CNN) on lipreading tasks using real
videos to extract rich representations sensitive to anoma-
lous mouth dynamics. Subsequently, the temporal net-
work is fine-tuned on forged data while maintaining the
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Figure 3. Image-based Deepfake Detectors: Detection performance in terms of AUC and F1-score of eight deepfake detectors on four
popular deepfake datasets. The x-axis is ordered based on the lowest to highest (left to right) in ascending order of the performance of
detectors on the original (OG) for each metric and dataset. The average value has been placed to the far right of each score. We observed a
performance reduction of 8.4 percentage points on average and up to 33.1 percentage points in the worst case.

fixed feature extractor. This approach effectively tar-
gets inconsistencies in high-level semantic mouth move-
ments, resulting in superior generalization.

Note that to avoid any bias, we exclude Altfreezing and
FTCN from our evaluations on the FF++ dataset, as these
methods utilize the entire FF++ dataset as the training set.
PREPROCESSING FOR EVALUATION. The original
videos and Moiré pattern videos were standardized to a du-
ration of 10 seconds for experimental consistency. Face ex-
traction for image detection was performed using the dlib
library [23]. Video-based detection utilized the selected
video files directly as inputs. In LRnet [49], experiments
were conducted based on two scenarios outlined in the
original paper’s code: employing BlazeFace [3] and Reti-
naFace [8]. For LipForensics [14], cropped images focusing
on the mouth area from each video were utilized.
PERFORMANCE ASSESSMENT METRICS. To rigor-
ously evaluate the influence of Moiré patterns on deepfake
detection performance, we utilized a range of established
metrics, encompassing accuracy, area under the ROC curve
(AUC), precision, recall, and F1-score. These metrics were
chosen to afford a holistic assessment of each detector’s ef-
ficacy, furnishing insights into their performance across di-
verse scenarios. Due to space constraints, we present AUC
and F1 scores solely for the eight image-based detectors,
while results for all metrics are provided for video-based
detectors. Additionally, for the curious reader, we intend
to include these results in tabular format within our code

repository.

4. Results
In this section, we will present and analyze important ob-
servations and findings derived from the obtained results.
IMAGE-BASED DETECTOR PERFORMANCE. Figure 3
shows the performance of image-based detectors, with
Original (OG) results depicted in blue and Moiré Pattern
(MP) results in orange. Across eight state-of-the-art deep-
fake detectors evaluated in this experiment, performance
typically ranged from low 80s to high 90s on various met-
rics for the OG datasets. However, we observed an average
8.4 percentage point decrease in performance on Moiré-
Impacted datasets, escalating to 33.1 percentage points in
the most extreme cases. For example, on the FF++ dataset,
MAT, the top performer on OG data, experienced a drop in
performance from 99.0% (AUC) and 97.5% (F1) to 89.8%
(AUC) and 85.3% (F1), respectively. Similarly, for DFD,
DFDC, and CelebDF datasets, the F1-score decreased from
83.3% (MAT), 92.9% (CCViT), and 91.2% (MAT) to 75.6%
(MAT), 82.1% (CCViT), and 81.1% (MAT), respectively.
Overall, our evaluation highlights the resilience of state-of-
the-art image-based detectors against deepfake manipula-
tion in original datasets, albeit with notable performance
degradation in the presence of Moiré patterns. Understand-
ing these performance variations is crucial for advancing
the robustness of detection systems in real-world scenarios,
where not just Moiré patterns but other naturally induced
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Table 2. Video-based Deepfake Detectors: Detection performance of four detectors on four deepfake dataset. Here, OG and MP
represent the performance on original and moire pattern datasets, whereas Diff. represents the performance difference.

Dataset Method Acc AUC Precision Recall F1-Score
OG MP Diff. OG MP Diff. OG MP Diff. OG MP Diff. OG MP Diff.

DF (FF++)
LRNet+BF 78.0 60.4 17.6↓ 87.2 64.4 22.8↓ 80.0 65.2 14.8↓ 80.0 62.5 17.5↓ 80.0 63.8 16.2↓
LRNet+RF 76.0 64.0 12.0↓ 83.1 75.5 7.6↓ 67.6 65.7 1.9↓ 100.0 92.0 8.0↓ 80.6 76.7 4.0↓
LipForensics 98.0 84.0 14.0↓ 100.0 95.8 4.2↓ 100.0 89.3 10.7↓ 100.0 100.0 0.0 100.0 94.3 5.7↓

F2F (FF++)
LRNet+BF 52.0 55.1 3.1↑ 51.3 51.3 0.0 60.0 53.6 6.4↓ 12.0 62.5 50.5↑ 20.0 57.7 37.7↑
LRNet+RF 56.0 54.0 2.0↓ 56.2 60.2 4.1↑ 57.1 64.7 7.6↑ 64.0 44.0 20.0↓ 60.4 52.4 8.0↓
LipForensics 100.0 68.0 32.0↓ 100.0 95.4 4.6↓ 100.0 95.8 4.2↓ 100.0 92.0 8.0↓ 100.0 93.9 6.1↓

FS (FF++)
LRNet+BF 54.0 52.1 1.9↓ 62.3 65.0 2.7↑ 71.4 78.6 7.1↑ 40.0 45.8 5.8↑ 51.3 57.9 6.6↑
LRNet+RF 66.0 52.0 14.0↓ 69.3 46.8 22.5↓ 65.4 51.2 14.2↓ 68.0 84.0 16.0↑ 66.7 63.6 3.0↓
LipForensics 100.0 96.0 4.0↓ 100.0 99.0 1.0↓ 100.0 100.0 0.0 100.0 92.0 8.0↓ 100.0 95.8 4.2↓

NT (FF++)
LRNet+BF 42.0 45.8 3.8↑ 47.2 48.4 1.2↑ 75.0 58.3 16.7↓ 12.0 29.2 17.2↑ 20.7 38.9 18.2↑
LRNet+RF 50.0 50.0 0.0 49.4 50.2 0.7↑ 51.5 77.8 26.3↑ 68.0 28.0 40.0↓ 58.6 41.2 17.4↓
LipForensics 94.0 68.0 26.0↓ 98.9 86.4 12.5↓ 100.0 86.4 13.6↓ 92.0 76.0 16.0↓ 95.8 80.8 15.0↓

DFD

AltFreezing 72.2 53.7 18.5↓ 83.8 63.7 20.1↓ 68.6 65.4 3.2↓ 92.3 65.4 26.9↓ 78.7 65.4 13.3↓
FTCN 79.6 51.9 27.8↓ 90.4 59.1 31.3↓ 84.6 53.9 30.8↓ 86.3 60.9 25.4↓ 85.4 57.1 28.3↓
LRNet+BF 52.9 57.4 4.5↑ 55.4 57.8 2.5↑ 55.2 59.3 4.1↑ 64.0 61.5 2.5↓ 59.3 60.4 1.1↑
LRNet+RF 64.8 57.4 7.4↓ 60.1 58.1 2.0↓ 76.9 53.5 23.4↓ 38.5 88.5 50.0↑ 51.3 66.7 15.4↑
LipForensics 59.3 53.7 5.6↓ 76.7 62.1 14.6↓ 70.4 68.4 2.0↓ 73.1 50.0 23.1↓ 71.7 57.8 13.9↓

DFDC

AltFreezing 78.0 51.2 26.8↓ 83.7 71.5 12.2↓ 84.2 74.3 9.8↓ 74.1 65.2 8.9↓ 78.7 69.4 9.4↓
FTCN 70.4 50.8 19.6↓ 78.0 54.8 23.2↓ 62.1 33.8 28.3↓ 69.7 43.8 25.9↓ 65.6 38.1 27.6↓
LRNet+BF 61.7 67.7 6.1↑ 60.1 73.3 13.3↑ 62.2 71.4 9.2↑ 77.7 62.5 15.2↓ 69.1 66.7 2.4↓
LRNet+RF 61.0 50.0 11.0↓ 59.9 55.0 4.9↓ 60.5 61.6 1.2↑ 71.0 59.9 11.2↓ 64.7 58.9 5.8↓
LipForensics 71.8 59.9 11.9↓ 83.8 71.0 12.8↓ 79.5 65.9 13.6↓ 80.5 80.0 0.5↓ 80.0 72.3 7.7↓

CelebDF

AltFreezing 56.9 50.9 6.0↓ 82.3 60.1 22.2↓ 88.1 57.0 31.1↓ 63.8 77.6 13.8↑ 74.0 65.7 8.3↓
FTCN 54.3 49.1 5.2↓ 70.0 46.1 23.8↓ 75.9 98.3 22.4↑ 72.7 67.5 5.3↓ 74.3 80.0 5.7↑
LRNet+BF 50.0 48.2 1.9↓ 51.9 48.8 3.1↓ 56.5 60.7 4.2↑ 22.4 30.9 8.5↑ 32.1 41.0 8.9↑
LRNet+RF 50.0 50.0 0.0 49.0 53.2 4.2↑ 50.5 54.6 4.0↑ 86.2 41.4 44.8↓ 63.7 47.1 16.6↓
LipForensics 50.9 52.6 1.7↑ 78.2 69.9 8.2↓ 68.4 67.7 0.7↓ 89.7 72.4 17.3↓ 77.6 70.0 7.6↓

Average (ALL)

AltFreezing 69.0 51.9 17.1↓ 83.3 65.1 18.1↓ 80.3 65.6 14.7↓ 76.7 69.4 7.3↓ 77.1 66.8 10.3↓
FTCN 68.1 50.6 17.5↓ 79.5 53.4 26.1↓ 74.2 62.0 12.2↓ 76.2 57.4 18.9↓ 75.1 58.4 16.7↓
LRNet+BF 55.8 55.2 0.6↓ 59.3 58.4 0.9↓ 65.8 63.9 1.9↓ 44.0 50.7 6.7↑ 47.5 55.2 7.7↑
LRNet+RF 60.5 53.9 6.6↓ 61.0 57.0 4.0↓ 61.4 61.3 0.1↓ 70.8 62.5 8.3↓ 63.7 58.1 5.6↓
LipForensics 82.0 68.9 13.1↓ 91.1 82.8 8.3↓ 88.3 81.9 6.4↓ 90.8 80.3 10.4↓ 89.3 80.7 8.7↓

artifacts could be present.

VIDEO-BASED DETECTOR PERFORMANCE. Table 2
presents the results of video-based detectors across five
performance metrics: Accuracy, AUC, Precision, Recall,
and F1-score. For each metric, we provide results for
OG datasets, MP datasets, and the performance difference
(Diff.), with arrows indicating performance drops or in-
creases. Across all metrics, we observed a general trend
of performance decrease, averaging 9.1 percentage points
overall and reaching 44.8 percentage points in the most ex-
treme cases. In the case of the FF++ dataset, LipForensics,
the top performer in terms of AUC, experienced an average
performance drop of 8.3 percentage points and up to 14.6
percentage points in the worst case. It is noteworthy that in
the FF++ case, none of the other metrics conclusively deter-
mined a winner, as all detectors generally performed signifi-
cantly lower on them. In contrast to FF++, for DFD, DFDC,
and CelebDF datasets, performance results remained con-
sistent across all metrics. For instance, FTCN emerged as
the best performer on DFD, but experienced a 31.3 per-
centage point drop in AUC score. On DFDC and CelebDF
datasets, AltFreezing saw decreases of 12.2 and 22.2 per-

centage points in AUC scores, respectively. In summary,
our findings underscore the challenges faced by video-based
deepfake detectors, with a consistent trend of performance
decline observed across various metrics when subjected to
Moiré patterns. These insights emphasize the need for fur-
ther research and development efforts to enhance the effi-
cacy of not just spatial detectors (i.e., image detectors), but
also spatiotemporal detectors against naturally induced ar-
tifacts in real-world settings.

IMPACT OF METRIC CHOICE ON PERFORMANCE
NUMBERS. Our observations yield three significant in-
sights: (i) AUC scores tend to surpass accuracy and F1-
score substantially (refer to Fig. 3 and Table 2). Given the
absence of class imbalance in our dataset, we attribute this
discrepancy in performance values to threshold dependency
and the calculation methods of accuracy and AUC scores.
Specifically, accuracy is contingent on the chosen classifica-
tion threshold, measuring performance at a specific thresh-
old, which is 0.5, whereas AUC evaluates the model’s dis-
crimination ability across all possible thresholds. (ii) No-
tably, the reliance on finding the optimal threshold is no-
tably higher within the FF++ dataset for the evaluated de-
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tectors compared to other datasets. This observation is un-
derscored by LipForensics’ average AUC score of 99.7% on
OG and 94.2% on MP within the FF++ dataset, while accu-
racy and F1-score hover around 50% (refer to Table 2). (iii)
The introduction of Moiré patterns resulted in varied perfor-
mance impacts across metrics, with no discernible trend ob-
served (refer to Table 2). Future investigations should delve
into these trends to provide insights. Overall, these insights
underscore the importance of carefully considering metric
choices to accurately assess the effectiveness of deepfake
detection algorithms across diverse datasets.
CASES WHERE PERFORMANCE INCREASED. In Ta-
ble 2, several instances are highlighted where performance
improved for Moiré-impacted datasets. However, it is note-
worthy that in most cases, the original performance was no-
tably low, hovering around or below 50%. Consequently,
even with improvements, the performance often remained
within the 50-60 range, which may not convey significant
meaning. Moreover, in some cases, while precision in-
creased, recall decreased, resulting in either a slight de-
crease or improvement in the F1-score. There were two
rare cases of notable improvement: LRNet+BF for DFDC,
which we observed an increase in AUC from 60.1% to
73.3%, and FTCN for CelebDF, which witnessed an im-
provement in F1-score from 74.3% to 80.0%. Upon fur-
ther investigation, we found that while LRNet+BF exhibited
an increase in AUC, its F1-score decreased from 69.1% to
66.7%. Similarly, for FTCN, while the F1-score improved,
the AUC score decreased from 70.0% to 46.1%. These find-
ings underscore the need for future research to delve deeper
into the impact of different metrics, as recommended by
previous studies [30].

5. Discussion and Future works
LIMITED SCENARIO SCOPE. Our study focuses on a spe-
cific method of generating Moiré patterns—capturing a dig-
ital screen with a smartphone camera. While this approach
effectively highlights the vulnerability of detectors to such
patterns, it does not encompass all potential sources of these
artifacts in digital content. For example, Moiré patterns can
also arise from the interaction of various digital compres-
sion algorithms. Expanding the scope to include these sce-
narios could yield a more comprehensive understanding of
the challenge in future investigations.
VARIABILITY IN MOIRÉ PATTERNS. Our current sce-
nario does not consider the variability in Moiré pat-
terns stemming from different screen-camera combinations,
lighting conditions, and capture angles. These factors
can significantly influence the appearance and intensity
of Moiré patterns, potentially impacting detection algo-
rithms in nuanced ways not fully explored in our study.
Addressing these variables and including recent deepfake
datasets [6, 19] will be a focal point of our future work.

USER BEHAVIOR AND PRACTICALITY. An underlying
assumption in our study is that individuals would opt for
or have the capability to utilize a smartphone app for cap-
turing and analyzing suspect content displayed on another
screen. While this scenario is pivotal, there may exist al-
ternative methods of content verification, such as capturing
screenshots on the same device, which pose minimal threat
to detection performance. Nonetheless, exploring various
user behaviors that could lead to the introduction of Moiré
patterns and consequent reduction in detection performance
was imperative.

FOCUS ON MOIRÉ PATTERNS OVER OTHER ARTI-
FACTS. Although Moiré patterns pose a significant and re-
alistic challenge, focusing exclusively on them might over-
look other artifacts or issues introduced during the capture
process, including motion blur, focus inconsistencies, or
digital compression artifacts, which could also influence de-
tection performance. Therefore, future research endeavors
should explore these avenues as well.

FILTERING WITH IMAGE PROCESSING. Employing im-
age processing techniques to remove Moiré patterns before
inputting images into detectors presents a potential solution.
However, our preliminary analysis indicates that filtering
Moiré patterns also eliminates certain features utilized by
deepfake detectors to discern between authentic and manip-
ulated content. Nonetheless, further exploration of this ap-
proach is warranted in future investigations.

6. Conclusion

Our work highlights the significant impact of Moiré pat-
terns on deepfake detection. Our findings demonstrate a re-
duction in the performance of both image- and video-based
deepfake detectors by 33.1% and 31.3%, respectively, when
confronted with Moiré patterns. Moreover, we release the
Moiré patterns version of four popular benchmark datasets,
facilitating researchers and developers in refining the per-
formance of their deepfake detectors. Moving forward, we
plan to extend this research by curating a more comprehen-
sive real-world Moiré pattern dataset encompassing various
smartphone cameras, screen types, capture angles, motion
blur, artifact types, and other pertinent factors.
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