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Abstract

Retinal image analysis plays a pivotal role in diagnos-
ing diseases like glaucoma, diabetic retinopathy, neurode-
generative disorders, and cardiovascular diseases. The re-
cent advancement of artificial intelligence (AI) can assist
the practitioners to analyze the images accurately. In this
research, a lightweight deep learning model is proposed
which is based on multitask learning to segment the retinal
images including retinal vessels and optic disc for further
analysis by clinicians. The proposed model has encoder-
decoder framework, where the encoder has convolutional
layers with multi-head attention that captures both local
details and long range dependencies effectively. The re-
sulting features from convolutional layers and multi-head
attention are fused together to make the model more effi-
cient and resilient for segmentation tasks. To further refine
the features, the skip connections are implemented along
with the convolutional block attention module (CBAM) in
the decoder. The model’s efficiency is validated on two pub-
licly available datasets (i.e., IOSTAR and DRIVE) to con-
firm the lightweight aspects and robustness. It achieved the
F1 scores of 80.6% and 93.3% on DRIVE and 80.1% and
85.4% on IOSTAR dataset for simultaneous segmentation
of blood vessels and optic disc, respectively. The empirical
evaluations show 0.25 MB of memory, 0.066 million pa-
rameters, and a FLOPs estimation of 2.46 GFLOPs, which
is better than existing models.

1. Introduction

The use of computerized tools to analyze retinal images to
diagnose several diseases is one of the emerging research

(a) DRIVE Image (b) Ground truth BV (c) Ground truth OD

(a) IOSTAR Image (b) Ground truth BV (c) Ground truth OD

Figure 1. Sample images from DRIVE and IOSTAR datasets;
presents the original images paired with their ground truths of BV
and OD.

fields. Retinal images are routinely utilized to diagnose
diseases related to blood vessels and other conditions, such
as diabetic retinopathy (DR), neurodegenerative disor-
ders, glaucoma, age-related macular degeneration (AMD),
multiple sclerosis (MS) and cardiovascular disease [10, 30].

Diagnosing these diseases without any computer-aided
system demands expert knowledge, time, dedication,
and monetary resources. Furthermore, the chances of
inaccuracy are high. Therefore, efficient segmentation of
retinal images is crucial for screening the disease early to
ensure deterrence or timely cures [33]. Introducing AI in
healthcare has the potential to revolutionize autonomous
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disease detection [13]. Our research focuses on retinal
image segmentation due to a growing demand for accurate
and effective diagnostic tools.

Recent studies highlight the importance of retinal image
segmentation for observing signs of neurodegenerative
disorders, particularly dementia. Among the various forms
of dementia, alzheimer’s disease accounts for 60-80% of
all cases. Significant changes in the optic nerve and retinal
vessels have been observed in subjects with alzheimer’s
[4, 5, 12].

In this research, we proposed RetinaLiteNet, a novel
lightweight multitask learning (MTL) technique. Unlike
conventional methods, RetinaLiteNet is designed for
simultaneous segmentation of retinal features, focusing on
blood vessels (BV) and optic disc (OD) to enhance disease
screening efficiency.

We have used two public datasets, IOSTAR and DRIVE,
to train and evaluate our model. Figure 1 displays the sam-
ple images from two public datasets, DRIVE and IOSTAR,
along with their ground truths of BV and OD. The perfor-
mance of our model is evaluated using performance metrics
such as F1(dice) Score, Jaccard index(IoU), area under
the curve (AUC), sensitivity, and specificity. Furthermore,
the model’s complexity is evaluated using estimation of
floating-point operations (FLOPs), trainable parameters
count, and the memory utilization. The efficiency of our
model is then validated by comparing the results with
existing state-of-the-art (SOTA) segmentation models.

The primary contributions of this paper are outlined
below:

• We presented a MTL for segmentation of BV and OD
from retinal images, facilitating the model to retrieve mul-
tiple features simultaneously while improving efficiency.

• We fuse convolutional neural network (CNN) with a
multi-head attention block (MHA) [31], a vital trans-
former component, to detect local and long-range depen-
dencies. This fusion is critical since it ensures that fine-
grained and broader patterns are detected, thus improving
segmentation.

• We integrate skip connections with the CBAM [34].
Combining these features allows the model to extract
them more precisely and ensure that no significant
information is overlooked.

The organization of the paper is given below: In sec-
tion 2, we delve into the background and relevant literature.
The proposed methodology is discussed in section 3 and the
experiments and results in section 4. Lastly, conclusion is

reported in section 5.

2. Related Work

Deep learning (DL) methods have been implemented to
segment retinal features like OD and BV. These techniques
have outstanding accuracy in retinal image segmentation
that suppressed traditional segmentation methods. In the
last few years, several SOTA models have been proposed
for segmenting retinal vessels and disc separately. More-
over, numerous multi-task learning techniques have been
proposed to perform segmentation on various medical
images.

Retinal Blood Vessel Segmentation. U-shaped DL
networks such as U-Net [27], RefineNet [16], Mask
R-CNN [7] and DeconvNet [23] are the popular techniques
because of their outstanding achievements in retinal
image segmentation. For medical image segmentation,
U-Net++ [38] is proposed to use feature fusion and pruning
technology to solve the low efficiency of U-Net. Encoder
Enhanced Atrous(EEA)-UNet [28] enhanced receptive
field by adopting dilated convolution. In this technique, the
number of kernels in the encoder and decoder are equal,
with layers added in each stage at the encoder side for
feature enhancement.

Furthermore Miu et al. [18] proposed Wave-Net for
retinal vessel segmentation in which pixel-wise retinal ves-
sel extraction. This model uses detailed enhancement and
denoising (DED) block to replace simple skip connection
from U-net and multi-scale feature fusion(MFF) to achieve
high accuracy. Multi-scale attention-guided fusion network
[14] is designed for retinal vessel segmentation. It com-
bines feature enhancement, attention-guided fusion, hybrid
feature pooling, and multi-scale attention block. It achieves
good accuracy and F1 score at the cost of high inference
time. M3U-CDVAE [36] is another lightweight refinement
network for retinal vessels segmentation. It uses the first
13 layers of mobilenet-V3 as a network encoder backbone.
The model operates in three stages: pre-segmentation,
segmentation, and refinement. It achieves good accuracy
and F1 score with less number of parameters for single
task learning. Liu et al. [17] proposed Residual depth-wise
over-parameterized(ResDO)-UNet that uses ResDO-conv
with multiple pooling operations, a pooling and atten-
tion fusion blocks to implement non-linear pooling and
multi-scale feature. A minimal U-Net variant to segment
retinal vessels is introduced by Jingfei et al. [8], known
as Salient U-Net (S-UNet). To address concerns with
data imbalance, it is a bridge-style U-Net design with a
saliency mechanism that employs a cascading technique
and adds foreground elements. It is a lightweight model
with 0.21M parameters, outperforms SOTA methods on
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benchmark datasets, DRIVE [1], CHASE DB1 [24], and
the TONGREN clinical dataset [9].

Li et al. [15] presented a dual-directional lightweight
model with an attention block that models long-range de-
pendencies and deals with intra-class variations. This block
used pooling methods in vertical and horizontal manner to
create an attention map to collect global contextual details
from semantically similar regions or parts of the same
object class. Moreover, the Selective Kernel (SK) unit
is used instead of traditional convolution to get multiple
features with distinctive sizes of receptive fields, which
are impacted by soft attention. The proposed model can
accurately detect various shapes and sizes of retinal vessels.
Aurangzaib et al. [2] used a lightweight DL technique
called ColonSegNet to segment BV from retinal images.
Three online available datasets (CHASE DB1, DRIVE and
STARE) are utilized to assess its performance. This model
is lightweight with five million trainable parameters appro-
priate for deployment on lower-end edge devices. This an
efficient system for single task learning i.e., segmentation
of retinal BV. Shahzaib et al. presented G-Net light [11],
which is a lightweight model obtained by modification of
Google net for segmentation of retinal vessels.

Optic Disc Segmentation. An automated optic disc
(OD) segmentation technique is introduced by Yinghua
et al. [6] that synergizes the design for irregular fundus
images. The spatial correlation based probability bubble
is designed between retinal BV and OD. Its outcome is
integrated into the U-net’s output layer by evaluating joint
probabilities. Souvik et al. [20] introduced a DL technique
to segment the OD from fundus images using an enhanced
convolutional network. In this approach, VGG16 serves as
the encoder, while its symmetric counterpart functions as
the decoder, ensuring more efficient object segmentation.
Furthermore, the Convolutional LSTM is integrated within
the encoder block.

Mehwish et al. [21] proposed EDDense-Net for segmen-
tation of OD and OC jointly. In this network, each block
contains dense layer along with grouped convolution. It
employs dice pixel classification to address class imbalance
issues. Xia et al. [35] presented a network that combines
CNN and transformer for optic disc (OD) and cup (OC) seg-
mentation from fundus images. Firstly, it utilized CNN to
acquire local features and combined the ASPP module to
gather multi-scale data. Then, the transformer is used to
access global features. The model is tested on REFUGE
dataset, resulting in improvement of model’s efficiency by
merging the two sets of features. A. Sevastopolsky [29] per-
formed a transformation of the original U-Net CNN to seg-
ment OD, where the image dimensions of the given image

are expanded by going through the contracting and expan-
sive network paths with up-sampling layers. This approach
produces high-quality OD segmentation with less inference
time.

Multi-Task Learning (MTL). Vengalil et al.[32] pro-
posed a DL model based on MTL, designed for simulta-
neous segmentation of the OD, BV, exudates, and macula.
The entire image serves as the foundation for both train-
ing and prediction. The proposed model comprises a mod-
ified U-Net architecture, which exclusively employs con-
volutional and de-convolutional layers. In term of MTL,
a hybrid CNN-Transformer encoder is proposed by Cheng
et al. [3] to tackle task correlation and heterogeneity for
the MTL model based on the MRI dataset. The proposed
model comprises a transformer and CNN to obtain spa-
tial and global features. A loss function for MTL is de-
veloped by combining classification and segmentation loss
with random weights. This method is assessed on public
datasets from multiple institutions. The proposed multi-task
model reveals outstanding results compared to single-task
learning models and other SOTA approaches. The semi-
supervised MTL structure for unlabeled datasets improves
the efficiency of glioma extraction and isocitrate dehydro-
genase(IDH) genotyping. Although the above mentioned
techniques provide outstanding accuracy, researchers are
still focusing on balancing performance and computational
complexity.

3. Methodology

The proposed model is based on MTL to simultaneously
segment retinal BV and OD. It comprises an encoder-
decoder framework, embedding convolutional layers and
MHA within the encoder. Feature fusion is performed at the
bottleneck, integrating the resulting features derived from
both the CNN and MHA block. This fusion enables the
model to gain local and global information by utilizing the
strengths of CNN and MHA. Additionally, the decoder is
enriched with the CBAM and ConvTranspose, paired with
two distinct outputs. It ensures that both tasks can learn
common representations while allowing each task to learn
its specific features. Figure 2 depicts the system diagram of
our proposed model.

3.1. Preprocessing

In the pre-processing stage, we performed data augmenta-
tion to cope with minor dataset issues in medical images.
We applied three primary augmentation techniques to both
the DRIVE and IOSTAR datasets, namely: CLoDSA1, IM-
GAUG2, and Albumentations3.

1https://github.com/joheras/CLoDSA
2https://github.com/aleju/imgaug
3https://github.com/albumentations-team/albumentations
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Contrastive Data Augmentation for Image Segmenta-
tion(CLoDSA) is a comprehensive data augmentation tech-
nique for image segmentation that includes several trans-
formations. We used the following techniques to increase
the size of DRIVE and IOSTAR datasets: Dropout (to set
some pixels from the image to 0 for training), white noise,
gamma correction, histogram equalization, blurring, elastic
deformation, flipping, shearing, sharpening, and boosting
saturation.
IMGAUG is a robust and comprehensive image augmen-
tation technique that provides a variety of operations that
might applied to images. We use augmentation techniques
such as rotation, JPEG compression, zooming, contrast en-
hancement, and shifting.
Albumentations is a fast image augmentation library widely
used in DL techniques. It performs various computer vi-
sion tasks, including semantic segmentation, and is tuned
for optimal speed and performance. It employed random
crop, padding, rotation, grid distortion, optical distortion,
CLAHE (Contrast Limited Adaptive Histogram Equaliza-
tion), and random brightness.

3.2. Encoder

The encoder in neural networks distills and encodes the fea-
tures of an input that facilitates subsequent layers in the
model. It primarily serves to extract and represent high-
level features from the image. In the propose model, it cap-
tures both spatial hierarchies and complex patterns in retinal
images for further processing. The encoder comprises con-
volution blocks along with a MHA block to capture local
and long-range dependencies. Consider I is an input retinal
image with 3 channels and 512x512 image size.

I ∈ R
512×512×3

The retinal image is pass to convolution blocks with
ReLU activation function, max-pooling and batch normal-
ization layers. Each convolution block can be expressed as:

Conv Block(i) = BN(MaxPool(ReLU(conv(Ki∗I+bi))))

Where, i indicates the number for each convolution
block, Ki represents the kernel of the convolutional layer,
bi symbolizes the bias and the operation ∗ denotes convo-
lution.

It employs ReLU [26] as an activation function to learn
complex features, as it introduces non-linearity in the
network.

Max Pooling operates on a matrix by selecting the
maximum element from the sub-matrix at each position
defined by the pooling window [22].

BN refers to batch normalization that normalizes the re-
sulting output g by normalising and scaling with respect to
the mean μ and standard deviation σ respectively, with a
small constant ε added for numerical stability. The result
is then scaled by γ and shifted by β, where γ and β are
learnable parameters.

BN(g) = γ

(
I − μ√
σ2 + ε

)
+ β

In this expression, g is the output of max pooling operation
MaxPool(f)ij .

The convolutional layers are integrated with MHA by re-
shaping the output of final convolutional layer. The MHA
comprises four attention heads and a key dimension dk of
32, to capture long-range dependencies in retinal images.
This concept is precisely defined by following expressions.

C3 ∈ R
n×h×w×c reshape−−−−→ S ∈ R

n×(h·w)×c

where, C3 is the third convolution block in the encoder,
S is reshaped feature sequence, n indicates the batch size,
h and w signifies the height and width, and c indicates the
total channels .

The output feature map, represented as tm, is produced
by processing the reshaped sequence S using attention
mechanism given below.

tm = softmax
(
QmKT

m√
dk

)
Vm

Where, Qm = smWQ represents the query projection
of the m-th reshaped feature sm and Km = smWK

represents the key projection of the m-th reshaped feature
sm. Vi = smWV denotes the value projection of the
m-th reshaped feature sm. WQ, WK , and WV symbolizes
weight matrices that map the reshaped features to the
query, key, and value projections, respectively. Finally, dk
represents the dimension of the key projections.

The individual outputs ’t1, t2, ...tL’ are then concate-
nated for the final output of the MHA.

MHA(T ) = Concat (t1, t2, . . . , tL)

The characteristics of CNN and the MHA are combined
by fusing the outputs of these components, which comprise
local spatial features and global context information.
The fusion makes the model more powerful and flexible,
potentially improving the model’s performance on the
segmentation tasks.

The aim is to tile the output of MHA T with dimensions
1× 1×DT , to match the spatial dimensions of convolution
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Figure 2. RetinaLiteNet architecture

block’s output C with dimensions H ×W ×DC , and then
concatenate them. The tiling operation is defined as:

T ′ = Tile(T, [H,W, 1])

This results in T ′ with dimensions H×W×DT . Finally,
the feature fusion through concatenation is:

F = Concat(C, T ′)

Where, F has dimensions H×W×(DC+DT ), combining
the strengths of both the CNN and MHA features.

3.3. Decoder

The decoder is employed for reconstructing the feature
representations from the encoder back to the spatial
resolution of the original input. It primarily reverses
the spatial compression performed by the encoder. The
decoder comprises CBAM and ConvTranspose layers
to obtain the original image size. Skip connections are
applied by processing up-sampled feature maps with the
CBAM block and then concatenated with the encoder’s
feature maps. CBAM facilitates the model’s focus on more
relevant and detailed features and makes it more efficient.
It performs two stages of operation: channel attention
(CA) and spatial attention (SA). This procedure is repeated
throughout the decoder blocks, gradually increasing spatial
resolution while reducing the depth. Each upsampling

block concatenates the ConvTranspose layer with CBAM.

At the end, two separate convolutional layers with sig-
moid activation function are implemented to get the seg-
mentation masks for the retinal BV and OD. . The repre-
sentation of output block is:

OutBV = Sigmoid(Conv(Upsample(R)))
OutOD = Sigmoid(Conv(Upsample(R)))

where, R is the number of last upsampling block in the de-
coder and it’s value is 3, sigmoid is the activation function,
implied in the output layers, is suitable for a binary segmen-
tation task as it ensures that the output values lie within the
range of 0 and 1.It is defined as:

sigmoid(k) =
1

1 + e−k

Furthermore, the Adam optimizer is employed for training
our model, and a custom loss function is developed with the
combination of the dice loss and iou loss for each task.

DiceLoss = 1− F1 Score

IoULoss = 1− IoU

CombinedLoss = DiceLoss+ IoULoss

Where, formulas for F1 Score and IoU are mentioned
in section 4.1. This combined loss function encourages the
model to improve the overlap between the predicted and ac-
tual segmentation masks for both tasks.
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3.4. Datasets

We have used two datasets for our model evaluation i.e.
DRIVE and IOSTAR. The DRIVE dataset [25] encom-
passes 40 colored retinal images, each of 565 x 584-pixel
resolution (8 bits per channel). A 45-degree viewing field
Canon CR5 non-mydriatic 3CCD camera was used to ac-
quire these images. The dataset splits into two subsets: a
training set and a test set, each comprising 20 images. No-
tably, while one expert annotation is available in the train-
ing set, the test set benefits from two distinct expert anno-
tations. The IOSTAR dataset [37] comprises 30 images,
each with a 1024 x 1024-pixel resolution. The distinct fea-
ture of these images is that they stem from scanning laser
ophthalmoscopy (SLO), which yields high-resolution reti-
nal images. All images within the IOSTAR collection were
taken using an EasyScan device produced by i-Optics Inc.,
which integrates the SLO method and provides a 45° Field
of View (FOV). A team of retinal image analysis experts
diligently annotated all vessels and disc in this dataset.

4. Experiments and Results

4.1. Performance Metrics

Standard evaluation metrics, including F1 score, Jaccard
(IoU), specificity, sensitivity and AUC, are used to assess
the model’s performance on the publicly available datasets.
The selected evaluation metrics are as given below:

F1 Score =
TP + TP

TP + TP + FP + FN

Jaccard(IoU) =
TP

FN + FP + TP

Sen =
TP

FN + TP

Spe =
TN

FP + TN

AUC =
1

2× TP × TN

TP∑
i=1

TN∑
j=1

(
1 +

FN

FP

)

where, FP, TP, FN, TN represent false positive, true pos-
itive, false negative, and true negative, respectively. Ad-
ditionally, specificity and sensitivity are denoted by Spe
and Sen, respectively. Moreover, the model’s complexity is
evaluated using several criteria, including FLOPs, inference
time, trainable parameters count, and the memory needed to
save the parameters.

4.2. Implementation Details

The experiments were performed using TensorFlow and
Keras and the model was trained on Google Colab Pro,
featuring 32 GB of RAM and an NVIDIA Tesla P100

Table 1. Experimental results comparing model complexity: A
comparison of parameters count, FLOPs, inference time, and
memory usage among UNet, UNet++, Attention UNet, and Reti-
naLiteNet models.

Model Param FLOPs Infer. Time Memory

(M) (G) (s) (MB)

UNet [27] 7.76 96.682 0.685 29.60
UNet++ [38] 9.04 238.52 1.667 34.49
Attention UNet [19] 9.25 371.68 2.679 35.33
RetinaLiteNet 0.066 2.4614 0.384 0.25

GPU. It was tested on a single CPU, specifically an 11th
Gen Intel(R) Core(TM) i9-11900KF, with a maximum
frequency of 5300 MHz for inference time.

Moreover, our model was evaluated for the MTL, which
performs retinal BV and OD segmentation simultaneously.
The images used for network training are 565x584 and
1024x1024 pixels for DRIVE and IOSTAR dataset, respec-
tively. These images were resized into 512x512 pixels to
train it on GPU with 300 epochs and batch size 16. We em-
ployed 400 images for model training from each dataset and
for testing, we utilized twenty images from DRIVE and ten
images from IOSTAR.

4.3. Results

To prove the lightweight characteristics and robustness
of our model, we compared it with previous edge-cutting
models designed for retinal feature segmentation and
reported them in Table 1. It can be visualized that UNet,
UNet++, and attention Unet have 7.76, 9.04, and 9.25
million parameters, respectively, however our model has
only 0.066 million parameters. It requires only 0.25 MB
of memory whereas above mentioned models require
29.60,34.49, and 35.33 MB, respectively, which could be
better for low memory hardware deployment. Similarly, the
proposed model has fewer FLOPs estimation and inference
time relative to its counterparts, having 96.68, 238.52,
and 9.25 GFLOPs with inference time of 0.68, 1.66,2.67
seconds respectively. In contrast, our model has only 2.46
GFLOPs with an inference time of 0.38 seconds. Such
attributes render it lightweight and suitable for deployment
on resource-constrained hardware platforms. The existing
models were trained and tested under the same conditions
as the proposed model to ensure a fair comparison.

Table 2 presents the comparison of evaluation metrics
of the existing SOTA models for MTL with our proposed
model using the DRIVE and IOSTAR datasets to confirm
if the system has achieved comparable performance with
a smaller number of parameters. The results show that
our model achieved a higher F1 score and specificity in
terms of BV and a higher F1 score, Jaccard, and AUC
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Table 2. Performance matrix comparison of RetinaLiteNet with other retinal feature segmentation models on the DRIVE and IOSTAR
Datasets.

DRIVE IOSTAR

Blood Vessels Optic Disc Blood Vessels Optic Disc

Model F1 Jac. Sen. Spe. AUC F1 Jac. Sen. Spe. AUC F1 Jac. Sen. Spe. AUC F1 Jac. Sen. Spe. AUC

UNet 80.5 67.5 87.5 95.7 98.0 86.0 76.6 92.1 99.5 99.0 79.1 65.5 72.3 98.0 97.0 90.9 83.6 85.3 99.7 98.0
UNet++ 80.0 66.8 89.4 95.1 98.0 89.6 76.2 92.5 94.6 97.0 78.0 64.1 78.3 95.7 96.0 87.6 78.5 82.1 99.8 98.0
Att UNet 80.5 67.6 77.8 97.8 97.0 84.3 81.3 93.1 99.6 99.0 80.0 66.6 79.1 98.5 93.0 77.3 64.1 64.9 99.7 94.0
Ours 80.6 67.5 78.4 98.0 97.0 93.3 88.0 94.0 97.0 99.0 80.1 67.6 77.5 97.2 98.0 85.4 74.9 76.5 99.9 99.0

(a) DRIVE Image (b) Ground Truth (c) Unet Results (d) Unet++ Results (e) Att. Unet Results (f) RetinaLiteNet Results

(a) IOSTAR Image (b) Ground Truth (c) Unet Results (d) Unet++ Results (e) Att. Unet Results (f) RetinaLiteNet Results

Figure 3. Visual representation of segmented BV and OD along with the original images and their ground truths, for UNet, UNet++,
Attention UNet and RetinaLiteNet on DRIVE and IOSTAR datasets.

in terms of OD segmentation compared to other models
on the DRIVE dataset. Similarly, it achieved a higher
F1 score, Jaccard, and AUC for BV segmentation and
higher specificity and AUC for OD segmentation on the
IOSTAR dataset. Visual representation of the results, com-
paring our model with existing SOTA models, is presented
in Figure 3. Consequently, our model has comparable per-
formance with existing models while retaining its advantage
of being lightweight.

4.4. Ablation Studies

We evaluate our proposed model on the DRIVE dataset with
several variations in the number of heads and key dimension
(dk). dk represents the dimensionality of the key vectors in
each attention head and is adjustable during training. Care-
ful selection of dk is essential to prevent underfitting with
a small dk value due to insufficient information and over-
fitting with a large dk value by learning redundant informa-
tion. Our results, detailed in Table 3, explore configurations
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Table 3. Performance matrix for retinal feature segmentation on
DRIVE Dataset with several combination of number of heads and
key dimension (dk).

Head dk Blood Vessels % Optic Disc %

F1 Jacc. Sen. Spe. F1 Jacc. Sen. Spe.

2 32 78.9 65.8 77.1 98.0 90.5 82.4 96.5 97.2
3 32 79.2 66.2 78.0 97.9 91.1 83.2 96.3 97.5
4 16 79.3 66.4 78.6 97.8 89.1 81.9 95.7 97.4
4* 32 80.6 67.5 78.4 98.0 93.3 88.0 94.0 97.0
5 32 78.3 65.1 72.2 98.6 89.9 84.6 95.9 97.4

Table 4. Computational complexity of the model with several
combination of number of heads and key dimension (dk).

Head dk Memory (MB) FLOPs (G) Param (M)

2 32 0.22 2.40 0.057
3 16 0.21 2.38 0.055
3 32 0.24 2.38 0.061
4 16 0.22 2.45 0.057
4* 32 0.25 2.46 0.066
5 32 0.27 2.55 0.070

with 2, 3, 4, and 5 attention heads coupled with dk of 16
and 32. Our model achieves the best performance using 4
attention heads with a dk of 32. Moreover, Table 4 shows
a slight difference in the computational performance of our
model with different numbers of heads and dk.

Table 5. Performance metrics for retinal feature segmentation with
positional encoding on DRIVE dataset.

P.E Blood Vessels % Optic Disc %

F1 Jac. Sen. Spe. F1 Jac. Sen. Spe.

With 80.8 67.8 78.8 98.2 93.4 88.2 94.4 97.4
Without* 80.6 67.5 78.4 98.0 93.3 88.0 94.0 97.0

Our model is also evaluated with and without positional
encoding (PE) to assess the impact of positional encoding
(PE) on its performance, as shown in Table 5. As we
are using MHA in the bottleneck of the encoder, it gives
comparable results without including PE. Therefore, we
opted to exclude PE from our model to remove extra
overhead.

We accessed our model performance on benchmark
datasets, i.e, DRIVE and IOSTAR, across various epochs
and batch sizes to determine the optimal settings for full
convergence. The experimental results showcase the signif-
icant impact of batch size and training duration on model
efficiency and effectiveness.The findings presented in Ta-
bles 6 and 7 depict that the best performance achieved at
300 epochs with 16 batch size.

Table 6. RetinaLiteNet performance matrix for retinal feature
segmentation on DRIVE Dataset with different epochs and batch
sizes.

Ep. BS Blood Vessels % Optic Disc %

F1 Jacc. Sen. Spe. F1 Jacc. Sen. Spe.

200 32 79.0 65.0 77.0 98.0 91.0 85.5 95.0 97.5
250 32 77.4 65.0 76.0 99.0 91.0 85.5 91.0 97.8
300 32 79.8 65.0 78.0 98.5 89.4 84.0 93.5 97.5
300 48 79.9 64.0 74.0 98.0 90.0 83.0 91.0 97.7
300* 16 80.6 67.5 78.4 98.0 93.3 88.0 94.0 97.0

Table 7. RetinaLiteNet performance matrix for retinal feature seg-
mentation on IOSTAR Dataset with different epochs and batch
sizes.

Ep. BS Blood Vessels % Optic Disc %

F1 Jacc. Sen. Spe. F1 Jacc. Sen. Spe.

200 32 79.4 63.4 71.5 98.0 81.5 71.8 81.2 99.0
250 32 78.0 62.9 39.0 99.6 84.0 72.0 81.9 98.8
300 32 78.5 65.0 72.0 98.5 84.5 73.5 83.2 99.6
300 48 75.2 61.5 66.0 99.0 82.3 71.7 80.4 98.0
300* 16 80.0 67.0 79.6 98.0 86.0 75.1 83.5 99.7

5. Conclusion

In this paper, we present a lightweight deep learning model
designed for retinal feature segmentation, specifically
blood vessels and optic disc. Our model comprises an
encoder-decoder framework, in which convolutional layers
and multi-head attention mechanism embedded within the
encoder that retrieves both local and global details from the
images. The resulting features are then fused together at
the bottleneck of the encoder by integrating the results from
convolutional layer and attention heads, enhancing the
model’s efficiency . To refine the features further, we have
incorporated skip connections along with CBAM in the
decoder. This approach fine-tunes the focus of the model
on useful features, boosting its efficiency and effectiveness
in segmentation tasks. Extensive evaluation on the DRIVE
and IOSTAR datasets produced promising results, yielding
F1 scores of 80.6% and 93.3% on DRIVE and 80.1%
and 85.4% on IOSTAR for simultaneous segmentation
of blood vessels and optic disc, respectively. Our model
requires a memory of 0.25 MB, 66,000 parameters, and
a computational cost of 2.46 GFLOPs, which satisfies
its lightweight aspects. These findings demonstrate that
efficient medical image analysis is possible even with
limited hardware resources.

*Indicates the parameters chosen for our model in section
4.4.
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