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1. Experimental Setup
1.1. Image Forensics Algorithms

In our evaluation, we consider only methods with publicly
available code in order to fairly evaluate them under the
same setup. We employ as inputs to our score-level fusion
network, OMG-FuserS , the SPAN [11], MVSS-Net++ [2],
CATNetv2 [17], TruFor [8] and IFOSN [33] algorithms,
due to their competitive performance and their comple-
mentarity with respect to the type of artifacts they detect,
i.e., artifacts in the RGB domain, edge artifacts, compres-
sion artifacts, noise artifacts, and robustness against on-
line sharing operations, respectively. Moreover, we utilize
the Noiseprint++ [8] and the DCT-domain stream [17] as
inputs to our feature-level fusion network, OMG-FuserF ,
two learnable forensic signals that captures noise-related
and compression-related artifacts, respectively. For all the
aforementioned methods, we utilize the official code imple-
mentations provided by the original authors.

1.2. Datasets

To train our OMG-Fuser models, we utilize data from
three publicly available datasets. We randomly sample 25k
forged and 25k authentic images from the synthetic dataset
used by CAT-Net [16] due to the big variability of its sam-
ples regarding compression qualities and depicted topics.
We enrich this set with another 10k inpainted images sam-
pled from the DEFACTO [24] dataset. Also, we include all
images from the CASIAv2 [3] dataset into our training set
to compensate for low-resolution and low-quality images.
We utilize 90% of these data for the actual training of the
model and the rest 10% for validation purposes. Despite
some datasets consisting of more samples, we observed in
our experiments that a further increase in the amount of
training data did not yield any significant performance in-
crease. Thus, our architecture requires significantly less
training data than the previous state-of-the-art ones [8, 17].
Instead, as highlighted by [8], introducing more variability
into the training data was more beneficial. For evaluation,

Dataset Forged Authentic Types

Tr
ai

n Tampered-50k [16] 25k 25k SP, CM
DEFACTO-INP [24] 10k - INP
CASIAv2 [3] 5k 7k SP, CM

Te
st

CASIAv1+ [2] 920 800 SP, CM
Columbia [10] 180 183 SP
COVERAGE [30] 100 100 CM
NIST16 [7] 564 560 SP, CM, INP
OpenForensics [18] 19k - SP
CocoGlide [8] 512 512 INP
DID [32] 6k - INP

Table 1. Number of samples and types of forgery included in the
train and test datasets. SP stands for splicing, CM for copy-move
and INP for inpainting.

following [8, 11, 21], we have selected five popular datasets,
namely the CASIAv1+ [2], COLUMBIA [10], COVER-
AGE [30], NIST16 [7], OpenForensics [18] datasets, in-
cluding common cases of image forgery. In contrast to pre-
vious works [11, 21], we benchmark our methods on the en-
tire evaluation dataset without making any further assump-
tions about the type of forgery or utilizing subsets of them.
Furthermore, to take into account deep-learning based in-
painting operations, we further employed the recently in-
troduced CocoGlide [8] dataset and the deep-learning based
inpaintings of the DiverseInpaintingDataset (DID) [32]. A
summary of all the datasets used in our research is presented
in Tab. 1.

1.3. Implementation Details

We implement and train all of our models using PyTorch
[27]. Following [25, 31], we train our models for 100
epochs using the SGD optimizer with momentum [22] set
to 0.9. We initialize the learning rate to 10−3, with 5 epochs
of linear warm-up and a cosine decay until 10−6. We em-
pirically tune the weights of the optimization criterion and
set them to a = 0.3, b = 0.45, c = 0.25. To acquire the
instance segmentation masks, we utilize the Segment Any-
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Approach CASIAv1+ Columbia Coverage NIST16 OpenFor. CocoGl. DID Overall

Fe
at

ur
e

Fu
si

on

PSCC-Net [21] 83.4 86.7 69.3 50.2 51.3 84.1 58.5 70.7
SPAN [11] 64.2 88.6 78.6 56.6 39.0 82.7 45.9 71.3
IFOSN [33] 87.4 86.9 63.4 71.1 49.3 79.9 37.8 73.4
MVSSNet++ [2] 80.0 81.6 80.0 73.1 48.1 83.3 41.5 75.1
CATNetv2 [17] 87.6 91.7 79.0 68.9 66.3 80.3 80.0 77.2
TruFor [8] 89.6 90.5 83.9 74.5 71.2 85.6 66.5 77.8
OMG-FuserF (Ours) 92.0 94.6 88.3 82.1 82.0 87.7 78.9 80.1

Sc
or

e
Fu

s. DST-Fusion [6] 89.3 91.8 76.6 56.0 33.3 86.5 64.8 77.4
OW-Fusion [1] 89.1 94.7 82.0 72.5 66.9 84.2 78.2 81.9
AVG-Fusion 90.9 94.4 87.8 80.4 70.9 87.8 77.5 84.3
OMG-FuserS (Ours) 92.2 96.6 89.3 83.7 85.2 86.2 86.1 86.8

Table 2. Comparison on image forgery localization. Pixel-level F1 scores, calibrated with the best threshold per image, are presented for
each algorithm and dataset. The best value per column is highlighted in bold, and the second best is underlined.

thing Model (SAM) [13], a zero-shot model that is not lim-
ited to a fixed set of object classes. Furthermore, for the
RGB stream, we employ the DINOv2 model [26], trained
in an unsupervised manner on a large curated dataset and
capable of extracting rich features suitable for a large num-
ber of downstream tasks. We utilize its ViT-S/14 variant.
During the training of score-level fusion models, DINOv2
remains frozen and the resolution of inputs to all streams
is 224 × 224. For feature-level fusion models, we increase
the input resolution of all streams to 448 × 448 and fine-
tune the DINOv2 backbone in order to capture low-level
cues in finer detail. Following [15, 19], we freeze the patch-
embedding layer during fine-tuning. For the computation of
the input signals, the image is provided in its original reso-
lution to all the respective algorithms.

The number of layers of each stage is set to B1 = B2 =
B3 = 6. Regarding the localization head, it consists of
five upsampling layers, each including a transposed convo-
lution [23], a ReLU [14] activation, and a Batch Normaliza-
tion [12] layer, with a sigmoid activation at the end of the
network. For the detection head, we employ a four-block
transformer [4] with a classification token zcls ∈ RD that is
used for forgery detection. After propagating through the
network, the refined token passes through a single fully-
connected layer with a sigmoid activation to generate the
final image-level forgery detection score.

The training data are augmented using resizing, crop-
ping, flipping, and rotation operations. Training is per-
formed on a single HPC cluster node equipped with four
Nvidia A100 40GB GPUs, with an effective batch size of
160 images for score-level fusion models and 40 for feature-
level fusion models. The training requires about 30 hours
for the score-level and 60 hours for the feature-level fusion
models. Moreover, the stream expansion experiments are
performed on a single A100 to better represent a constrained
environment. Finally, all the evaluation experiments are be-

ing conducted on a single Nvidia RTX3090 GPU.
For comparison with other score-level fusion ap-

proaches, we employ the OW-Fusion [1], a deep learning-
based fusion approach, and implement it with the same in-
put signals used on OMG-FuserS . Furthermore, in order to
take into account the previous statistical fusion frameworks,
we reimplement a DST-based fusion framework [6, 28] in
Python, using again the same inputs with our score-level
fusion implementation. Finally, we use the average of all
input signals as a baseline approach.

2. Additional Experiments

Image Forgery Localization on best threshold: Follow-
ing [8], we conducted additional experiments on image
forgery localization, computing the F1 metric for the best
threshold per image as an indicator of the performance of
the method when properly calibrated. The results are pre-
sented in Tab. 2. Similar to the results in the main paper,
both our methods outperform the competing approaches
from the state-of-the-art in both feature- and score-level fu-
sion with a clear margin.

Instance Segmentation Models: To better evaluate the
modularity of our architecture, starting from the trained
models of our score- and feature-level fusion implemen-
tations, we replaced the instance segmentation masks
generated by the SAM [13] with the ones computed by the
EVA [5]. In particular, we considered three different types
of instance segmentation masks: i) from an EVA model
trained on COCO [20], ii) from an EVA model trained on
LVIS [9] and iii) from aggregating the segmentation masks
of both of the aforementioned models. The results of these
experiments are presented in Tab. 3. They highlight that
replacing the instance segmentation model used during
training has only a minimal impact on performance. This
allows the combination of our model with class-specific



Figure 1. Explainability analysis. The top “initial” row of each sample presents the signals fused by OMG-FS , while the bottom “fused” row
presents the Grad-CAM overlay on top of them. Red regions in the overlay maps denote the regions of the signals with the greatest impact on
the fusion process. The most-right column depicts the predicted output of our network on top and the ground-truth mask on the bottom row.

Seg. Model Loc. Det.

F1 AUC F1 AUC

Fe
at

.F
us

. EVA (LVIS) 66.1 90.5 80.7 87.5
EVA (COCO) 66.5 90.7 80.3 87.9
EVA (COCO+LVIS) 67.0 91.3 80.8 88.0
SAM (SA-1B) 67.3 91.5 82.4 88.0

Sc
or

e
Fu

s. EVA (LVIS) 68.4 92.6 81.9 87.9
EVA (COCO+LVIS) 68.8 93.0 82.4 88.6
EVA (COCO) 69.1 93.0 81.8 88.4
SAM (SA-1B) 70.4 93.5 83.2 89.5

Table 3. Comparison with different instance segmentation models.
The average pixel-level F1 and AUC scores are reported across all
evaluation datasets. The training dataset of each instance segmen-
tation model is reported in parentheses.

segmentation models that better fit the needs of the
downstream application.

Computation Time: In Tab. 4, we present the compu-
tation time required for extracting the input signals for both
our score- and feature-level fusion implementations. The
experiments have been conducted on the NIST16 dataset

Signal Time

Fe
at

.F
us

. DCT [8] 75 ms
Noiseprint++ [8] 115 ms
SegmentAnything [13] 1.4 s
OMG-FuserF (Ours) 32.3 ms

Sc
or

e
Fu

si
on

SPAN [11] 1.34s
IFOSN [33] 6.85 s
MVSSNet++ [2] 221 ms
CATNetv2 [17] 1.04 s
TruFor [8] 1.18 s
SegmentAnything [13] 1.4 s
OMG-FuserS (Ours) 40.4 ms

Table 4. Computation time for the fused signals and our proposed
network. The input signals utilized in the proposed feature- and
score-level fusion implementations are considered.

due to its great variability in the sizes of the included im-
ages. Our proposed fusion networks impose a minimal
overhead on the overall computation time compared to the
computation time required for generating the fused signals.

Additional qualitative evaluation: Finally, we present



an extensive qualitative evaluation of our score- and feature-
level fusion implementations with several forged and au-
thentic samples in Fig. 2 and Fig. 3, respectively. In forged
samples, our models greatly improve the localization mask,
while in authentic samples, they considerably decrease the
false positives.

3. Explainability
To better understand which parts of the input signals con-
tribute the most to the fused tokens z̄ft (eq. 5), we employ
the Grad-CAM [29] method. In particular, we compute the
gradients of the fused tokens with respect to the N + 1 dif-
ferent inputs to the TFT in z (eq. 4) in order to isolate the
token fusion process and determine from which tokens the
information propagates to the next stages. We compute the
gradients based on the output of the TFT, using the squared
ℓ2-norm of the z̄ft. In these experiments, we employ the
OMG-FuserS variant of our architecture due to the easier
interpretation of the input signals. The explainability maps
for three samples are presented in Fig. 1. Our architecture
has learned to attend to the correctly estimated regions in
the input signals based on the ground truth while ignoring
the regions of the input signals containing erroneous pre-
dictions. Also, our network focuses on the signals that bet-
ter capture the forged and the authentic regions separately,
e.g. on MVSSNet++ for the detection of authentic regions,
while exploiting information from the image to resolve am-
biguity in the input signals.

4. Discussion on Research Ethics
Our primary ethical consideration while carrying out this
research has been the potential for misuse of the proposed
method. In particular, as with any image forensics method,
the outputs of forgery localization and detection may be
misinterpreted by non-experts or misused by malicious ac-
tors in an effort to discredit online digital media as be-
ing “manipulated”. This is especially true for methods
that result in high false positive rates. Given that OMG-
Fuser exhibits consistent improvements in detection accu-
racy with the integration of additional input forensic signals
and demonstrates very low false positive rates, we expect
the risk of misuse to be negligible, while at the same time,
it enhances the current capabilities of detecting forged on-
line content aimed at spreading disinformation.
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