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In the Supplementary Material, we start our goals of
introducing StampOne as Steganography and watermark
models. Then we compare the U-Shape networks men-
tioned in the paper. Subsequently, we delve into the intri-
cacies of the Message Preparation Network, detailing the
step-by-step process that led to the final network archi-
tecture. We then expand upon our experimentation, test-
ing the decoder’s performance with additional camera sen-
sors and datasets. Additionally, we discuss the computa-
tion of spectral density and its division into low and high
frequencies for each image. Code is available at https:
//github.com/farhadsh1992/StampOne.git

1. Application of StampOne

Our primary objective in introducing this model is twofold.
Firstly, we aim to implement a stamp as a security layer
to safeguard the originality of ID documents and enhance
brand protection. This ensures the encoded image (stamp)
remains indistinguishable from the original image. Sec-
ondly, we seek to address methods aimed at fabricating fake
documents, rather than compromising the authenticity of a
document. Additionally, we ensure that the stamp remains
resistant to changes that occur over time, such as surface
scratches on the encoded image. To achieve the first objec-
tive, we leverage watermarking techniques, while the sec-
ond objective aligns with the goals of steganography. Our
approach is motivated by previous researches [4, 12, 13],
which were adopted to advance the field of steganography,
Therefore, we consider StampOne as a steganography tech-
nique.

Table 1. Performance of StampOnes with various U−Shape struc-
tures. M1 incorporates all details of StegaStamp except for our
highlighted dimensional preprocessing model.

(A) Encoded images quality
Methods SSIM (⇑) LPIPS (⇓) ColorHisto (⇓)

AttentionVNet 0.98 ± 0.00002 1.25 ± 0.4 5.38 ± 4.9
VNet 0.97 ± 0.00007 2.2 ± 0.3 5.8 ± 4.6
LeViTUnet 0.97 ± 0.00008 4.8 ± 2.8 7.8 ± 5.2
ResNetUnet 0.97 ± 0.00009 2.1 ± 1.6 6.5 ± 4.0
UNetPlus 0.96 ± 0.00007 2.74 ± 2.38 6.30 ± 4.07
AttentionUnet 0.95 ± 0.0001 2.8 ± 1.3 6.4 ± 4.4
SwinUnet 0.95 ± 0.0004 3.8 ± 1.01 7.8 ± 6.4
EfficientB0Unet 0.93 ± 0.0004 4.1 ± 2.5 8.7 ± 5.6

Non-robust (M1) 0.92 ± 0.001623 1.04± 1.69 2.80 ± 60.8

2. StampOne with different U−Shape net-
works

As discussed in the paper, StampOne was implemented with
various networks, including UNet [10], VNet [11], Eff-
UNet [2], LeViT-UNet [16], ResUNet [15], Swin-UNet [5],
Attention-UNet [9], Attention-VNet, and UNet++ [17]. The
perceptual quality of the encoded images was compared us-
ing LPIPS and Color Histogram [1], as presented in Table
1. The resulting encoded images from various structural
configurations are depicted in Figures 8, 9, and 10. Optimal
performance in both decoder and encoder functions was ob-
served when employing the Attention-VNet and UNetPlus
architectures.
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Figure 1. In our preprocessing stage, Original image and message
are passed from gradient operation and wavelet transform. This
Figure shows the output results of these two operations.
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Figure 2. After applying the gradient operation and wavelet trans-
form in our preprocessing stage, the encoded image is then di-
rected to the decoder. This figure illustrates the output results of
these two operations on the encoded image.

Table 2. StampOne’s Encoders Performance Metrics. M1 denotes
a non-robust model constructed using two instances of Attention-
VNet.

Encoded images quality
Methods SSIM (⇑) LPIPS (⇓) ColorHisto (⇓)

GeLU 0.98 ± 0.00002 1.89 ± 0.08 5.8 ± 4.9
Snake 0.97 ± 0.0001 3.16 ± 0.2 8.7 ± 7.52
Tanh 0.97 ± 0.00007 2.24 ± 0.3 5.8 ± 4.6
ReLU 0.96 ± 0.0001 4.06 ± 0.5 7.4 ± 5.1

3. Message Preparation Network (MPN)

During preprocessing, the inputs of the encoder (2D binary
message and original image) and decoder (encoded image)
are converted to the Fast Frequency domain by a gradi-
ent operator and wavelet transformations. The outputs of
these two transformations are depicted in Figures 1 and 2.
Then the transformed message is passed through the Mes-
sage Preparation Network (MPN) and finally concatenated
with the transformed image (the highlighted high frequency
domains of the original image).

We developed and assessed four distinct Message Prepa-
ration Networks (MPN), in Figure 3. A visual representa-
tion of the output results from the four different MPN is
presented in Figure 4. MPN (D) has the best performance
among others. It significantly improves the decoder and the
encoder performances. It includes two branches, 1D Convo-
lution, and a Dense layer. These two branches are connected
to each other by a self-attention block, that is borrowed from
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Figure 3. We compared four different Message Preparation Net-
works (MPNs) for incorporating messages into images: (A): This
is the simplest approach, but it’s only effective for digital steganog-
raphy. With (B) implementation, we reached printed-proof, but it
is not stable for every U-shape structure. (C) and (D): These two
models provide stable results for both digital and printed steganog-
raphy. However, model (D) offers better encoded image quality
while maintaining stability.

Figure 4. The output results of four different MPNs.

the AttentionUNet model [9], and a concatenate layer. We
depict the encoded images generated by applying these four
MPNs and VNets in Figure 5.

Model (A) is memory-efficient and suitable for digi-
tal transfers (requiring approximately 4 GB of memory).
However, it lacks robustness in decoding messages from
printed encoded images. Model (B) requires substantial
GPU VRAM (approximately 12 GB) but can be effec-
tively trained using VNet and AttentionVNet architectures,
accommodating various noises instead of noise wrapping.
For printed stamps, model (C) is recommended due to its
lightweight nature and stability with both printed and dig-
ital images. Various U-shape structures were utilized, en-
abling efficient decoding of printed images, albeit with a
decrease in encoded image quality. MPN (D) exhibits ro-
bustness against various noises while maintaining accept-
able perceptual quality in its encoded images.

Another critical factor influencing network performance
is the choice of activation function for MPN. To investigate
this, we conducted tests and comparisons using several acti-
vation functions including ”Snake,” ”GeLU,” ”ReLU,” and



Table 3. Bit accuracy (%) during decoding is evaluated under various types and levels of noise. For comparative analysis, we employed
StampOne with the VNet network architecture. MPN, incorporating various activation functions, was utilized in this evaluation.

JPEG (%) Gaussian (Std 0 to 1) Resolution (Pixel)
Methods 70 60 50 0.08 0.06 0.04 (60 × 60) (80 × 80 ) (100 × 100 )

GeLU 86 96 92 84 94 96 67 99 100
Snake 100 100 100 88 96 99 72 94 99
Tanh 70 76 85 80 92 97 45 88 98
ReLU 60 84 94 80 92 98 45 94 98

VNet
MPN (C)

VNet
MTN (D)

VNet
MPN (A)

VNet
MPN (B)

Figure 5. The result of encoded images with each MPNs. the
four MPN’s structures are showen and described precisely. The
encoded images corresponding to each MPN are depicted in the
Figure 3. The first row illustrates the residual image, while the
second row displays the encoded images.

”Tanh.” Snake [18] is a periodic activation function in train-
ing’s forward and backward (gradient) directions, as shown
below,

Snakea(x) = x+
1

a
sin2(ax) (1)

where a is experimentally initialized to 0.5 according to the
Snake publication [18]. At the end of the training, a is
between 0.2 to 0.56, depending on the message size. The
”GeLU” and ”ReLU” activation functions are interpolated
linear transformations. The ”Tanh” activation extrapolates
points as a constant function.

The comparative experiments regarding encoder perfor-
mance are presented in Table 2. Additionally, decoder per-
formance is outlined in Table 3. Based on our experimen-
tal findings, the activation functions ”GeLU” and ”Snake”
exhibited the most effectiveness. In discussions concern-
ing perceptual quality, ”GeLU” emerges as a suitable op-
tion. However, in the context of robustness, ”Snake” outper-
forms other activation functions, which we prioritize due to
its paramount importance. Therefore, all StampOne models
developed and discussed herein utilize the ”Snake” activa-
tion function in the Message Preparation Network (MPN).

4. Decoder performance
Benchmark: In the experiment with printed images, we
prepared two benchmark datasets. The first benchmark
comprised a total of 40 randomly selected encoded images,
sourced from both the BSDS500 dataset [8] and the Urban
dataset [7]. The second benchmark included 40 face images
extracted from the VGGFace2 dataset [6].

Camera: In our experiment to acquire images from
printed images, we utilized two smartphones, Samsung S22
and HUAWEI P2, by capturing the video stream. The
recorded videos were then transferred to a desktop work-
station where the encoded images were extracted and sub-
sequently decoded. In our work, to simulate realistic condi-
tions of users holding in hands a smartphone, we define that
successful decoding is achieved when the decoder correctly
decodes at least 90% of the information in 20 frames from
a video stream of encoded images.

Printouts: We printed encoded images on regular A4 pa-
per, as illustrated in Figure 6. The sizes (width and height)
of the encoded images range from 6× 6 cm to 2× 2 cm.

The results obtained from the Samsung S22 for the VG-
GFace2 face images dataset are reported in the manuscript.
However, here, we provide comprehensive results for the
decoder performance of StampOne utilizing the best struc-
tures (AttentionVNet and UNetPlus) for both benchmarks.
These results are presented in Tables 4 and 5. Stam-
pOne demonstrates superior performance in extracting mes-
sages from encoded printed photos, except in cases where
a weaker smartphone camera, such as the HUAWEI P20, is
utilized and the photos are in a 2 configuration. In such sce-
narios, StegaStamp exhibits better performance (Table 5).

5. Gradient images in the frequency domain
Figure 7 (A) displays the spectral density of the original
and encoded gradient images using StampOne and a non-
robust steganography model. The difference in spectral
density represents the degree of frequency bias in steganog-
raphy GAN models, highlighting the effectiveness of our
approach in mitigating this bias. In Figure 7 (B), we il-
lustrate the transformation of the original and recovered



6 X 6 cm 5 X 5 cm 4 X 4 cm 3 X 3 cm 2 X 2 cm

Figure 6. The samples of encoded images that are printed on paper for printer testing. The size of encoded images are from 6 × 6 cm to
2× 2 cm on the A4 paper.

Table 4. The Bit accuracy of StampOne’s decoder captured by the Samsung S22. M1 and M2 refer to StampOne models employing Atten-
tionVNet and UNetPlus architectures, respectively. M3 denotes a non-robust model constructed using two instances of AttentionVNet.

Bit acc (%)-images captured with Samsung S22 Ultra smartphones.

VGGFace2 [6] (B)BSDS500 [8] and Urban [7]
Methods 6×6 cm 5×5 cm 4×4 cm 3×3 cm 2×2cm 6×6 cm 5×5 cm 4×4 cm 3×3 cm 2×2cm

StegaStamp [13] 78 72 70 65 48 82 82 82 82 72
Code Face [12] 55 55 50 38 15 0 0 0 0 0
StampOne (M1) 100 100 100 95 62 90 90 90 80 80
StampOne (M2) 88 85 72 63 43 72 72 52 45 12

Non-robust (M3) 0 0 0 0 0 0 0 0 0 0
RoSteALS [4] 0 0 0 0 0 0 0 0 0 0

messages into the frequency domain. This transformation
aims to minimize the variance of spectral densities, allow-
ing for effective message concealment in the specific fre-
quency components of the images. Plot (C) in Figure 7 dis-
plays the spectral density of both the original and printed
gradient images. The higher degree of similarity between
the printed images from the Brother L3270CDW printer
and the original images indicates that this printer is more
suitable than Epson ET8500 printer for robust steganogra-
phy models.

6. Discrete cosine transform (DCT)

In order to enhance the high-frequency components of the
decoder’s output, we utilized the Discrete Cosine Transform
(DCT) to convert both the original and recovered messages
into the frequency domain. These transformed messages
were then fed into the spectral discriminator for further pro-
cessing. The specific calculations and details of the DCT
are provided in this section.

An image represented by the three channels (red, green,
and blue) combine to form a complete image. Each channel

is represented by a 2D matrix with values ranging from 0
(the darkest) to 255 (the brightest). In addition to the se-
quential definition of a digital photo (RGB), the image can
also be conceptualized as a composition of numerous sinu-
soidal gratings. These gratings are created by combining
2D sine and cosine wave series [14]. These sinusoidal grat-
ings vary in terms of frequencies, phases, and orientations,
contributing to the overall visual characteristics of the im-
age. To serialize an image, it can be represented in terms
of its sinusoidal gratings, allowing for its recreation from
these components. A sinusoidal grating refers to a diffrac-
tion screen that possesses a sinusoidal groove profile. The
grooves of the grating are symmetrical and lack a specific
blazing direction. By decomposing an image into these si-
nusoidal gratings, we can capture its essential characteris-
tics and enable its reconstruction using these components
[14]. To represent an image’s sinusoidal gratings, we utilize
the Discrete Cosine Transform (DCT) to compute the fre-
quency, phase, and amplitude specifications of the series.
This information is stored in the k-space matrix of the im-
age. The k-space matrix contains the DCT coefficients that
represent the frequency, phase, and amplitude characteris-



Table 5. The Bit accuracy of StampOne’s decoder captured by the HUAWEI P20. M1 and M2 refer to StampOne models employing At-
tentionVNet and UNetPlus architectures, respectively. M3 denotes a non-robust model constructed using two instances of AttentionVNet.
In the printer test, encoded images are printed on A4 paper ranging from 6× 6 cm to 2× 2 cm (width×height).

Bit acc (%)-by using HUAWEI p20.

VGGFace2 [6] BSDS500 [8] and Urban [7]
Methods 6×6 cm 5×5 cm 4×4 cm 3×3 cm 2×2cm 6×6 cm 5×5 cm 4×4 cm 3×3 cm 2×2cm

StegaStamp [13] 62 57 52 52 45 78 78 75 75 60
Code Face [12] 35 32 25 12 0 0 0 0 0 0
StampOne (M1) 100 100 98 92 0 90 90 88 88 0
StampOne (M2) 75 75 70 57 0 65 65 20 5 0

Non-robust (M3) 0 0 0 0 0 0 0 0 0 0
RoSteALS [4] 0 0 0 0 0 0 0 0 0 0

A B C

Figure 7. (A) presents the log spectral density of the original and encoded gradient images (with StampOne and a non-robust steganography
algorithm). For non-robust steganography we utilize two VNet networks [11] for the encoder and decoder with StegaStamp loss functions
and a discriminator without noise simulation. In contrast to the non-robust steganography GANs, the high frequency of StampOne’s encode
images is correlated to the original images. (B) demonstrates the log spectral density of the original and recovered gradient messages of
StampOne decoder. The spectral density of 2D binary messages shows a sharper decline in high frequency; thus, the decoder’s struggle
with high frequency is more extreme. (C) displays the log spectral density of both the original and printed Gradient images. We utilized
two separate office printers (Brother L3270CDW and Epson ET8500) to print and scan 30 sample images. Printers add noise to the
high frequency of images and raise the spectral density of high frequency. These plots for the gradient of the images are similar to the ones
presented in the paper.

tics of the image.
By performing the two-dimensional DCT on an image,

denoted as I(W ×H), we can partition its spatial area into
two categories: low frequency and high frequency compo-
nents.

DCT (Iij) = αpαq

H∑
j

w∑
i

Aij×

cos(
π(2i+ 1)p

2H
)× cos(

π(2j + 1)q

2W
)

(2)

where Aij are the DCT coefficients. H and W are the
height and width of the image, respectively. p and q are
the vertical and horizontal frequencies of the image, respec-

tively. αq and αp are, respectively,

αq =

{
1/
√
W if q = 0√

2/W if 1 ≤ q ≤ W − q
(3)

αp =

{
1/
√
H if p = 0√

2/H if 1 ≤ p ≤ H − q
(4)

The power spectral density is estimated by the squared
magnitudes of the Fourier components, as follows,

SD(Iij) = |DCT (Iij)
2| (5)

Finally, SD(Iij) of original and recovered messages are



passed through the spectral discriminator and the Euclidean
distance of the outputs is minimized.
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Figure 8. The results of applying our preprocessing model for various U-shape architectures are compared to those of the StegaStamp,
Code Face, and the non-robust steganography models (such as [3]).The residual image, highlighting the difference between the original and
encoded image, is displayed above each encoded image. While StegaStamp and Code Face use image inputs of 400× 400× 3 resolution,
other networks utilize a resolution of 256 × 256 × 3. The message size for StegaStamp and Code Face is 100 bits, and for our structures
is 256 bits. In the non-robust steganography model that is made from two VNet without our preprocessing and spectral discriminator,The
residual image for the non-robust model shows significant color artifacts (indicating low-frequency modifications) compared to the other
models whose residuals show minimal variations.



Figure 9. The results of applying StampOne preprocessing model for various U-shape architectures.



Figure 10. The results of applying StampOne preprocessing model for various U-shape architectures.
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