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Abstract

Transformer model have achieved state-of-the-art results
in many applications like NLP, classification, etc. But their
exploration in gesture recognition task is still limited. So,
we propose a novel GestFormer architecture for dynamic
hand gesture recognition. The motivation behind this de-
sign is to propose a resource efficient transformer model,
since transformers are computationally expensive and very
complex. So, we propose to use a pooling based token mixer
named PoolFormer, since it uses only pooling layer which
is a non-parametric layer instead of quadratic attention.
The proposed model also leverages the space-invariant fea-
tures of the wavelet transform and also the multiscale fea-
tures are selected using multi-scale pooling. Further, a
gated mechanism helps to focus on fine details of the ges-
ture with the contextual information. This enhances the
performance of the proposed model compared to the tradi-
tional transformer with fewer parameters, when evaluated
on dynamic hand gesture datasets, NVidia Dynamic Hand
Gesture and Briareo datasets. To prove the efficacy of the
proposed model, we have experimented on single as well
multimodal inputs such as infrared, normals, depth, optical
flow and color images. We have also compared the pro-
posed GestFormer in terms of resource efficiency and num-
ber of operations. The source code is available at https:
//github.com/mallikagarg/GestFormer.

1. Introduction

Hand gesture recognition is an active and rapidly evolving
area of research that involves various applications like sign
gesture communication, human-computer interactions, ges-
ture control appliances, autonomous vehicles, virtual real-
ity, gaming etc. This is a challenging task since it involves
variations in the pose, hand shape, position, directions and
size of hand. There are also challenges due to variability of
the image background, color differences, shadows and other

Figure 1. Some samples of depth (first row) and surface normals
(last row) from the NVGesture and Briareo dataset.These samples
are taken from [20].

lightening illumination which can be handled using depth
sensors such as Leap Motion [44] and Microsoft Kinect
sensor [12]. Gestures can be static or dynamic depending
on the movement of hands. Static hand gestures are those
where the hand remains relatively stationary and doesn’t in-
volve significant movement while dynamic hand gestures
involve movement of the hands or fingers to convey mean-
ing. In this work, we will focus on designing a model that
recognizes dynamic hand gestures which are characterized
by changes in hand position, orientation, or movement tra-
jectories over time.

With recent advancements in the deep learning algo-
rithms, attention-based models have become popular in fo-
cusing on a certain portion of gesture image or video se-
quence. These attention-based models [3] have replaced
traditional Recurrent Neural Networks (RNNs) [29], Long
Short-Term Memory (LSTMs) [6] and various deep learn-
ing methods [23, 38] for hand gesture recognition. The re-
cently introduced transformers are one such model that uses
attention to focus on a certain portion of image or video se-
quence. A transformer-based model that classifies dynamic
Hand Gesture Recognition is proposed in [20]. This method
uses vanilla transformer [51], which comprises of two op-
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eration. First, the attention operation is performed which is
followed by the multi-layer perceptron (MLP). The atten-
tion operation models the relations between elements while
the MLP is employed to model the relation within each in-
dividual element. Despite their effectiveness in these do-
mains, their application to visual data, especially in dy-
namic hand gesture recognition tasks, remains relatively
very limited.

So, we explore a transformer-based approach for dy-
namic gesture recognition. Some samples of the Dynamic
gestures from NVGesture [40] and Briareo [39] dataset are
shown in Fig. 1. Traditional Transformer [51] takes the
advantage of quadratic attention which is computationally
expensive, O(n2). This problem was addresses by Lin-
former [53], which uses linear attention with O(n) com-
plexity in both time and space. With advancements, the
attention layer has been completely replaced by layers or
modules that has no learnable parameters. PoolFormer [61]
and FNet [34] proposes an attention-free network which
uses average pooling and Fourier transform to mix the to-
ken of the input sequence. This helps reduces the complex-
ity of the model to a great level. Inspired from PoolFormer,
we also proposed a poolformer based technique that com-
pletely eliminates the attention mechanism and rely on to-
ken mixing. Pooling the input can aggregate token from
input to learn contextual information and perform compara-
ble to the Vision Transformer with very less complexity.

To further, enhance the performance of the poolformer
for dynamic gesture recognition, we propose a novel
Multiscale Wavelet Pooling Attention (MWPA) mecha-
nism which takes the advantage of wavelet transform [71]
and can be used as an attention approximation mechanism.
We also proposed a Gated Feed Forward Network (GFFN)
to control the flow of the information through the differ-
ent stages of the proposed Multiscale Wavelet Pooling
Transformer (MWPT).

Thus, we summarize our key innovations as:

1. We propose a novel GestFormer, a multiscale wavelet
pooling transformer (MWPT) model for dynamic hand
gesture recognition.

2. We propose a novel token mixer called Multiscale
Wavelet Pooling Attention (MWPA) which uses multi-
scale pooling and a wavelet transform to map the input
to wavelet space before passing it through the pooling
layer. This helps boosts the long-range understanding
capabilities of the model.

3. We also propose a Gated Feed forward network which
helps to precisely filter the information forwarding to
subsequent stages of the transformer block.

4. Experiments on NVGesture and Briareo dataset are done
to prove the efficacy in terms of performance and re-
source utilisation of the proposed model.

2. Related Work
In the literature, there are several techniques that rely on
traditional methods for hand gesture recognition which of-
ten involve manual engineering of features extraction and
the use of classical machine learning algorithms. Earlier
hand-crafting features were extracted from raw data, such
as images or depth maps of hand gestures to train classical
machine learning algorithms such as Support Vector Ma-
chines (SVM) [2], Bayesian-classifier [33], Hidden Markov
Models (HMMs) [32], etc. With these traditional methods
for hand gesture recognition, there are issues like robust-
ness, scalability, and adaptability to diverse environments
and user conditions that reduces the performance of the tra-
ditional methods.

Later, with the advent of deep learning, there has been
a shift towards more data-driven approaches that automat-
ically learn features from raw data, leading to significant
improvements in performance and robustness of the sys-
tem. With advanced deep learning technologies, Recur-
rent Neural Networks (RNNs) [29] and Long Short-Term
Memory (LSTMs) [6] were developed for handling contin-
uous sign gestures. Nowadays, transformer models are used
for gesture recognition, which are designed for sequential
data [13].

2.1. Transformer for Vision Tasks

Transformer-based networks have shown remarkable suc-
cess in the field of natural language processing [51], com-
puter vision tasks and modelling sequential data. Since
transformers rely on attention mechanism, these mod-
els have shown huge progress in object detection [70],
text generation [55], image classification [11, 27, 61],
segmentation [8], recommendation systems [46], super-
resolution [28], dialogue system [60], pose estimation [42],
text understanding [5] and many more. Development of
ViT [18] marked a significant milestone in the utiliza-
tion of transformers for vision-based tasks. ViT is a
pure transformer-based convolution-free approach which
achieves competitive performance compared to CNNs.
Later, transformers were used for video based tasks [41].

Inspired by ViT, a Video Vision Transformer (ViViT) [4]
has been introduced that extracts token from video se-
quence. ViViT presents variants of the models to fac-
torise the spatio-temporal dimensions of the input video:
Spatio-temporal attention, Factorised encoder, Factorised
dot-product encoder and Factorised dot-product attention.
All these models factorise different components of the
transformer model to factorise large spatio-temporal token
in the video sequence. DeepViT [69] is another vision trans-
former which elaborates the issue that attention map goes
similar as transformer digs deeper. This signifies that the
self attention mechanism fails at deeper layers. So, Deep-
Vit found a solution to this problem by re-generating the
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Figure 2. The overall architecture of the proposed GestFormer for dynamic hand gesture recognition. The proposed GestFormer consists
of Multiscale Wavelet Pyramid Attention module which comprises of Wavelet Coefficient Processing (WCP) and Multi-scale Pooling
architecture (MSP) to perform learning in the wavelet coefficient space with multiscaled pooling to capture the scaled attentive information.
GestFormer also leverage the Gated Dconv FFN (GDFN) to control the forward flow of the information.

attention to get more diverse attention in the deeper layers.
Although, transformers have marked incredible progress

in vision based tasks, they face certain difficulty when these
models deal with large sequential data. Since, transform-
ers use quadratic attention, and vision transformers used
large sequence length of image tokens, transformers used in
visions are computationally expensive and space complex-
ity is also high. Along with this, the vanilla transformer,
outputs a feature map of same dimension at each trans-
former stage. To tackle these issue, various models that
reduce the dimension of the input sequence progressively
in the transformer stages are introduced recently. There
have been 2 ways to reduce the dimensionality, Convolution
based reduction and pooling based reduction. Pyramid Vi-
sion Transformer (PvT) [54], Pyramid Pooling Transformer
(P2T) [57], MsMHA-VTN [24], MViT [22], Improved
MViT [36], PSViT [9], POSTER [67] are some methods
which use pooling to reduce the sequence length and re-
duce the computation cost of the entire system. There are
some other methods that use pyramid hierarchy but they in-
corporate convolutional layers instead of pooling e.g. POT-
TER [66], Convolutional Vision Transformer (CvT) [56],
Swin Transformer[37], CSwin [17], CeiT [63], Unifying
CNNs [35], CoFormer [15], etc.

2.2. Token Mixing

Since, the computation cost of quadratic attention is very
high, researchers are now more inclined to replace this at-
tention with some low computational token mixing. Pool-

Former [61] exploits a general pooling non-parameteric op-
erator to help in basic token mixing. It is the MetaFormer
which is actually a generalised mixer for token in computer
vision tasks. Another model that mixes the input token
by linear transformations (Fourier transform) is FNet [34].
Convolution can also be used to mix tokens as in Con-
vMixer [49]. Wavemix [28] uses wavelet transformer and
convolution. Similarly, MLP-Mixer [47] presents a method
that uses MLP for mixing tokens. It separates the channel-
mixing and token-mixing task and both tasks use MLP in
this architecture. All these token mixing architectures have
comparable performance when compared with the trans-
former model with less computational requirements.

2.3. Transformer for Gesture Recognition

Transformers have nowadays been used in gesture recog-
nition. In [20], RGBD data is used to predict the class of
dynamic gesture using color image , depth maps. It par-
ticularly shows that depth maps and the normals which are
derived from depth map outperforms other modalities. This
method also leverages single and multimodal inputs using
basic transformer model. To give the model the order of
sequence, positional embedding is employed. An advance-
ment over sinusoidal positional encoding is proposed using
a new positioning scheme based on Gated Recurrent Unit
(GRU) into Transformer networks [3].

Earlier, multimodal output was taken by fusing the out-
put probability of single modal inputs using decision level
fusion, but multimodal fusion at inputs can also be done at
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the feature fusion stage. One such method [25] which uses
convolutional transformer blocks to fuse at the input level is
called early fusion. It also performs experiments with mid
fusion, late fusion and multi-level fusion. Spatio-temporal
features can also be extracted using transformer models us-
ing transformations to canonical maps from both spatial and
temporal information [7]. Transformer uses columnar struc-
ture to map input to same dimensional features. MsMHA-
VTN [24] maps the input to multidimensional subspace us-
ing pyramid attention networks. This also helps in the re-
duction of the computational cost of the model. A combined
spatiotemporal vision and spatiotemporal channel attention
mechanisms can extract context information from the input
feature using self attention [10] on multimodal RGBD data.

3. Method
3.1. Overview

We propose a transformer-based gesture recognition frame-
work that is designed for dynamic sequence of hand ges-
ture. An overview of the proposed GestFormer is shown in
Figure 2. GestFormer takes a sequence of m frames as an
input which can be represented as X = {x1, x2, .., xm},
X ∈ Rm×w×h×c, where w × h is the size of each frame
with c channels. First, the features, F are extracted from
each frame using a ResNet-18 [26] model which outputs
a map of Rm×k. These features are then fed to the pro-
posed GestFormer block to learn the wavelet of multiscale
features. Our proposed GestFormer consists of 6 stages of
Multiscale Wavelet Pooling Transformer (MWPT) blocks
to get the refined features which finally helps to predict the
probability distribution of n classes using a linear classifier.

3.2. Multiscale Wavelet Pooling Transformer
(MWPT)

In traditional transformers [51], input is projected into three
different vectors, Query, Key, and Value using linear trans-
formation. The attention from these 3 vectors is computed
using scaled-dot product of the Query and Key, normalis-
ing it and applying softmax to obtain the weights of the
value. Computation of the attention in this transformer has
quadratic complexity which increase with long sequences.
To deal with this issue, we use PoolFormer [61] as the core
architecture of our proposed MWPT model. PoolFormer
replaces the attention mechanism with pooling based to-
ken mixing which is a simple non-parametric operation and
it has fewer parameters compared to the traditional trans-
former.

The goal is to develop a model that is computation-
ally less expensive and at the same time, performance of
the model is also comparable. PoolFormer achieves com-
petitive results on dynamic gesture recognition when ini-
tial experiments were performed. To further enhance the
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Figure 3. Detailed Wavelet transform Processing (WCP) block.
The proposed WCP requires only linear time complexity. It first
maps the input into its wavelet coefficients which decomposes the
input into multipple sinusoidal waves. The wavelet coefficients is
the magnitude of the sinusoidal. After enhancing these magnitudes
using Dconv (DCx, x= 1,2,3,4), the coefficients are re-mapped in
input space via backward wavelet transform.

performance, we explore various techniques built on the
core PoolFormer structure. The features obtained from the
ResNet are first embedded using spatial embedding [28].
We also use positional embedding to make the model know
the order of the sequence [50]. This encoded input with po-
sitional embedding is fed to the proposed MWPT blocks.
We propose a novel token mixer called Multiscale Wavelet
Pooling Attention (MWPA) which uses multiscale pooling
and a wavelet transform before passing the input through
the pooling layer. Our MWPA is purely convolution based
architecture. After the tokens are mixed in the pool token
mixer, we fed the features to the Gated Depthwise Feed For-
ward Network (GDFN) block, which helps in selectively
passing the fine details in addition with the skip connection
to the next stage after layer normalisation. A stack of 6
MWPA stages is used in the proposed MWPT.

3.2.1 Multiscale Wavelet Pooling Attention (MWPA)

The PoolFormer uses a single input, unlike the vanilla trans-
former which uses 3 attention vectors. Since the input is
fed to the pooling layer directly, it plays an important role
in the full transformer block. Pooling helps to select the
important features from the input. Further, providing en-
hanced features as input to the pooling layer can help the
model to improve the performance. The enhanced features
are calculated by using a wavelet-based forward and back-
ward paradigm [71]. This facilitates the pooling layer to ag-
gregate the enhanced features in wavelet coefficient space.
We follow [43], which uses wavelet-based query for image
inpainting to reduce the noise forwarding to the attention
block. Applying wavelet transform has linear complexity
in contrast to transformers which has quadratic complexity.
Our model is still less complex.

We calculate the wavelet coefficient of the input features,
F as:
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Figure 4. The detailed Gated Depth-wise Feed Forward Network
(GDFN) structure. GDFN facilitates subsequent layers within
the network hierarchy to concentrate on more detailed image at-
tributes, thereby resulting in better performance of the complete
model.

LL,LH,HL,HH = DWT (F ), (1)

where, the input feature is divided into 4 subspace, which
are approximation (LL) and details in 3 orientations as hor-
izontal (LH), vertical (HL) and diagonal (HH). These coef-
ficients are the magnitude of the corresponding sinusoidal
wave decomposed after wavelet transform. After the ex-
traction of these coefficients, we separately enhance these
features using Depth-wise separable convolution as shown
in Fig. 3. Further, inverse wavelet transform is calculated
from the processed output features, which are given as in-
put to the pooling layer of the PoolFormer.

In order to extract the important features using pooling,
we propose a Multiscale Pooling (MSP) mechanism which
helps to aggregate the multiscale information (shown in
MSP block in Fig. 2). A multiscale pooling can accurately
capture the hand shape and size variations and recognise the
hand with different scales. We propose to apply 3 filters for
pooling the input features from the WCP block, (3×3, 5×5
7×7). Output from these 3 pooling layers are then averaged
to get a strong aggregated enhanced feature. This enhanced
feature is the overall output of the proposed MWPA block.

3.2.2 Gated Depthwise Feed Forward Network
(GDFN)

To transform the features from MWPA block, we fol-
low [64] to apply two modifications in FFN: gating mech-
anism and depth-wise convolutions. The architecture of
GDFN is shown in Fig. 4, which helps control the flow of
important feature or fine information to the next stage of

the transformer blocks. This is formulated by linearly trans-
forming input using depth-wise convolution and performing
element-wise product of two parallel features, of which one
is Gelu activated represented as.

P’ = W 0
pGating(P) + P, (2)

Gating(P) = ϕ(W 1
dW

1
p (P))⊙W 2

dW
2
p (P)) (3)

here, ⊙ denotes the element-wise multiplication and ϕ rep-
resents the GELU activation.

3.3. Multi-Modal Late Fusion

Multi-modal methods have gained the popularity among re-
search community and have been used in numerous appli-
cation. RGB-D sensors provides RGB images, depth im-
ages, infrared images and it has been used to acquire the
NVGestures and Briareo dataset for dynamic hand gesture
recognition. Following [20], we also adapt late fusion tech-
nique to predict the multimodal accuracy of the inputs. We
have simply averages the output probability score from each
input modality trained separately which is given as

y = argmax
j

n∑
i

P (ωj |xi), (4)

where n is the number of modalities over which the results
are to be aggregated, and P (ωj |xi) is the probability distri-
bution of the ith frames of a given input, which belongs to
class ωj .

4. Experiments and Discussion
Experiments are performed on single as well as multimodal
inputs on NVGesture and Briareo. We also analyse the
number of learnable parameters and the MACs along with
the ablation on each component of the model.

4.1. Datasets

NVGesture: NVGesture [40] is a dynamic hand gesture
dataset containing 1582 images in total from 25 different
classes. Dataset is divided into two parts, having 1050 sam-
ples in training and rest in test dataset. Dataset samples
were collected in three different modalities (RGB, IR, and
depth) by a group of 20 subjects.

Briareo: Briareo dataset [39] is collected for dynamic
hand gesture recognition. The dataset samples are collected
using a RGB camera, depth sensor, and an infrared stereo
camera, under natural lighting conditions. Since images are
captured in natural lighting, images are dark and of low con-
trast. The dataset contains 12 different dynamic gestures
which were performed by 40 subjects among them 33 were
males and 7 were females. Each gesture is performed 3
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Table 1. Results for different modalities on NVGesture [40] and Briareo [39] dataset. # is the number of input modalities used. Transformer
results are the one reported in [20].

#
Input data Accuracy

Color Depth IR Normals Optical flow
NVGesture Briareo

Transformer [20] GestFormer Transformer [20] GestFormer

1

✓ 76.50% 75.41% 90.60% 94.44%
✓ 83.00% 80.21% 92.40% 96.18%

✓ 64.70% 63.54% 95.10% 98.13%
✓ 82.40% 81.66% 95.80% 97.22%

2

✓ ✓ 84.60% 82.57% 94.10% 96.78%
✓ ✓ 79.00% 77.19% 95.50% 95.87%

✓ ✓ 81.70% 79.88% 95.10% 96.57%
✓ ✓ 84.60% 82.75% 96.50% 97.44%

✓ ✓ 87.30% 82.78% 96.20% 96.33%
✓ ✓ 83.60% 82.18% 97.20% 97.57%

✓ ✓ 72.00% 72.61% - 96.57%

3

✓ ✓ ✓ 85.30% 84.24% 95.10% 96.78%
✓ ✓ ✓ 86.10% 83.81% 95.80% 97.42%
✓ ✓ ✓ 85.30% 83.40% 96.90% 96.88%

✓ ✓ ✓ 87.10% 83.61% 97.20% 96.79%

4

✓ ✓ ✓ ✓ 87.60% 85.62% 96.20% 96.33%
✓ ✓ ✓ ✓ - 85.85% - 96.79%
✓ ✓ ✓ ✓ - 85.31% - 97.42%
✓ ✓ ✓ ✓ - 84.55% - 96.79%

✓ ✓ ✓ ✓ - 85.96% - 96.79%
5 ✓ ✓ ✓ ✓ ✓ - 85.85% - 96.88%

times by every subject. Thus a total of 120 (40 × 3) se-
quences of each gesture is collected of at least 40 frames.
Randomly, 32 subjects are placed in the train and the vali-
dation set and 8 subjects in the test set.

4.2. Implementation Details

The proposed GestFormer model was implemented, trained
and tested using Torch=1.7.1 with 12 GB Nvidia GeForce
GTX 1080 Ti GPU, CUDA 10.1 with cuDNN 8.1.1. 40
frames of a gesture are given as input to the model to opti-
mise the loss using Adam optimizer over categorical cross
entropy loss. The model is trained with a batch size of 8 at
1e−4 learning rate which decays after 50th and 75th epoch.
Following [20], we use ResNet-18 model as feature extrac-
tor which is pre-trained on the ImageNet dataset [14]. Each
modality was separately trained, and probability score for
each modality is calculated. Late fusion was used to com-
bine different modalities for integration of diverse sources
of information for improved performance.

4.3. Results and Discussion

NVGesture: We follow [20] to performed experiments with
single as well as multi-modality. The result compared with
the traditional transformer are compared for single and mul-

timodal combinations for NVGesture in Table 1. The pro-
posed GestFormer achieves the state-of-the-art results with
lesser number of parameters. Lesser parameters are the
results of the pooling layers used to replace the attention
mechanism. From the table, we can observe that Gest-
Former obtained best result on normals with an accuracy of
81.66% and nearly similar result is obtained in depth maps.
This is because normals are derived from the depth images.

Further, the accuracy increases when more than one
modality is used as input. The results in multimodal ap-
proach are obtained using late fusion. When RGB images
are fused with normals or depth maps, an increment in the
accuracy is seen. It further increases when normals and
depth inputs are fused. Among all the combination of 2
modalities, best performance is obtained when normal and
depth is fused which is 82.78%. From the table, it can be
clearly seen that adding a modality shows an increment in
the accuracy. 3 modality reaches an accuracy of 84.24%
with RGB, depth and IR fusion. Accuracy further improves
to 85.62% with 4 modal input and the best accuracy is ob-
tained with all the 5 modalities which is 85.85% on the pro-
posed GestFormer. However, it is still less compared to the
traditional transformer [20] on single as well as multimodal
inputs.
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Table 2. Comparison results for single modality on NVGesture
dataset [40]. All results are taken from the respective papers.

Input modality Method Accuracy

Color

Spat. st. CNN [45] 54.60%
iDT-HOG [52] 59.10%
Res3ATN [16] 62.70%

C3D [48] 69.30%
R3D-CNN [40] 74.10%

GPM [21] 75.90%
PreRNN [59] 76.50%

Transformer [20] 76.50%
I3D [52] 78.40%

ResNeXt-101 [31] 78.63%
MTUT [1] 81.33%
NAS1 [62] 83.61%
Human [40] 88.40%

MotionRGBD [68] 89.57%
GestFormer 75.41%

Depth

SNV [58] 70.70%
C3D [48] 78.80%

R3D-CNN [40] 80.30%
I3D [52] 82.30%

Transformer [20] 83.00%
ResNeXt-101 [31] 83.82%

PreRNN [59] 84.40%
MTUT [1] 84.85%
GPM [21] 85.50%
NAS1 [62] 86.10%

MotionRGBD [68] 90.62%
GestFormer 80.21%

Optical flow

iDT-HOF [50] 61.80%
Temp. st. CNN [45] 68.00%

Transformer [20] 72.00%
iDT-MBH [50] 76.80%
R3D-CNN [40] 77.80%

I3D [52] 83.40%
GestFormer 72.61%

Normals Transformer [20] 82.40%
GestFormer 81.66%

Infrared
R3D-CNN [40] 63.50%

Transformer [20] 64.70%
GestFormer 63.54%

We also compare the performance of the proposed Gest-
Former with other methods on single modality in Table 2,
and on multimodal inputs in Table 3 and observe that Gest-
Former achieves state-of-the-art results. We can also ob-
serve from the Table 2 that our model is able to outperform
Transformer model [20] when optical flow input is given to
the model.

Briareo: Similar to NVGesture, we performed experi-
ments on Briareo dataset with single and multimodal inputs

Table 3. Comparison results for multi-modalities on NVGestures
dataset [40].

Input modality Method Accuracy
iDT [50] color + flow 73.00%

R3D-CNN [40] color + flow 79.30%
R3D-CNN [40] color + depth + flow 81.50%
R3D-CNN [40] color + depth + ir 82.00%
R3D-CNN [40] depth + flow 82.40%
R3D-CNN [40] all 83.80%

MSD-2DCNN [21] color+depth 84.00%
8-MFFs-3f1c[30] color + flow 84.70%

STSNN [65] color+flow 85.13%
PreRNN [59] color + depth 85.00%

I3D [52] color + depth 83.80%
I3D [52] color + flow 84.40%
I3D [52] color + depth + flow 85.70%

GPM [21] color + depth 86.10%
MTUTRGB-D [1] color + depth 85.50%

MTUTRGB-D+flow [1] color + depth 86.10%
MTUTRGB-D+flow [1] color + depth + flow 86.90%

Transformer [20] depth + normals 87.30%

Transformer [20] color + depth +ir 87.60%+ normals
NAS2 [62] color + depth 86.93%

NAS1+NAS2 [62] color + depth 88.38%
MotionRGBD [68] RGB + Depth 91.70%

GestFormer depth + normals 82.78%
GestFormer depth + color + ir 84.24%

GestFormer depth + color + ir 85.62%normal

GestFormer depth + color + ir 85.85%normal + op

Table 4. Comparison of the results obtained for different modali-
ties on Briareo dataset [39].

Method Tensor sizes
C3D-HG [39] color 72.20%
C3D-HG [39] depth 76.00%
C3D-HG [39] ir 87.50%

LSTM-HG [39] 3D joint features 94.40%
NUI-CNN [19] depth + ir 92.00%
NUI-CNN [19] color + depth + ir 90.90%

Transformer [20] normals 95.80%
Transformer [20] depth + normals 96.20%
Transformer [20] ir + normals 97.20%

GestFormer ir 98.13 %
GestFormer ir + normals 97.57%

as shown in table 1. A comparison is also shown with the
basic transformer architecture [20]. From the comparison,
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we can conclude that GestFormer performs better on Bri-
areo dataset compared to [20] with approx. 2-4% rise in ac-
curacy with each modality. It can also be observed that our
modal has better results on all the modalities and also on all
the experiments individually, except the 2 experiments with
3 modalities. Best performance is observed when infra-red
input is used, obtaining an 98.13% accuracy. Combining
modalities did not lead to a notable improvement in Gest-
Former’s performance.

Additionally, we also compared the results obtained by
the proposed model with other methods in Table 4. It is ev-
ident that GestFormer achieves superior performance with
an accuracy of 98.13%. Finally, we can also conclude from
the results that GestFormer is able to achieve better results
on single modalities, leading to a conclusion that even with-
out using multimodal inputs for our methods, we are able to
achieve better results than other state-of-the-art methods.

4.4. Ablation Study

We perform the ablation study on NVGesture depth modal-
ity. The proposed GestFormer has 8 baselines (BL1, BL2,
BL3, BL4, BL5, BL6, BL7 and BL8) as shown in Table 5.
Baseline BL1 is the transformer model with pooling layer
similar to PoolFormer (A). Baseline BL2 explores the pool-
ing transformer with the multi-scaling pooling network (B)
where 3 types of filters are used for each scale. Baseline
BL3 uses encoding of input using spatial embedding (C)
with A as discussed in Section 3.2. Baseline BL4 and BL5
is the Wavelet transform (WCP) (D) and Gated Dconv FFN
(GDFN) (E) used with A.

An initial experiment that shows the performance of
PoolFormer is 76.04% which increases to 76.67% by us-
ing multi-scale pooling network. Further, addition of differ-
ent modules to the poolformer aims to enhance the perfor-
mance of the proposed model. From the table, we can con-
clude that addition of each baseline on BL1 has enhanced
the performance of the model, giving a clear motivation of
designing the proposed GestFormer model.

We have also compared the number of learnable param-
eters and the number of MAC of our model with other mod-
els and the traditional transformer model in Table 6. The
numbers of parameters and MACs are comparatively less
for GestFormer from other methods.

5. Conclusion

We proposed a novel GestFormer model for dynamic hand
gesture recognition build on PoolFormer which is a compu-
tationally efficient model since it uses non parametric layer.
We further enhance the performance by extracting wavelet
coefficients and enhancing the features in wavelet space.
We also leverage the multiscale contextual information by
using multiscale pooling and a gated network to process

Table 5. Ablation study on the proposed GestFormer model.

Baseline Module Accuracy
BL1 PoolFormer (A) 76.04
BL2 A + MSP(B) 76.67
BL3 A + embedding(C) 77.29
BL4 A + WCP(D) 78.95
BL5 A + GDFN(E) 79.12
BL6 A + C + D 79.58
BL7 A + B + C + D 79.97
BL8 A + B + C + D + E 80.21

Table 6. Comparison in terms of the number of parameters (M))
and MACs. The numbers of MACs are counted by fvcore library.

Methods Params (M) MACs (G)
R3D-CNN [40] 38.00 -
C3D-HG [39] 26.70 -

Transformer[20] 24.30 62.92
GestFormer 24.08 60.40

the refined features. This helps the model to learn signif-
icant features with fewer parameters compared to the tradi-
tional transformer. Evaluating the proposed GestFormer on
NVGesture and Briareo datasets shows our model achieves
state-of-the-art results. For Briareo dataset, we can con-
clude that our GestFormer model is so efficient that it per-
forms better with single input compared to other single and
multimodal methods as well.

References
[1] Mahdi Abavisani, Hamid Reza Vaezi Joze, and Vishal M Pa-

tel. Improving the performance of unimodal dynamic hand-
gesture recognition with multimodal training. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 1165–1174, 2019. 7

[2] Rajat Agarwal, Balasubramanian Raman, and Ankush Mit-
tal. Hand gesture recognition using discrete wavelet trans-
form and support vector machine. In 2015 2nd International
Conference on Signal Processing and Integrated Networks
(SPIN), pages 489–493. IEEE, 2015. 2

[3] Neena Aloysius, M Geetha, and Prema Nedungadi. Incor-
porating relative position information in transformer-based
sign language recognition and translation. IEEE Access, 9:
145929–145942, 2021. 1, 3

[4] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen
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