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Abstract

Automatic weed identification based on RGB images
with convolutional neural networks (CNN) is a new frontier
of precision agriculture. However, the CNN models expect
a large volume of labelled data. Their performance deteri-
orates across different fields due to varied agricultural con-
texts. To address this, we propose an unsupervised domain
adaptation (DA) framework leveraging pseudo-labelling.
Our method involves co-training labelled source data with
pseudo-labelled target data. We introduce a novel greedy
pseudo-labelling strategy to optimize pseudo-label selec-
tion, maximizing gains while minimizing overfitting risks.
Monitoring overfitting with covariance helps detect fluctu-
ations in class pixel counts during co-training, enhancing
target performance. The proposed framework has demon-
strated superior performance by evaluation against litera-
ture approaches, including the input-level DA methods with
Fourier Transform, feature-level with CycleGAN methods
and AdaptSegNet, and output-level with self-training. It is
tested with the ROSE challenge dataset from different cam-
eras and years with diverse plant stages. Particularly in
challenging conditions for plants across different years with
varied plant stages, the proposed method outperforms exist-
ing literature that struggles to surpass the baseline.

1. Introduction

Automatic weed identification is recommended for weed
control due to reduced labour costs and minimized herbi-
cide usage [31]. It is conducted with machine vision sys-
tems and remote aerial imaging techniques [9, 19, 47] by
processing the captured images and segmenting crops and
weeds against background (soil, stones, crop residue, etc.).
Weed segmentation with the captured images utilizes vari-
ous computer vision methods, including image processing
and machine learning (ML), to achieve precise and reliable
weed identification [34]. The most successful ML tech-

Figure 1. The base model is trained with source images, and the
prediction of target images is optimized by selecting and incor-
porating a maximum number of pseudo-labels, ensuring effective
co-training without overfitting alongside the source images.

nique in recent years is the use of convolutional neural net-
works (CNN) [14, 26, 51], which extract features automati-
cally and classify images without any domain knowledge of
the task they are dealing with [22].

However, due to the complexity of agricultural envi-
ronments and the variability in weed species, appearance,
lighting conditions, and growth stages, the performance of
a CNN model trained on one specific set of images (i.e.
source domain) deteriorates when it is deployed to new agri-
cultural contexts (i.e. target domain) [1, 13, 41]. Maintain-
ing comparable performance in such variable agricultural
environments demands broad datasets containing samples
of all conditions encountered in the field. Having enough
labelled data for each newly studied field is costly and
not feasible in real applications. Thus, domain adaptation
(DA) techniques are proposed to adapt the existing models
built on labelled source data to the unlabelled target data to
achieve comparable performance and reduce the need for
labelling.

DA is a technique to improve the performance of a
model on a target domain containing insufficient annotated
data by using the knowledge learned from another related
source domain with adequate labelled data [42]. DA tech-
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niques can be classified based on the availability of la-
belled data in the source and target domains, including su-
pervised DA, semi-supervised DA, unsupervised DA, self-
supervised DA, and multi-source DA [39]. This study fo-
cuses on the unsupervised DA with the target labels unavail-
able.

DA techniques have been extended to agriculture in
recent years, particularly in precision agriculture and
automated agriculture systems, where adapting models
across different agriculture contexts is crucial for accurate
decision-making and resource optimization [37]. Examples
include weed identification and herbicide application across
various fields having varying weed species and growth pat-
terns [13, 17, 45], crop disease identification based on en-
vironmental factors and specific crop varieties [3, 6, 46],
and yield prediction and harvest planning with different soil
types, weather patterns, and farming practices [29, 32, 44],
etc.

In this work, we introduce an unsupervised DA frame-
work leveraging pseudo-labelling called greedy pseudo-
labelling weed segmentation tasks, which maximizes the
utilization of pseudo-labelled target samples through a
streamlined, one-stage co-training approach as shown in
Figure 1. The base model is trained with the source images
and makes predictions on the target. The maximum number
of pseudo-labels determined by covariance analysis is se-
lected from the predictions and included in the co-training
process to improve the test performance on the target do-
main.

To mitigate overfitting of pseudo-labels during co-
training, we employ a robust strategy to determine the maxi-
mum selection proportion based on covariance, considering
class sizes. Overfitting is indicated by significant fluctua-
tions in class sizes, as observed in previous studies [16,54].
Covariance is effective in monitoring multiple variables si-
multaneously [25], allowing us to closely track fluctuations
in class sizes pre- and post-DA to optimize selection pro-
portions and enhance performance on the target domain.

We summarize the main contributions of this work as
follows:

• We advocate for utilizing output-level approaches in
weed identification, a novel technique not explored in
existing literature for weed segmentation.

• Covariance in class sizes before and after DA is pro-
posed and found effective in detecting overfitting and
optimizing the pseudo-label selection proportion.

• We formulate a loss function incorporating the soft In-
tersection over Union (softIoU) of the labelled source
and selected pseudo-labelled target pixels into the
framework, enhancing the weed segmentation’s effec-
tiveness.

• The outlined method has demonstrated superior per-
formance by evaluation against existing approaches
at different adaptation levels, including the Fourier
Transform (input-level) [41], AdaptSegNet (feature-
level) [18], CycleGAN (feature-level) [13, 52] and
CBST (output-level) [59] methods, using the ROSE
challenge dataset [2].

• The proposed method effectively enhances adaptations
in challenging conditions for plants from different
years with varied stages, outperforming existing liter-
ature methods that fail to surpass the baseline.

2. Related work
DA at the input-level. DA for weed segmentation could

be performed at different levels: input-level, feature-level,
and output-level [39]. Adaptation at the input level achieves
cross-domain uniformity of the visual appearance of the in-
put images by statistical matching at the input level [40]. A
rich line of work has been focusing on style transfer tech-
niques, such as Fourier Transform [1, 21, 41, 53]. Utilizing
the Fourier transform on an image enables the extraction
of both its phase and amplitude components. By substitut-
ing the amplitude of a source image with that of a target
image, the resulting image embodies the semantics of the
source and the style of the target. In weed segmentation
studies, the Fourier Transform has been explored for its effi-
cacy [41], which showed that employing the Fourier Trans-
form for style transfer yields superior performance com-
pared to baseline methods in crop-weed segmentation tasks.

DA at the feature-level. Adaptation at the feature level
is to force the feature extractor to discover domain-invariant
features by adjusting the distribution of latent representa-
tions from source and target domains [39]. The popular al-
gorithms are adversarial-based [17,18,43] which introduces
an additional domain classifier to distinguish features be-
tween the source and target as well as to confuse the domain
discriminator by making the features from both domains
indistinguishable to learn domain-invariant features, and
generative-based [5, 10, 12, 27], involving generating syn-
thetic data in the target domain or adapting existing source
domain data to look like the target domain. For example,
the adversarial-based approach AdaptSegNet was proposed
for weed segmentation tasks across varied fields in [18] and
found effective in handling changes in new field environ-
ments during real field inference. A considerable amount
of research [1, 13, 24, 28, 52, 55] has been resorting to the
generative-based with CycleGAN methods for weed seg-
mentation tasks.

DA at the output-level.Self-training-based adaptation
methods are widely used output-level approaches that co-
train the model with labelled source and pseudo-labelled
target samples. They have demonstrated success in diverse
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j=1 yjc + ŷ∗jc − yjc · ŷ∗jc

(1)

domains, including city traffic scenes [11, 15, 56, 58] and
medical image segmentation [30,48,57]. However, their ap-
plication to weed segmentation is relatively scarce in the lit-
erature. Notably, recent work [24] suggests exploring self-
training approaches as a promising future direction for weed
segmentation.

The self-training-based adaptation methods involve
gradually incorporating pseudo-labels by increasing their
selection proportions while refining their quality through
iterations [4, 49, 50]. Research has shown that iteratively
refining these pseudo-labels during co-training improves
the final performance. However, the quality of the ini-
tially selected pseudo-labels is pivotal. Incorrect labels can
propagate errors through training, resulting in a less-than-
optimal model [8]. Therefore, the success of co-training
with pseudo-labels is tied to the initially selected pseudo-
labels, but determining the optimal selection proportion
presents a challenge [20, 36, 38].

3. Methodology
In this work, we propose using pseudo-labelling to seg-

ment weeds. Pseudo-labels of the target domain are used
to co-train the model with the source domain based on
pseudo softIoU , taking into account the softIoU of the
source-labelled pixels and the selected pseudo-labelled tar-
get pixels, as shown in Eq (1). We seek to minimize the sof-
tIoU of both source-labelled and the selected target pseudo-
labelled pixels by addition in Eq (1). C is the set of classes,
yic and yjc are the predicted label of source and target pix-
els. y∗ic is the ground truth of a source label for pixel i, and
ŷ∗jc is the target pseudo-label predicted by the base model
for pixel j and treated as a true label in the co-training pro-
cess. All the pixels from the source domain are counted in
the loss function, annotated with ns, whereas only the se-
lected pseudo-labels are considered for the target domain,
marked as n′

t.
The pseudo-labels y∗ic included in the co-training are de-

termined by the confidence thresholds exp(−kc), where c
represents a class. The pixels with a confidence lower than
the thresholds are filtered out using Eq (2) by setting the
pseudo-label all zeros. As shown in Algorithm 1, the con-
fidence threshold kc is determined based on the selection
proportion ps. This set stores all the pre-defined selection
proportions, aiming to identify the optimal selection propor-
tion. Subsequently, the optimal confidence threshold could
be determined. To get the pseudo-labels of the target do-
main, we first need to predict the target images Xt with the
neural network function by f(w,Xt) with the prediction

confidence of all pixels stored in PXt
. Then, we find the

pseudo-labels ŷt based on the maximum prediction proba-
bilities of each target pixel, which is stored in MPc,Xt

for
each class c. MPc,Xt is then used to match each prediction
confidence by pseudo-labelled class and stored in M.

The confidence threshold kc is determined by ranking
the prediction probabilities of all pixels assigned to class c.
The ranked probabilities are stored in mc. Subsequently,
the index of the threshold probability indc is calculated by
ps × length(mc), where ps is the selection proportion. The
kc is then determined accordingly based on ps and stored in
k. The thresholds for each selection proportion k are saved
in Kps

.

ŷj,c =


1 if c ∈ C and c = argmax pj ,

pj(c|w, xt,j) ≥ exp(−kc)

0 otherwise
(2)

Algorithm 1 Determination of Kps

Input: Neural network f(w), target images Xt,
selection portions ps

Output: k
PXt

= f(w,Xt)
ŷt = argmmax(PXt , axis = 0)
MPXt = max(PXt , axis = 0)
for c = 1 to C do

MPc,Xt
= MPXt

(ŷt == c)
M = [M,matrix to vector(MPc,Xt

)]
end for
for ps in ps do

for c = 1 to C do
mc = sort(M[c], order = descending)
indc = length(mc)× ps
kc = − log(mc[indc])
k.append(kc)

end for
Kps

.append(k)
end for
return Kps

When the thresholds are determined for each pre-defined
selection proportion, we select pseudo-labels from the pre-
dictions and include them in the co-training process. In the
co-training process, we do not anticipate significant fluctu-
ations in the allocation of pixels across classes due to the
assumption of similarity and relation between source and

2486



target domains in DA [23]. To track these fluctuations, we
propose the use of covariance in class distributions before
and after the co-training. High covariance values indicate
substantial fluctuations in pixel distribution among classes
compared to the initial distribution. This is often attributed
to a significant number of falsely assigned pseudo-labels re-
sulting from a large selection proportion. Such mislabeled
instances misguide the model, leading to inaccurate pixel
labelling for respective classes. These falsely assigned la-
bels are prone to overfitting, adversely affecting test perfor-
mance. Hence, overfitting manifests itself in the covariance,
providing a reliable indicator for its detection.

The variance in pixel distribution among classes before
and after adaptation is quantified through covariance, as de-
picted in Eq (3). For instance, we initially record the num-
ber of pixels assigned to each class predicted with the base
model in an array n0. Subsequently, employing a selection
proportion ps to calculate the threshold kc, we co-train the
model using the selected pseudo-labels alongside the source
domain, storing the resulting number of pixels for each class
in an array nps

. We then calculate the covariance between
n0 and nps

for each selection proportion ps within a set of
the pre-defined selection proportions denoted by ps. Conse-
quently, we have a covariance set including covps for each
separate selection proportion ps. The optimal selection pro-
portion optps

is the minimum of the covariance set, deter-
mined based on the selection proportion that generates the
number of pixels for each class having the minimum covari-
ance with n0.

optps
= min

ps∈ps

(covps
|covps

= cov(n0,nps
)) (3)

The flow chart of the proposed framework is plotted in
Figure 2. Our work uses the model designed in [1] to com-
pare with the literature methods. The base model is built
on a U-net segmentation network [33] with a VGG16 [35]
pre-trained with ImageNet [7].

The base model, initially trained on source images, is
tested on the target domain to generate target predictions,
denoted as Step 1. Pseudo-labels are then selected in Step
2 based on confidence thresholds Kps

, calculated using pre-
defined selection proportions ps as outlined in Algorithm 1.
The specified ps values are pre-set as [0.1, 0.2, 0.3, 0.4, 0.5]
to have a maximum proportion 50% of the predictions in-
cluded in the co-training as suggested in [59].

Subsequently, these selected pseudo-labels are employed
to co-train the model with the source domain in Step 3. We
prioritize the optimal selection proportion with minimal co-
variance, as shown in Eq (3), ensuring a robust co-training
approach with covariance analysis in Step 4. The optimal
selection proportion is determined in Step 5 by comparing
it with the minimum predefined selection proportion of 0.1.
If it is more than 0.1, it is used to select the consequent

pseudo-labels to co-train the model and test it on the tar-
get domain to get the final predictions. Whereas equal to
0.1 indicates potential overfitting, often associated with a
larger selection proportion and caused by numerous falsely
labelled samples within the selected pseudo-labels. These
falsely labelled samples manifest as substantial pixel fluc-
tuations and heightened covariance. To prevent misleading
the model and deteriorating test performance, we specifi-
cally integrate pseudo-labels with a minimal 0.1 selection
proportion in Step 6. We then conduct co-training with the
source domain in Step 7, followed by testing on the target
domain to generate predictions in Step 8. When the target
predictions are ready, this process repeats from Step 2, re-
fining the pseudo-labels to determine an optimal selection
proportion in subsequent rounds. Consequently, we opti-
mize the optimal selection proportion more than the mini-
mum predefined 0.1. Through this iterative refinement, we
maximize pseudo-label selection proportions, leading to a
significant enhancement in test performance.

4. Experiments
Datasets. The images we used in our experiments to

test the proposed method are sourced from the ROSE Chal-
lenge, which involved four participating teams: BIPBIP,
PEAD, ROSEAU, and WeedElec. These teams utilized
various robots and camera systems during the ROSE field
campaigns. The data for our experiments was gathered in
2019 and 2021 from an experimental field at the INRAE re-
search center in Montoldre, France. The dataset comprises
RGB images at various resolutions and semantic segmenta-
tion masks, capturing maize and bean plants and four weed
types (Lolium perenne, Sinapis arvensis, Chenopodium al-
bum, Matricaria chamomilla) under natural daylight condi-
tions. There are 1000 labelled images, including 125 per
team and crop type for each year. The open-source dataset
is available at [2].

In our study, we perform two types of adaptations: one
involving different robots equipped with distinct cameras
within the same field during the same period (May 2019)
and the other involving the same robot used across different
years and periods (May 2019 and September 2021) captur-
ing varying plant growth stages. In the first type, we employ
the images from BIPBIP and WeedElec with both crops
(maize and beans). For the second type, we use images col-
lected by BIPBIP with plants at different growth stages in
the two years (2019 and 2021). Thus, we explore four com-
binations of source and target domains, each involving both
crops.

Models and baselines. We assess our method against
literature methods including the Fourier Transform [41],
AdaptSegNet [18], CycleGAN methods [13,52], and CBST
[59] method in both adaptations. To highlight the effective-
ness of the proposed method, we set the baseline and upper
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Figure 2. The scheme of the proposed greedy pseudo-labelling method, which shows the optimization of selection proportions and refine-
ment of pseudo-labels.

bound for all adaptation scenarios. The baseline comprises
predictions by the base model trained on the source domain
with softIoU and tested on the target domain without any
DA. On the other hand, the upper bound consists of predic-
tions generated by the model trained directly on the target
domain.

All the methods use the same U-net segmentation net-
work [33] with a VGG16 [35] pre-trained with ImageNet
[7]. Like the learning scheduler in [13], we set the initial
learning rate of 0.0001 and linearly reduce it to zero, multi-
plied by 0.1 every time the IoU loss does not improve after
four epochs. Adam optimizer and padded size of 320× 320
from the original images are used in this study. Horizon-
tal and vertical flips are performed with a probability of 0.5
in both directions. The test set does not use any padding
during testing. Among the CycleGAN methods, we con-
sider the architecture outlined in [13] (referred to as CGAN
L semantic) and the same architecture augmented with an
additional phase loss, as proposed in [52] (referred to as
CGAN L phase). This evaluation allows us to compare our
method’s effectiveness against established techniques.

4.1. Results

The performance comparisons are detailed in Table 1.
Our proposed method exhibits outstanding results, surpass-
ing the performance of existing methods with an average
mean IoU of 0.805. This achievement beats the Fourier
Transform approach by 0.029, the AdaptSegNet by 0.036,
and the CGAN L semantic, CGAN L phase, CBST by a
substantial margin of 0.148, 0.156, and 0.392, respectively.
Although the Fourier Transform shows superior test perfor-
mance over the proposed method for adapting beans from
WeedElec to BIPBIP, the proposed method obtains compa-
rable results.

The test performance of the proposed method for the
adaptation of maize from WeedElec to BIPBIP is con-
strained by the quality of pseudo-labels generated with the
base model, which has a poor mean IoU of 0.465. The
proposed method selects pseudo-labels from the predictions
with the base model, and if the performance of the base
model is inadequate, the quality of the pseudo-labels can-
not be guaranteed. This may lead to numerous false la-
bels, restricting the enhancement of test performance by co-
training the model with these selected pseudo-labels.

Importantly, our method significantly enhances target
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Table 1. Mean IoU (crop, weed and background classes) for the eight combinations of adaptations across different robots and years.

Crop Source Domain Traget Domain Baseline Fourier Transform [41] CGAN L semantic [13] CGAN L phase [52] AdaptSegNet [18] CBST [59] Ours Upper Bound

bean BIPBIP WeedElec 0.801 0.763 0.800 0.814 0.809 0.310 0.823 0.858
WeedElec BIPBIP 0.684 0.805 0.817 0.830 0.798 0.355 0.828 0.848

maize BIPBIP WeedElec 0.844 0.826 0.807 0.840 0.818 0.422 0.861 0.866
WeedElec BIPBIP 0.465 0.806 0.743 0.732 0.755 0.355 0.734 0.885

bean 2019 2021 0.635 0.690 0.631 0.552 0.672 0.391 0.748 0.810
2021 2019 0.807 0.772 0.352 0.541 0.772 0.489 0.821 0.848

maize 2019 2021 0.769 0.739 0.362 0.310 0.710 0.400 0.779 0.805
2021 2019 0.843 0.806 0.741 0.569 0.814 0.580 0.849 0.885

Average 0.731 0.776 0.657 0.649 0.769 0.413 0.805 0.851

performance in different adaptation scenarios across various
years for plants with different growth stages. This achieve-
ment stands out as the existing literature methods have
struggled to surpass the baselines. The study by Bertoglio
et al. [2] acknowledged challenges related to distinct class
proportions in the two domains and a domain gap arising
from plants with varying shapes. In contrast, our method
effectively tackles these challenges, resulting in a notable
enhancement of target performance.

For a clear visual comparison of segmentation perfor-
mance, we provide examples in Figure 3, featuring predic-
tions from the proposed method alongside literature meth-
ods such as Fourier Transform and AdaptSegNet, which
closely follow as the second-best alternatives in the over-
all adaptation results. The examples include diverse DA
scenarios involving various robots and plant growth stages.
The visuals highlight variations in soil colour among dif-
ferent robots and differences in plant growth stages across
different years. Predictions from various methods closely
align with the ground truth across different robots. How-
ever, the proposed method excels in predicting weed edges
and capturing minor weeds during adaptations across dif-
ferent years as shown in Figure 3 (c) and (d).

4.2. Discussion

It is noted that the test performance of CBST is incred-
ibly lower than the other methods, as shown in Table 1.
Despite this, it is useful and efficient in segmenting traffic
scenes in [59]. This discrepancy in performance could be
attributed to the class imbalance in the weed dataset and the
potential overfitting of the pseudo-labels. The overfitting is
evident in Figure 4, where the mean IoU initially peaks but
significantly reduces as the selection proportions increase
during later stages. The error propagates with iterations
when more pseudo-labels are integrated into the co-training
process due to inevitable false labels. Thus, we oppose it-
erative co-training and propose a streamlined one-stage co-
training in this work. However, it is challenging to deter-
mine the optimal selection proportion to mitigate overfitting
and achieve optimal adaptation performance [20, 36, 38].

To mitigate the overfitting and determine the optimal
selection proportions, we propose using covariance of the

pixel distributions across classes before and after DA in this
study. To highlight the effectiveness of this approach, we
present visualizations of the covariance alongside the tar-
get mean IoU in Figure 5, using examples of bean plants
adapted from BIPBIP to WeedElec and BIPBIP maize from
2021 to 2019. The covariance values are normalized to [0, 1]
for enhanced comparability. Despite some fluctuations in
the curves, there is a consistent overall trend between the
covariance and the mean IoU. As covariance increases, the
target mean IoU decreases, and the optimal selection pro-
portion aligns with the minimum covariance and the maxi-
mum target mean IoU.

Overfitting becomes pronounced when a substantial por-
tion of pseudo-labels is incorporated into the co-training
process. Illustrated in Figure 5, the adaptation of bean
plants from BIPBIP to WeedElec reveals a reduction in the
target mean IoU from 0.823 to 0.819 as the selection propor-
tion increases to 50%. This decline primarily stems from in-
cluding a considerable number of false pseudo-labels during
co-training, misleading the model and adversely affecting
its test performance. The magnitude of the selection pro-
portion leading to overfitting varies across different adap-
tation scenarios, depending on the baseline. Taking the ex-
ample of adapting from WeedElec to BIPBIP for maize with
a baseline of 0.465, even a modest selection proportion of
20%, as depicted in Table 6, results in a reduction in mean
IoU from 0.646 to 0.522. This discrepancy underscores the
poor quality of initially selected pseudo-labels, contributing
to the overfitting of false labels with a relatively large selec-
tion proportion and consequent degradation in the model’s
performance.

To enhance the performance of the target domain, espe-
cially when dealing with a baseline, we employ an iterative
refinement strategy for pseudo-labels. This involves incor-
porating a modest selection proportion and performing co-
training, then optimizing the selection proportion on the co-
trained model instead of the initial base model. This choice
is deliberate, as a conservative selection proportion not only
guards against overfitting but also has the potential to en-
hance the overall quality of the pseudo-labels. By refining
the selection proportion based on the co-trained model, we
aim to elevate the performance of the target domain further.

2489



Figure 3. Comparisons of segmentation predictions performed with Fourier Transform, AdaptSegNet, and the proposed method across
different robots and growth stages: (a) adaptation of beans from WeedElec to BIPBIP, (b) maize from BIPBIP to WeedElec, (c) maize
collected with BIPBIP from 2019 to 2021, (d) beans collected with BIPBIP from 2021 to 2019.

Figure 4. The covariance of the pixel count assigned to each class and the target mean IoU alongside the selection proportions for
adaptations across different robots.

By adopting this approach, we maximize the potential
of pseudo-labels and mitigate overfitting due to the base
model’s initially low performance, thereby improving the
test performance. Illustrated in Figure 6 for adaptation from
WeedElec to BIPBIP for maize, we initiate the co-training
process with a modest selection proportion of 0.1, effec-
tively preventing overfitting and enhancing the target per-
formance from the baseline 0.465 to 0.646. Subsequently,
the predicted labels generated by the co-trained model be-

come the basis for subsequent iterations. Through this itera-
tive refinement, we identify an optimal selection proportion
of 0.3, marking a substantial boost in target performance
from 0.646 to 0.734 for the mean softIoU.

5. Conclusions and future work
The major contribution of this paper is that we propose a

novel DA method for weed segmentation based on pseudo-
labelling. Our method seeks to optimize the selection pro-
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Figure 5. The covariance of the pixel count assigned to each class and the target mean IoU alongside the selection proportions for
adaptations across different robots.

Figure 6. The comparison of covariance and target mean IoU for adaptation from WeedElec to BIPBIP for maize plants: (a) without
pseudo-labels refinement, (b) with pseudo-labels refinement.

portions to maximize the gains of pseudo-labels with a one-
stage co-training instead of iteratively increasing the selec-
tion proportions in the co-training process. Covariance is
used to track the number of pixels assigned to each class to
monitor the overfitting and optimize the selection propor-
tions. To demonstrate the effectiveness of our method, we
evaluate it using the ROSE challenge dataset, comparing its
performance against the input-level adaptation method with
the Fourier Transform, feature-level methods with Cycle-
GAN and AdaptSegNet, and the popular output-level adap-
tation method with CBST. The results are highly promis-
ing, with the superior adaptability of our proposed method
in the challenging conditions of plants from different years
and varied stages, outperforming existing literature methods
that fail to surpass the baseline.

However, the effectiveness of the proposed method is
constrained by the quality of pseudo-labels derived from the
base model, called baseline, trained with the source domain
and performing prediction directly on the target domain
without any adaptation. When the base model performs
poorly, the test performance of the proposed method is con-
strained. For instance, in the adaptation of maize across
different robots from WeedElec to BIPBIP, the base model

yields a mean IoU of 0.465, limiting the test performance
of the proposed method to 0.734. This performance is no-
tably lower than other adaptations with higher base model
performances.

We suggest considering the class imbalance in the co-
training process to improve the adaptation scenarios with
poor baselines. The images for weed segmentation are
heavily imbalanced toward soil pixels and present a class-
biased challenge. Using the same selection proportion for
all classes may lead to model bias towards these large
classes. In future work, we plan to customize the class
selections in the co-training process to address this issue
and enhance our model’s performance. We will consider
the large classes and class transfer differences, which may
improve the accuracy and robustness of the segmentation
results.
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