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In this supplementary document, we provide a brief de-
scription of the methods used for comparison (Sec. 1), re-
port additional ablation studies (Sec. 2), additional results
(Sec. 3), and robustness analysis (Sec. 4). We also show
some experiments carried out on social networks in a few-
shot scenario (Sec. 5). Finally, we enlarge our initial dataset
with additional synthetic generators and carry out further
experiments on generalization (Sec. 0).

1. Reference methods

In our experimental analysis we included the following
methods:

(a) Wang et al. [24] is a CNN detector based on ResNet50
and represents a reference in the research commu-
nity. This work also introduced the large dataset
(LSUN/ProGAN) extensively adopted for model train-
ing in subsequent works.

(b) Gragnaniello et al. [11] proposes a simple modifica-
tion to the ResNet50 architecture which allows to bet-
ter preserve low-level forensic traces and is trained on
the same dataset introduced in [24].

(c) Mandelli et al. [17] relies on the ensemble of five
EfficientNet-B4 networks trained on different datasets.
At test-time the scores of randomly selected patches
are aggregated: if at least one patch is detected as syn-
thetic, then the entire image is classified as synthetic.

(d) PatchForensics [4] develops a fully-convolutional
classifier based on local patches with limited receptive
fields over an XceptionNet backbone.

(e) Liu et al. [16] is a detector that exploits the inconsis-
tency between real and fake images in the represen-
tations of the learned noise patterns. This spatial in-
formation is combined with frequency information to
improve the classification.

(f) LGrad [21] works on the gradients extracted through a
pre-trained CNN model in order to filter out the content
of the image and transform a data-dependent problem
into a transformation-model dependent problem.

(g) Corvi et al. [6] performs strong augmentation to gain
robustness and increase generalization and is trained
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Figure 1. Average AUC for our approach considering different
classifiers and different features on the original dataset (top) and
after random compression and resizing (bottom). Left: 1k images,
Right: 10k images.

on a large dataset of latent diffusion models.

(h) Ojha et al. [20] uses a large dataset of real and syn-
thetic images to train a simple classifier working on
pre-trained CLIP features.

(i) DIRE [25] is based on the idea that synthetic images
can be reconstructed better than real images by a pre-
trained model. To this end a ResNet-50 is trained in
two different ways, using ADM images (DIRE 1) and
StyleGAN images (DIRE 2), respectively.

() NPR [22] works on residual images computed as the
difference between the original image and its interpo-
lated version. The classifier is a ResNet-50 trained on
only 4 classes of the ProGAN dataset.

2. Additional ablation study

In Section 4 of the paper we describe the CLIP-based detec-
tor used in all experiments. In the proposed procedure two
key design choices are made: i) we extract features from the
next to last layer of the CLIP ViT L/14 architecture; and i)
we use a SVM classifier, trained on a limited set of refer-
ence features. Here we test alternative solutions, that is:

* extracting features from the last layer of the architecture;
* using other classifiers: Logistic Regression (LR), Maha-



| Families of Generators ‘

GAN Diffusion Comm. Tools Average
Method AUC/Acc AUC/Acc AUC/Acc AUC/Acc
Wang et al. 92.1/69.4 55.8/50.3 50.2/49.8 66.0/56.5
PatchFor. 84.9/53.6 76.4/50.4 50.5/50.0 70.6/51.3
Grag. et al. 95.8/90.1 70.8/57.0 41.8/43.6 69.5/63.6
Mand. et al. 88.9/81.6 55.8/53.7 22.6/32.9 55.7156.1
Liu et al. 99.0/89.7 79.97169.5 30.8/42.9 69.9/67.4
Corvi et al. 72.7/52.1 91.5/75.1 82.1/62.8 82.1/63.3
LGrad 87.8/76.4 69.2/60.4 48.3/52.1 68.4/63.0
QOjha et al. 96.1/85.4 82.0/63.4 73.8/68.3 84.0/72.4
DIRE-1 65.9/64.4 71.6/72.8 50.2/49.9 62.5/62.4
DIRE-2 65.1/60.1 70.4/65.8 453/49.9 60.3/58.6
NPR 89.5/79.7 82.0/68.1 49.3/50.1 73.6/66.0
Ours 1k 91.2/76.4 92.1/76.2 76.6/54.5 86.6/69.0
Ours 1k+ 86.2/74.2 89.9/79.9 85.3/72.6 87.1/75.6
Ours 10k 92.4/79.1 92.6/73.3 80.5/52.6 88.5/68.3
Ours 10k+ 89.3/74.9 91.8/77.2 87.0/67.3 89.4/73.1

Table 1. Comparison with SOTA methods in terms of AUC and
Accuracy. We report the mean AUC and Accuracy for each family
of generators and the global average.

| Families of Generators ‘

GAN Diffusion Comm. Tools Average
Method AUC/Acc AUC/Acc AUC/Acc AUC/Acc
Wang et al. 79.2/62.0 59.3/50.4 44.1/49.9 60.9/54.1
PatchFor. 54.2/50.0 64.8/50.3 62.9/50.1 60.7 /50.1
Grag. et al. 89.0/67.6 67.9/50.8 47.3/50.0 68.1/56.1
Mand. et al. 69.2/55.1 50.6/50.8 44.7149.6 54.9/51.9
Liu et al. 54.4/51.5 56.3/51.1 53.0/50.7 54.6/51.1
Corvi et al. 74.0/55.1 77.3/62.1 52.1/50.1 67.8/55.8
LGrad 52.0/50.9 48.0/50.5 49.4/50.4 49.8/50.6
Ojha et al. 86.1/73.7 73.7/59.8 49.6/50.6 69.8/61.4
DIRE-1 47.6/50.2 51.0/50.5 50.1/49.9 49.6/50.2
DIRE-2 47.7149.6 52.3/525 45.3/49.9 48.4/50.7
NPR 48.7/50.2 50.0/49.8 56.0/50.1 51.6/50.0
Ours 1k 76.2/68.9 80.6/71.2 72.2/60.7 76.3/66.9
Ours 1k+ 75.0/67.2 87.8/71.8 83.4/65.7 82.1/70.3
Ours 10k 76.9/63.6 81.1/63.7 73.0/52.4 77.0/59.9
Ours 10k+ 78.2/69.0 89.3/78.7 84.7/66.4 84.1/71.4

Table 2. AUC/Accuracy in the presence of post-processing. All
images have been randomly cropped, resized and compressed to
simulate a realistic scenario on the web.

lanobis distance (MAH), Gaussian Naive Bayes classifier

(GNB), Soft voting k-Nearest Neighbor (SNN) [19].
In Figure 1, we show the results in terms of average AUC
over the dataset described in Section 3 (main paper) using
both original images and images impaired by common post-
processing steps such as recompression and resizing. For all
detectors, we consider the versions 1k and 10k (1000 and
10000 reference images per class, respectively).

In all cases, the SVM classifier seems to ensure the best
performance, followed closely by the Logistic Regression,
while the other classifiers provide a less consistent perfor-
mance. Using features from the next-to-last layer is almost
always preferable to using features from the last layer, and
this happens always with the SVM classifier. These results
motivated our design choices.
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Figure 2. Robustness analysis in terms of AUC carried out on the
Stable Diff. 2, SDXL, DALL-E 3, DALL-E 2, Midjourney, and
Firefly generation models of the SynthBuster dataset [1].

3. AUC vs Accuracy

In this Section we present additional results on the synthetic
generators analyzed in the main paper aggregated by family
(GAN, Diffusion, Commercial tools). Results are not only
in terms of AUC but also of balanced accuracy computed
with a fixed threshold of 0.5. Indeed in a practical scenario
a threshold must be set to discriminate between real and
fake images, which is not a trivial task as can be seen in
Table 1. In fact, in the absence of an adequate calibration
procedure, a significant drop between AUC and accuracy
is often observed. However, our approach provides good
results even in this challenging context, especially on post-
processed images (Tab. 2) where most methods are equiva-
lent to flipping coins.

4. Additional robustness analysis

In Section 5 of the main paper we provide some results on
the robustness of SOTA and proposed methods in the pres-
ence of image impairments. Due to lack of space, how-
ever, we show only some very synthetic results, averaged
on all kinds of post-processed images. In Fig. 2, we ana-
lyze robustness in more detail as a function of JPEG Qual-
ity Factor, ranging from 100 to 60, and resizing scale, going
from 125% to 25%. In addition, we consider also another
compression method, WebP, which is gaining popularity on
social networks but has been rarely considered in experi-
mental analyses. Images are from the SynthBuster dataset
[1], generated by Stable Diffusion 2, SDXL, DALL-E 2,
DALL-E 3, Midjourney, and Firefly. We show results
(AUC) only for the SoTA methods that proved most com-
petitive in terms of robustness, Corvi and Ojha. For our
method we consider again the versions with 1k or 10k real
and fake reference images, and the corresponding versions,
1k+ and 10k+, with the same number of images including
random compression and resizing.

Ojha suffers some performance losses, up to 10 points,
in the presence of compression, be it JPEG or WebP, and a
much more rapid decline with resizing, to the point of be-



AUC/Acc ‘ Social network: X ‘

Method ‘ DALL-E3  Midjourney FireFly ‘ Average
Wang et al. 22.5/50.0 36.7/50.0 65.3/50.0 41.5/50.0
PatchFor. 54.5/50.0 59.9/50.0 46.5/50.0 53.6/50.0
Grag. et al. 44.7/49.6 58.4/49.7 80.5/49.9 61.2/49.7
Mand. et al. 429/49.3 53.7/50.6 52.7/50.1 49.8/50.0
Liu et al. 345/49.7 38.7/49.7 549/499 42.7/49.8
Corvi et al. 89.3/86.8 98.3/90.8 79.1/52.1 88.9/76.6
LGrad 33.7/39.0 379/414 61.4/584 4437463
Ojha et al. 344/456 322/462 73.0/65.7 46.5/52.5
DIRE-1 543/52.0 60.7/543 55.1/51.1 56.7/52.5
DIRE-2 60.0/55.0 58.6/539 47.7/46.5 55.4/51.8
NPR 43.8/41.7 462/449 654/62.0 51.8/49.5
Ours 1k 69.4/509 70.2/533 69.3/51.4 69.6/51.9
Ours 1k+ 82.1/733 82.8/745 83.8/749 82.9/74.3
Ours 10k 65.8/50.0 69.3/51.7 70.7/50.9 68.6/50.9
Ours 10k+ 78.7/63.7 822/69.6 82.7/69.6 81.2/67.6
Ours fusion 90.0/859 97.5/93.8 77.8/57.0 88.4/78.9
Ours fusion+ 94.7/873 97.9/92.1 854/742 92.6/84.5
Ours Few-Shot ‘ 98.5/925 95.8/874 92.5/83.5 ‘ 95.6/87.8

Table 3. Results in terms of AUC and accuracy of proposal and
SOTA methods on real and synthetic images download from X.
The last row reports a few-shot experiment, where we suppose to
know in advance 10+10 real/fake images from a specific generator.

Figure 3. Some examples of images downloaded from the social
network X. From left to right: a real image, synthetic images from
DALL-E 3 [2], Firefly [10], Midjourney [18].

coming useless in the presence of a 25% rescaling. Corvi
was trained with strong augmentation and, in fact, is not
affected at all by JPEG compression, while it presents ac-
ceptable losses with strong WebP compression (not seen in
training), and strong resizing. The most remarkable out-
come of this experiment, however, is the impressive robust-
ness of the CLIP-based detectors. Both the 1k+ and 10k+
versions, those with augmentation, are basically insensitive
to compression, no matter JPEG or WebP, and resizing. The
versions without augmentation suffer some loss of perfor-
mance but not nearly as dramatic as for the reference meth-
ods, and remain effective in all conditions.

5. Few-shot analysis in the wild

In this section we present an experiment in a few-shot sce-
nario. The idea is to explore the ability of our detector to
work with very limited data and adapt to a situation where
only a few real and synthetic examples are available. We
downloaded 500 real images and 1,500 synthetic images

5 |
L ElZ 5|2
Elelzlz |5
Slzlo|l8 9
2IZ|E| 28
Generator E 4| |E|C Resolution
BigGAN [3] c v 2562, 5122
EG3D [5] u v 5122
Diff.ProjectedGAN [26] u | v 2562
GALIP [23] t v | 2242
Taming Transf. [9] u,c V| v 2562
DALL-E mini [7] t v | 2562
DDPM [12] u v 2562
Deepfloyd-IF Il stage [14] | t v | 2562

Table 4. Image generators used in our experiments: GAN-based,
VQ-GAN-based and DM-based. The generation modalities, un-
conditional (u), conditional (c), and text-to-image (t), is reported
in the second column. The last column reports the resolution of
the images in the dataset.

from X from three different generators DALL-E 3, Midjour-
ney and Firefly (some examples can be seen in Fig. 3). To
understand which generator was used to create a specific
image, we relied on tags and annotations present on the so-
cial network.

In our few-shot scenario, we take 10 real images and 10
generated images as examples from a specific model and
test on all the others images (note that we present average
results on 1,000 runs). Results are reported in Tab. 3 in
terms of AUC and accuracy. The availability of just 10+10
images of the target data provides an impressive perfor-
mance boost with respect to the same method trained on
a dataset much larger but not aligned with the test data (real
images come from COCO, synthetic images from Latent
diffusion models). It is important to underline that this is
a realistic scenario, in which one is called to decide on im-
ages generated by a new method and a few sample images
are available as a support. We believe that this can represent
an interesting direction for the application in the wild or to
easily adapt a detector to more challenging situations where
some prior information is available.

To complete our analysis on this dataset we include in
Tab. 3 the comparison with SOTA methods and our original
proposal. We can observe that the performance of all the
methods degrade which highlights the increased difficulty
to handle a realistic scenario over the web. The best per-
formance can be obtained by using our fusion approach that
take the best of the low-level and high-level features and is
able to achieve on average more than 90% in terms of AUC
which is comparable with the few-shot analysis where some
prior knowledge is available.



AUC/Acc BigGAN EG3D Diff. Proj. GALIP Taming DAFF-E DDPM Deepfloyd-IF AVG
Method GAN Transf. Mini 1I stage

Wang et al. 92.7/66.1 94.4/59.2 89.8/52.1 89.7/57.4 54.3/51.7 62.5/51.8 31.6/50.1 43.1/50.1 69.8/54.8
PatchFor. 85.5/52.5 69.8/50.0 92.6/61.7 98.2/73.4 71.2/51.0 83.8/51.4 98.4/50.2 83.4/50.0 85.4/55.0
Grag. et al. 98.7/94.2 98.9/93.8 100./72.5 96.2/79.5 90.3/76.4 83.4/62.5 49.7/45.1 71.2/61.3 86.0/73.2
Mand. et al. 92.2/83.0 100./99.8 64.5/49.9 77.6/59.1 91.8/84.1 83.6/69.8 99.9/97.4 49.2/48.9 82.3/74.0
Liu et al. 94.7/81.3 99.0/86.3 99.5/84.9 94.3/78.4 95.4/178.9 98.4/88.1 22.8/49.6 97.4/86.8 87.7/79.3
Corvi et al. 83.4/51.8 25.2/50.0 96.6/71.2 87.7/50.9 99.3/89.5 99.7/83.8 100. /90.3 68.5/50.8 82.5/67.3
LGrad 77.2169.0 68.8/59.8 99.5/90.1 56.7/55.1 74.1/64.5 67.3/59.9 9.8/16.4 75.0/62.5 66.1/59.7
Ojha et al. 99.6 / 96.4 92.6/82.5 97.4/175.2 98.6/89.9 94.1/84.8 97.1/84.9 77.7168.2 60.8 /50.0 89.7/79.0
DIRE-1 99.8/95.3 50.1/50.0 49.8/51.6 100. /96.7 73.1/72.4 99.7/96.5 23.1/50.0 99.4/95.8 74.4/76.0
DIRE-2 98.6/82.4 46.1/50.0 50.2/51.4 99.3/81.8 77.0/66.2 98.7/81.8 14.0/49.8 95.6/80.5 72.4/68.0
NPR 86.8/77.2 53.3/57.5 100./99.2 90.7/77.6 80.2/69.2 79.0/73.3 92.4/61.6 90.9/76.8 84.2/74.1
Ours 1k 96.9/86.1 87.0/73.0 99.3/70.2 100. /99.7 99.4/95.0 100. /99.1 95.1/86.7 99.7/90.7 97.2/87.6
Ours 1k+ 92.0/80.0 76.4165.5 89.6/67.7 99.9/98.6 93.5/83.0 99.6/95.0 94.9/87.4 99.7/96.0 93.2/84.1
Ours 10k 98.2/87.0 87.7/63.2 99.7/87.4 100./99.8 99.7/97.4 100./99.4 93.9/61.9 99.8/85.9 97.4/85.3
Ours 10k+ 93.1/715 79.9/58.8 92.5/76.0 100. /97.0 94.9/179.5 99.9/94.4 98.1/91.5 99.8/92.2 94.8/83.3

Table 5. Comparison with SOTA methods on additional data. The results are in terms of AUC/Accuracy. The entries in bold underline
the best performance for each dataset. For our approach we show four variants: trained on 1k real and 1k fake images; 10k real and 10k
fake images; trained on 1k and 1k fake images but including compressed/resized images (1k+) and trained on 10k and 10k fake images but

including compressed/resized images (10k+).

AUC/Acc BigGAN EG3D Diff. Proj. GALIP Taming DAITF-E DDPM Deepfloyd-IF AVG
Method GAN Transf. Mini 1I stage

Wang et al. 82.5/55.5 84.7/52.2 80.8/53.2 92.2/59.2 66.2/50.6 66.7/50.5 69.6/50.2 479/49.9 73.8/52.7
PatchFor. 58.7/50.3 60.3/50.0 55.6/50.0 72.3/50.3 50.4/50.1 71.0/50.1 82.9/51.0 69.7/50.0 65.1/50.2
Grag. et al. 97.6/74.4 92.7/56.5 99.2/65.6 99.1/79.8 83.6/53.3 89.6/54.0 74.5/49.4 54.3/50.0 86.3/60.4
Mand. et al. 71.4/55.5 85.8/62.1 60.3/49.6 78.1/57.3 82.3/59.7 68.2/57.4 61.1/58.6 49.0/49.8 69.5/56.3
Liu et al. 57.7152.0 51.6/50.4 62.9/54.1 65.2/52.3 49.2/50.2 49.1/50.7 58.3/49.1 64.4/52.0 57.3/51.4
Corvi et al. 77.3/53.0 64.5/59.7 93.3/59.8 87.4/515 94.4/76.7 97.4/74.8 74.7159.6 70.4/50.9 82.4/60.7
LGrad 53.5/51.6 53.2/51.1 56.9/51.1 57.0/50.3 51.3/51.1 41.7/49.1 56.0/49.7 38.7/48.8 51.0/50.4
Ojha et al. 94.8/84.9 79.3/61.5 84.7/68.5 95.7/84.5 92.9/81.8 89.1/72.8 90.8/79.1 59.1/49.5 85.8/72.8
DIRE-1 47.2149.5 35.2/493 35.2/49.6 47.4/50.6 47.3/49.7 54.6/51.1 38.5/49.4 64.6/53.2 46.2/50.3
DIRE-2 44.6/47.0 33.6/47.1 37.5/44.9 46.2/47.2 43.3/46.8 53.1/50.0 4221475 66.3/59.3 45.9/48.7
NPR 52.6/50.0 40.2/49.8 48.8/50.3 57.8/50.6 46.2/49.8 51.7/49.6 54.5/50.5 51.3/48.9 50.4/49.9
Ours 1k 84.6/75.8 64.8/60.3 73.4166.7 98.3/92.6 85.1/75.8 96.2/88.9 76.1/67.7 90.0/79.9 83.6/76.0
Ours 1k+ 89.6/79.7 60.5/55.1 69.6/61.0 99.9/98.4 86.9/78.0 98.9/93.7 96.4/84.8 99.5/96.5 87.7/80.9
Ours 10k 84.1/67.0 64.3/54.9 73.7/62.9 98.1/83.9 86.2/74.0 96.8/77.8 70.9/60.7 91.3/67.5 83.1/68.6
Ours 10k+ 92.4/82.4 63.1/55.5 74.1/63.9 99.9/98.9 88.1/78.2 99.4/94.9 96.1/87.1 99.7/97.0 89.1/82.2

Table 6. Comparison with SOTA methods on additional data in the presence of post-processing.

AUC/Accuracy. The entries in bold underline the best performance for each dataset.

The results are in terms of

6. Further generalization results

In this Section we extend our generalization analysis to ad-
ditional data and consider 8 more generators with 8,000 ad-
ditional synthetic images for our test set (Tab. 4). In Tab. 5
we show the results in terms of AUC and accuracy on such
data for the four version of the proposed CLIP-based detec-
tor and for the SOTA methods described in Section 1. We
can observe that SOTA methods present a larger variability
in terms of performance, with very good results on some
generators and very bad on others. Instead, our method
can provide consistently good performance over all the data
both in terms of AUC and accuracy, with an average gain
over the best reference of around 8.5% in terms of AUC and
13% in terms of Accuracy. This difference is even more no-
ticeable on data that have undergone random compression

and resizing (Tab. 6). In fact, for most of the competitors
there is a dramatic performance loss, sometimes to a ran-
dom guess level. Some other methods, such as, Ohja et
al., preserve a good performance and the same happens for
ours. Of course, in this more challenging scenario our best
variant is the one that includes some form of augmentation
in the reference data but even the variant trained on the orig-
inal data provides satisfying results.

References

[1] Quentin Bammey. Synthbuster: Towards detection of diffu-
sion model generated images. IEEE OJSP, 2023. 2

[2] James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng
Wang, Linjie Li, Long Ouyang, Juntang Zhuang, Joyce Lee,
Yufei Guo, Wesam Manassra, Prafulla Dhariwal, Casey Chu,



(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]

(18]

and Yunxin Jiao. https://openai.com/dall-e-3,
2023. 3

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
Scale GAN Training for High Fidelity Natural Image Syn-
thesis. In ICLR, 2018. 3

Lucy Chai, David Bau, Ser-Nam Lim, and Phillip Isola.
What Makes Fake Images Detectable? Understanding Prop-
erties that Generalize. In ECCV, pages 103-120, 2020. 1
Eric Ryan Chan, Connor Zhizhen Lin, Matthew Aaron Chan,
Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero
Karras, and Gordon Wetzstein. Efficient geometry-aware 3d
generative adversarial networks. In CVPR, pages 16123—
16133,2022. 3

Riccardo Corvi, Davide Cozzolino, Giada Zingarini, Gio-
vanni Poggi, Koki Nagano, and Luisa Verdoliva. On the de-
tection of synthetic images generated by diffusion models.
In ICASSP, pages 1-5,2023. 1

Boris Dayma, Suraj Patil, Pedro Cuenca, Khalid Saifullah,
Tanishq Abraham, Phiic Lé Khac, Luke Melas, and Rito-
brata Ghosh. https://github.com/borisdayma/
dalle-mini, 2021. 3

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. In CVPR, pages 248-255, 2009. 3

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In CVPR,
pages 12873-12883, 2021. 3

Adobe Firefly. https://www.adobe.com/sensei/
generative-ai/firefly.html, 2023. 3

Diego Gragnaniello, Davide Cozzolino, Francesco Marra,
Giovanni Poggi, and Luisa Verdoliva. Are GAN generated
images easy to detect? A critical analysis of the state-of-the-
art. In ICME, pages 1-6, 2021. 1

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. In NeurIPS, pages 6840-6851,
2020. 3

Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, pages 4401-4410, 2019. 3

Misha Konstantinov, Alex Shonenkov, Daria Bakshandaeva,
Christoph Schuhmann, Ksenia Ivanova, and Nadiia Klokova.
https://www.deepfloyd.ai/deepfloyd-1if,
2023. 3

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
ECCV, pages 740-755,2014. 3

Bo Liu, Fan Yang, Xiuli Bi, Bin Xiao, Weisheng Li, and
Xinbo Gao. Detecting generated images by real images. In
ECCV, pages 95-110, 2022. 1

Sara Mandelli, Nicold Bonettini, Paolo Bestagini, and Ste-
fano Tubaro. Detecting GAN-generated Images by Orthog-
onal Training of Multiple CNNSs. In /CIP, pages 3091-3095,
2022. 1

Midjourney. https://www.midjourney.com/home,
2023. 3

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

Harvey B Mitchell and Paul A Schaefer. A “soft” K-nearest
neighbor voting scheme. 1JIS, 16(4):459-468, 2001. 2
Utkarsh Ojha, Yuheng Li, and Yong Jae Lee. Towards uni-
versal fake image detectors that generalize across generative
models. In CVPR, pages 2448024489, 2023. 1
Chuangchuang Tan, Yao Zhao, Shikui Wei, Guanghua Gu,
and Yunchao Wei. Learning on Gradients: Generalized Arti-
facts Representation for GAN-Generated Images Detection.
In CVPR, pages 12105-12114, 2023. 1

Chuangchuang Tan, Huan Liu, Yao Zhao, Shikui Wei,
Guanghua Gu, Ping Liu, and Yunchao Wei. Rethinking the
Up-Sampling Operations in CNN-based Generative Network
for Generalizable Deepfake Detection. In CVPR, 2024. 1
Ming Tao, Bing-Kun Bao, Hao Tang, and Changsheng Xu.
GALIP: Generative Adversarial CLIPs for Text-to-Image
Synthesis. In CVPR, pages 14214-14223, 2023. 3
Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew
Owens, and Alexei A Efros. CNN-generated images are sur-
prisingly easy to spot... for now. In CVPR, 2020. 1
Zhendong Wang, Jianmin Bao, Wengang Zhou, Weilun
Wang, Hezhen Hu, Hong Chen, and Hougiang Li. DIRE
for Diffusion-Generated Image Detection. ICCV, 2023. 1
Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu
Chen, and Mingyuan Zhou. Diffusion-GAN: Training GANs
with Diffusion. In ICLR, 2023. 3

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas
Funkhouser, and Jianxiong Xiao. LSUN: Construction of
a large-scale image dataset using deep learning with humans
in the loop. arXiv preprint arXiv:1506.03365, 2015. 3


https://openai.com/dall-e-3
https://github.com/borisdayma/dalle-mini
https://github.com/borisdayma/dalle-mini
https://www.adobe.com/sensei/generative-ai/firefly.html
https://www.adobe.com/sensei/generative-ai/firefly.html
https://www.deepfloyd.ai/deepfloyd-if
https://www.midjourney.com/home

	. Reference methods
	. Additional ablation study
	. AUC vs Accuracy
	. Additional robustness analysis
	. Few-shot analysis in the wild
	. Further generalization results

