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Figure 1. Images generated using PARASOL. Leveraging parametric style control and multi-modal synthesis, we
demonstrate the ability of our model to synthesize creative images by interpolating different styles (left) or contents (right).

Abstract

We propose PARASOL, a multi-modal synthesis model
that enables disentangled, parametric control of the visual
style of the image by jointly conditioning synthesis on both
content and a fine-grained visual style embedding. We train
a latent diffusion model (LDM) using specific losses for
each modality and adapt the classifer-free guidance for en-
couraging disentangled control over independent content
and style modalities at inference time. We leverage aux-
iliary semantic and style-based search to create training
triplets for supervision of the LDM, ensuring complemen-
tarity of content and style cues. PARASOL shows promise
for enabling nuanced control over visual style in diffusion
models for image creation and stylization, as well as gener-
ative search where text-based search results may be adapted
to more closely match user intent by interpolating both con-
tent and style descriptors.

1. Introduction
Deep generative models have immense potential for creative
expression, yet their controllability remains limited. While
diffusion models excel in synthesizing high-quality and di-
verse outputs, their fine-grained attribute control, especially
in visual style, is often limited by coarse-grained inputs
such as textual descriptions [35], structural visual cues [53]
or style transfer [5, 55]. As shown in Fig. 2, these inputs
present significant limitations: (i) they restrict the nuances
that can be inherited from style inputs, (ii) without specifi-
cally disentangling both attributes, they hinder the model’s
ability to distinguish between content and style informa-

tion. In contrast, visual search models often use paramet-
ric style embeddings to achieve this more nuanced control.
Leveraging such embeddings for guiding image synthesis,
we propose Parametric Style Control (PARASOL) to bridge
this gap. PARASOL is a novel synthesis model that en-
ables disentangled parametric control over the fine-grained
visual style and content of an image, conditioning synthe-
sis on both a semantic cue and a fine-grained visual style
embedding [37]. We show how the use of parametric style
embeddings also enable various applications, including (i)
interpolation of multiple contents and/or styles (Fig. 1), (ii)
refining generative search. Additionally, for enhanced user
control, we introduce test-time features in our pipeline that
enable more control over the influence of each attribute on
the output. Our approach holds relevance in real-world con-
texts such as fashion design, architectural rendering, and
personalized content creation, where precise control over
image style and content is essential for creative expression
and practical utility. Thus, our technical contributions are:

Fine-grained style-conditioned diffusion. We synthe-
size images using a latent diffusion model (LDM) condi-
tioned on multi-modal input describing independent content
and style descriptors. A joint loss is introduced for encour-
aging disentangled control between the two modalities of
interdependent nature. At inference time we invert the con-
tent image back to its noised latent, and re-run the denoising
process incorporating content and style conditioning as well
as modality-specific classifier-free guidance, enabling fine-
grained control over the influence of each modality.

Cross-modal disentangled training. We use auxiliary
semantic and style based search models to form triplets
(content input, style input, image output) for supervision of
the LDM training, ensuring complementarity of content and
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style cues to encourage disentangled control at inference.
Extensive evaluation We evaluate our model thoroughly

by comparing to conditional generation models and style
transfer methods and show that PARASOL outperforms the
state-of-the-art in various metrics and user studies.

2. Related Work
Style transfer and representation. Neural style transfer
(NST) has classically relied upon aligning statistical fea-
tures [19, 28] extracted from pretrained models (e.g. VGG
[12]) in the output image with those of an exemplar style
image. More recently, style feature representations are
learned via self-attention [31, 41]. PAMA [29] further im-
prove upon this through progressive multi-stage alignment
of features, improving consistency of style across the styl-
ized image. ContraAST [5] introduce contrastive losses
and domain-level adversarial losses to improve similarity of
stylized images to real style images. CAST [55] refine this
by including ground truth style images into the contrastive
objective. InST [56] leverage inversion in diffusion mod-
els for transferring a new style. NST methods aim to alter
texture while retaining exact content of an image, hindering
creativity and controllability in image generation. In this
work, we aim at bridging this gap.

Cross-modal/Style search. Early cross-modal retrieval
work focused on canonical correlation analysis [13, 24].
Deep metric learning approaches typically explore dual en-
coders unified via recurrent or convolutional layers com-
bined with metric learning over joint embeddings. Re-
cently transformers are popular in such frameworks, includ-
ing BERT [22] and derivatives for language and ViT [9]
based image representations. Vision-language models (e.g.
CLIP [32]) have been shown effective for search and condi-
tional synthesis.

In terms of style, earlier style transfer work [10] explore
representation learning of artistic style in the context of fine
art, learning 10 styles to generalize a style transfer model
to more than a single style. [6] leverage a labelled triplet
loss to learn a metric style representation over a subset of
the BAM dataset [46], but are limited by the 7 available
style labels in BAM. ALADIN [37] first explored a fine-
grained style representation learning through multi-layer
AdaIN [19] feature extraction, trained over their newly in-
troduced BAM-FG dataset. This was evolved in StyleBabel
[38] by replacing the architecture with a vision transformer
[9], which we use in our work.

Multi-modal conditional image generation. Due to
the outstanding quality of recent image generation meth-
ods, conditional image generation is currently becoming a
focus of attention in research. These aim to achieve a more
controllable synthesis. Most conditional methods consider
a single input modality (e.g. text [14, 30, 34, 35, 39], bound-
ing box layouts [44, 45, 57], scene graphs [1, 21]) and a few
accept multi-modal conditions. VAEs [23] have often been
used for this task, since they allow learning a joint distribu-
tion over several modalities while enabling joint inference

Figure 2. Comparison to Stable Diffusion [35]. Stable Diffu-
sion encounters difficulty in disentangling content and style as
well as transferring the particular requested style, while PARA-
SOL adeptly combines fine-grained details of both into its output.

given a subset [25, 43, 48].
GAN-based methods follow different conditioning

strategies. TediGAN [50] relies on a pretrained uncondi-
tional generator, IC-GAN [4] is based on a conditional GAN
that leverages search for synthesizing new images. PoE-
GAN [20] uses a product of experts GAN to combine sev-
eral modalities (sketch, semantic map, text) into an image.

Make-A-Scene [11] and CoGS [15] leverage the bene-
fits of transformers and learned codebooks for incorporating
multimodal conditioning. They both encode each modal-
ity independently into discretized embeddings that are mod-
elled jointly by the transformer.

More recently, several multi-modal diffusion-based im-
age generation methods have been proposed. DiffuseIT [26]
and CDCD [58] combine the different modalities by tun-
ing specific losses. Others make use of multimodal em-
beddings, such as CLIP [32] for combining text and image-
based inputs [18] or even retrieve auxiliary similar images
to further condition the network [3, 36, 42]. eDiffi [2]
uses specific single-modality encoders and incorporates all
embeddings through cross-attention at multiple resolutions.
ControlNet [53] and MCM [16] explore the integration of
new input modalities as extra conditioning signals by lever-
aging the frozen Stable Diffusion model [35]. In contrast,
we train our latent diffusion with explicit governing loss for
each input modality (i.e. content and style).

3. Methodology
We propose PARASOL; a method to creatively synthesize
new images with disentangled parametric control over the
fine-grained visual style and content. The main design
choices making that possible are as follows:
• By incorporating a parametric style encoder in our

pipeline, our model is able to incorporate a more fine-
grained style to the generated image.

• An inverse diffusion step is incorporated at sampling
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time for enabling control over the amount of content de-
tails and structure to be preserved.

• A specific classifier-free guidance format is introduced
for each modality to independently influence the output.

• The metric properties of both modality-specific en-
coders allow multiple styles and/or semantics to be com-
bined and interpolated for generating creative content.
The core of PARASOL is a pre-trained LDM [35] fine-

tuned for accommodating multimodal conditions. The
pipeline (Fig. 3) consists of six components: 1) An Autoen-
coder (E , D) for encoding/decoding images into the diffu-
sion latent space; 2) A U-Net based denoising network; 3)
A parametric style encoder A enabling fine-grained control
over visual appearance; 4) A semantic encoder C to express
content control; 5) A projector network M() to bridge both
modality embeddings into a same feature space; 6) An op-
tional post-processing step for colour correction.

3.1. Obtaining Training Supervision Data via
Cross-Modal Search

A dataset of triplets (x, y, s) is required to train PARASOL.
In each set, the output image x is a stylistic image matching
the artistic style of the style image s, and semantic content
of the content image y.

This dataset is built via cross-modal search for the input
modalities: content and style. Given an image x, its seman-
tics descriptor cx = C(x) and style descriptor ax = A(x)
are computed using parametric modality specific encoders
(C and A). Leveraging their parametric properties, the most
similar images for each modality can be retrieved by finding
the nearest neighbours in the respective feature spaces.

Certain restrictions are applied to ensure disentangle-
ment between both input modalities. First, different data is
indexed for each modality’s search. A set of images with
stylistic and aesthetic properties is defined as the “Style
Database” (S). These are indexed using a parametric style
encoder and used to find the style image s. In parallel, a set
of photorealistic images with varied content is defined as the
“Semantics Database” (C) and is indexed using a parametric
semantics encoder for finding the content image y.

Using ax as query, the top k most style similar images
in S are retrieved as candidates for the style image s. Their
similarity to x in the semantics feature space is computed
and they are discarded as candidates if this similarity is over
a certain threshold. Finally, the style image s is picked as
the closest image in S fullfilling all restrictions. Using the
semantics description cy as query, same procedure is con-
ducted for finding the content image y in C. Visualization
of such triplets can be found in SuppMat.

3.2. Encoding the Style and Semantics Inputs
Given a triplet (content image y, style image s, output image
x), the diffusion model is trained to reconstruct x by condi-
tioning on y and s, after encoding the fine-grained style and
content inputs through the respective encoders. Opting for
y over x as the content image enables better style matching,

acknowledging that perfect content alignment isn’t always
desirable (e.g., transferring a childish sketch style or a hand-
drawn diagram requires changes in overall content shapes).
Therefore, training the network using y, which has similar
content structure and semantics to x, enables flexibility to
accommodate a wider range of styles.

Arguably, the same encoder could be used on s and y to
describe both style and content modalities, as in [3]. How-
ever, the use of modality-specific encoders pre-trained on
a task-specific curated data has been shown to be benefi-
cial for conditioning the diffusion process [39]. Further-
more, using a condition-specific encoder (i.e. style or se-
mantics specific) strongly contributes to disentangling the
content and style features. Nonetheless, using a different
encoder for each modality poses a new challenge. When
each modality is encoded into a distinct feature space, the
LDM must be conditioned on both. Fine-tuning an LDM
that was pre-trained on one conditional modality to under-
stand and incorporate the information of two separate ones
can be very data and compute demanding. Hence, we train
an MLP-based projector network M() to obtain a joint
space for both descriptors. M() takes the style descrip-
tor as of s as input and returns ms, a new embedding that
lies in the same feature space as cy , the semantics descriptor
of y. This allows for the LDM to be easily conditioned on
both modalities while maintaining the disentanglement and
details encoded in their respective embeddings.

3.3. Incorporating Latent Diffusion Models
PARASOL is built with a diffusion backbone. This LDM
has two components: An Autoencoder (consisting of an En-
coder E and a Decoder D) and a U-Net denoising network.
For each image x, the encoder E embeds it into z = E(x),
while the decoder D can reconstruct x′ = D(z) from z.
The diffusion process takes place in the Autoencoder’s la-
tent space. This process can be interpreted as a sequence of
denoising autoencoders ϵθ(zt, t) that estimate zt−1 from its
noisier version zt.
Conditioning through Cross-Attention During our
training, we freeze (E ,D) and fine-tune the U-Net to incor-
porate multimodal conditions. In particular, the diffusion
process needs to be conditioned on two independent sig-
nals: ms and cy . We adapt the denoising autoencoder ϵθ to
condition on both signals as well as on the noisy sample zt
and the timestamp t: ϵθ(zt, t,ms, cy). Inspired by [3, 35],
we incorporate these new signals into the U-Net backbone
through the use of cross-attention by stacking the two sig-
nals ms and cy together and mapping them into every inter-
mediate layer of the U-Net via cross-attention layers. As a
result, at each timestep t, the output zt−1 of the model ϵθ is
computed taking both conditions ms and cy into account.
Conditioning using Classifier-free Guidance As pre-
sented in [8, 30], samples from conditional diffusion models
can be improved by the use of a classifier(-free) guidance.
The mean and variance of the diffusion model are then ad-
ditively perturbed by the gradient of the log-probability of
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Figure 3. Illustration of the full PARASOL pipeline. It consists of six components: A parametric style encoder A (red); A projector network
M() (brown); A semantics encoder C (blue); An Autoencoder (E ,D) (green); A denoising U-Net (orange); An optional post-processing
step (purple). At training time (bottom-right corner), two modality-specific losses (Ls and Ly) are used to encourage disentanglement.
They are combined with LDM and minimized in the training. At inference time (big pipeline), a parameter λ ∈ [0, T ] is introduced. After
λ denoising steps, the style condition is changed for transferring a new style.

the conditioning modality leading to the generation of a par-
ticular image.

We extend the idea of classifier-free guidance for inde-
pendently accommodating multiple modalities. At training
time, both input conditions are replaced by a null condition
ϵθ(zt, t, ∅, ∅) with a fixed probability so that the network
can learn how to produce unconditional outputs. Then, at
sampling time, this output is guided towards ϵθ(zt, t,ms, ∅)
and ϵθ(zt, t, ∅, cy) and away from ϵθ(zt, t, ∅, ∅) as:

ϵθ(zt, t,ms, cy) = ϵθ(zt, t, ∅, ∅)
+gs

[
ϵθ(zt, t,ms, ∅)− ϵθ(zt, t, ∅, ∅)

]
+gy

[
ϵθ(zt, t, ∅, cy)− ϵθ(zt, t, ∅, ∅)

] (1)

The parameters gs and gy are introduced to determine
how much weight the style or semantics inputs have in the
image generation process. Thus, by tuning the ratio of the
two parameters gs and gy , the user can approximate the de-
gree of influence the style and semantics inputs have over
the image synthesis process. However, it should be noted
that high values of either parameter will lead to higher qual-
ity and lower diversity.

3.4. Training Pipeline
At each training step, a random timestep t ∈ [1, T ] is se-
lected. As shown in Fig. 3 (bottom-right), each training
image x is encoded into z using the pre-trained encoder
E and noised with Gaussian noise ϵt. Similar images in
terms of style s and content y are encoded into ms and cy .
The embedding zt is then fed into the U-Net denoising au-
toencoder, which is also conditioned on ms and cy through
cross-attention. We simultaneously train the U-Net and the
projector network M() while freezing all other modules.
Training Objectives Training is done by minimizing a
combination of 3 losses:

Diffusion Loss: Through a reparametrization trick [17,
35], minimizing the distance between the predicted noise

ϵ′t := ϵθ(zt, t) and the true noise ϵt is equivalent to mini-
mizing the distance between zt and zt−1. Thus, the loss to
minimize is:

LDM = Ezt,ϵt∼N (0,1),t

[
∥ϵt − ϵ′t∥2

]
. (2)

Modality-Specific Losses. For encouraging the output
image to have the same style as s and the same semantics as
y, the style and semantics of the reconstructed image x′ are
encoded through the use of a style and a semantics encoder,
respectively. The two losses are thus computed as:

Ls = MSE(as, ax′), Ly = MSE(cy, cx′). (3)

Total Loss. All three losses are combined in a weighted
sum and simultaneously optimized:

L = LDM + ωs · Ls + ωy · Ly, (4)

with ωs and ωy being two weight parameters.

3.5. Sampling Pipeline
When sampling (Fig. 3), an inversion process [49] takes
place to ensure the fine-grained content details in y can be
preserved in the final image. First, the semantics image y
is encoded via E and noised through a complete forward
diffusion process. During this process, the noise ϵt intro-
duced at each t = 1, ..., T is being saved. These ϵt val-
ues are then used for sequentially denoising the image in
the reverse diffusion process. If the input conditions are
unchanged throughout the whole denoising process, the im-
age y is faithfully reconstructed. For offering the possibility
of transferring a new style while preserving all fine-grained
content details in the image, λ ∈ [1, T ] is introduced. In
the first λ denoising steps, the U-Net is conditioned through
cross-attention on the style and semantics descriptors of y,
while in the last T −λ steps, the style condition is switched
to ms, the encoded style from s (i.e., for T = 50, λ = 20,
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the style and semantics of y are used in 20 steps and the tar-
get style in the remaining 30). Therefore, setting λ close to
T leads to more structurally similar images to y while lower
λ values generate images stylistically closer to s.

Colour Distribution Post-Processing A challenge with
perceptually matching the style of a reference image s
through diffusion, is mis-matched colour distribution, de-
spite image fidelity to y. We offer the possibility of address-
ing this issue via additional post-processing steps inspired
by ARF [52]. In this optional step, the generated image is
modified to match the mean and covariance of the style im-
age, shifting the colour distribution.

4. Experiments
We discuss our experimental setup and evaluation metrics
in Section 4.1 and compare to baselines (Section 4.2) and
different ablations (Section 4.3). We showcase user control
of PARASOL in experiments in Section 4.4, and its use for
interpolation and as a generative search model for improv-
ing fine-grained control is investigated in Section 4.5. See
SuppMat for more experiments and visualizations.
4.1. Experimental Setup
Network and training parameters. We use a pre-trained
ALADIN [37] as parametric style encoder and the pre-
trained “ViT-L/14” CLIP [32] for encoding the content in-
put. The Autoencoder and U-Net are used from [3]. The
U-Net is fine-tuned using a multimodal loss (Eq. 4) with
weights ωs = 105 and ωy = 102. At sampling time, unless
stated otherwise, we use λ = 20, gs = 5.0, and gy = 5.0
and no post-processing in our experiments and figures. The
training of PARASOL takes ∼ 10 days on an 80GB A100
GPU, while the sampling of an image takes ∼ 5 − 90s de-
pending on T and λ.

Dataset. The final model and all the ablations are trained
using our own set of 500k triplets obtained as described
in Section 3.1. Images x are obtained from BAM-FG
[37], while style images s are extracted from BAM (Be-
hance Artistic Media Dataset) [47] and content images y
are parsed from Flickr. BAM-FG is a dataset that contains
2.62M images grouped into 310K style-consistent group-
ings. Only a subset of stylized non-photorealistic images
from BAM-FG with semantically rich content are consid-
ered for building our training triplets.

For the Generative Search experiment, a subset of 1M
images from BAM is indexed and used for search while en-
suring no intersection with the images used for training.

Evaluation metrics. We measure several properties of
the style transfer quality in our experiments. LPIPS [54]
as a perceptual metric for the semantic similarity between
the content and stylized image, SIFID [40] to measure style
distribution similarity, and Chamfer distance to calculate
colour similarity. We normalize Chamfer distance by the
number of pixels in the image to maintain comparable val-
ues for any image resolution. We compute the MSE based
on ALADIN embeddings to measure style similarity be-

Figure 4. Comparison to Generative Multimodal Models (RDM
[3], ControlNet [53], DiffuseIT [26]) and PARASOL+.

tween the synthesized image and the input style and the
MSE based on CLIP embeddings for quantifying its seman-
tic similarity to the content input.

4.2. Comparison to State-Of-The-Art Methods
We separately compare to (i) generative multimodal
diffusion-based models, (ii) NST models. For fairness, we
fine-tune each of them on our training data.

A) Comparison to Generative Multimodal Models We
compare to several SoTA models that can be conditioned
on an example-based style. RDM [3] share its backbone
with PARASOL, the main difference being using CLIP for
encoding all conditions. We fine-tune it on our training
triplets. ControlNet [53] propose the training of a neural
network for incorporating task-specific conditions into the
generation process. Since it only accepts textual prompts
as input, we extract captions from our content images using
BLIP [27] and train the network to be conditioned by style
images via our training triplets. DiffuseIT [26] propose a
diffusion-based image translation method guided by a se-
mantic cue. Several losses ensure consistency in style and
structure. Since no training code is provided, we resource
to their publicly available model pretrained on ImageNet.

Visual examples of all generative baselines are shown in
Fig. 4 and quantitative evaluations using the metrics de-
scribed in Section 4.1 are provided in Tab. 1 (top).

Our complete method produces the best SIFID and
ALADIN-MSE scores proving to accurately transfer the
specific input style. The measure of semantics similarity to
the content input through CLIP-MSE and LPIPS is compa-
rable to the other methods. Although our Chamfer score is
improvable, we highlight the ability of our method for tun-
ing the influence of style and structure. If style and colour
similarity are a priority for the user, the different parameters
in the model can be adapted for providing more stylistically
similar images to the style input.

The optional post-processing step drastically improves
Chamfer distances, and SIFID metrics. However, the LPIPS
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Figure 5. Comparison to Style Transfer Models (AdaIN [19], CAST [55], ContrAST [5], PAMA [29], SANet [31], StyTr2 [7]), PARASOL
and PARASOL+.

Method SIFID↓ LPIPS↓ ALADIN-MSE↓ CLIP-MSE↓ Chamfer↓
RDM [3] 3.937 0.736 3.945 12.792 1.431

ControlNet [53] 4.265 0.757 5.148 16.944 3.612

DiffuseIT [26] 2.572 0.677 4.460 15.159 0.184
PARASOL 2.994 0.525 4.054 15.12 1.847

PARASOL+ 2.293 0.679 3.891 14.999 0.340

AdaIN [19] 2.290 0.631 4.107 16.129 0.456

CAST [55] 6.106 0.608 4.633 16.732 0.188

ContrAST [5] 2.791 0.651 4.171 16.111 0.126
PAMA [29] 2.509 0.659 4.411 16.194 0.287

SANet [31] 2.608 0.671 4.200 16.187 0.301

StyTr2 [7] 1.966 0.588 4.057 16.083 0.535

PARASOL 2.994 0.525 4.054 15.12 1.847

PARASOL+ 2.293 0.679 3.891 14.999 0.340

Table 1. Quantitative comparison of style (SIFID, ALADIN-MSE,
Chamfer) and content (LPIPS, CLIP-MSE) metrics. (Top: Gen-
erative Multimodal Models; Bottom: Style Transfer Models) We
include our optional post-processing as PARASOL+. Chamfer
scores are scaled down ×10−3.

scores are worse. While this is not unexpected, it highlights
a weakness with LPIPS, as a metric in measuring content
similarity. The re-colouring steps change only the colours
in the image, not modifying any content.

We undertake a user study using Amazon Mechanical
Turk (AMT), to support our quantitative metrics. As show
in Tab. 2 (top), PARASOL was chosen as the preferred
method in all categories, measured via majority consensus
voting (3 out of 5 workers).

B) Comparison to Style Transfer Models Since most
diffusion-based models are text-based, we mostly resource
to state of the art non-diffusion based models. We evalu-
ate our method against five recent NST models (CAST [55],
PAMA [29], SANet [31], ContraAST [5] and StyTr2 [7]), as
well as a traditional one (AdaIN [19]). Each of these meth-
ods is prompt-free and directly comparable to our method.
Note that PARASOL is not designed to be a style transfer
model. However, we display in Tab. 1 (bottom) how our
model is able to preserve both style and content compara-
bly to the SoTA style transfer models, which were specifi-
cally trained for texture-based stylization instead of genera-
tion. Additionally, the user studies in Tab. 2 (bottom) show
how users prefer PARASOL over the most popular NST
SoTA models in all experiments. One benefit of PARASOL

Method Pref. Overall Pref. Style Fidelity Pref. Content Fidelity
RDM [3] 17.60% 18.40% 9.20%

ControlNet [53] 1.20% 0.00% 1.60%

DiffuseIT [26] 29.20% 34.80% 27.20%

PARASOL 52.00% 46.80% 62.00%

CAST [55] 20.40% 11.20% 33.60%

ContrAST [5] 15.20% 12.00% 10.40%

PAMA [29] 17.60% 8.40% 8.40%

SANet [31] 16.40% 9.60% 7.20%

PARASOL 30.40% 58.80% 40.40%

Table 2. Evaluation of our method vs. different baselines based
on AMT experiments. (Top: Generative Multimodal Models; Bot-
tom: Style Transfer Models). Given a content image, a style image
and a set of images generated using our method and different base-
lines, we conduct three separate experiments. In each experiment,
workers are asked to choose their preferred image based on: 1) im-
age quality, 2) style fidelity, and 3) content fidelity. For fairness,
we compare to PARASOL without the post-processing step.

when compared to most NST models is that, by relaxing
the constraint of preserving exact content, it can adapt to
more complex styles while maintaining unchanged seman-
tics (See Fig. 5).

4.3. Ablation Study
Considering the pre-trained RDM conditioned on CLIP em-
beddings as our baseline, we justify the addition of each of
our components through an ablation study (Tab. 3).

Switching the style encoder from CLIP to ALADIN of-
fers a lot of benefits in terms of disentanglement and fine-
grained style information. However, even when fine-tuning
the network on the new descriptors, it is not able to under-
stand the nature of the new representations. Tab. 3 shows
the substantial improvement of all metrics when the pro-
jector M() is introduced, proving its crucial role in the
pipeline. As illustrated in Fig. 6, the multimodal loss as-
sists the network in further disentangling both modalities.

Despite some lower metrics when using inversion, we
consider it beneficial overall, due to the added controlla-
bility, and improved style transfer metrics (SIFID, LPIPS),
making PARASOL+ our best model overall.

4.4. Controllability Experiments
We demonstrate several ways PARASOL can be used to ex-
ert control over the image synthesis process.
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Method SIFID↓ LPIPS↓ ALADIN-MSE↓ CLIP-MSE↓ Chamfer↓
PARASOL -(I, L, M, Ft, A) 3.077 0.749 4.312 15.428 0.127
PARASOL -(I, L, M, Ft) 7.759 0.813 5.540 17.457 1.184

PARASOL -(I, L, M) 6.883 0.777 4.356 15.887 0.788

PARASOL -(I, L) 4.269 0.748 3.573 14.740 0.174

PARASOL -(I) 4.329 0.747 3.564 14.714 0.155

PARASOL 2.994 0.525 4.054 15.12 1.847

PARASOL+ 2.293 0.679 3.891 14.999 0.340

Table 3. Quantitative evaluation metrics for different ablations
of our final model. Considering pre-trained RDM as the base-
line, this study justifies: 1) The use of a parametric style encoder
(A); 2) The need to fine-tune the model (Ft); 3) The addition of
a projector network for the style embedding (M); 4) The effect of
modality-specific losses (L); 5) The design choice of inverting the
diffusion process (I); 6) The use of the optional post-processing
step (PARASOL+).

Figure 6. Effect of the multimodal loss. Adding the multimodal
loss encourages the model to better combine the information from
each modality when their descriptors are not fully disentangled.

Figure 7. Effect of λ. Higher λ values lead to more content preser-
vation, while lower values further encourage style transfer.

A) Disentangled Style and Content We propose differ-
ent ways of controlling the influence of each input modality.

Via inversion: λ enables choosing at which step of the
inversion process the style condition is changed (Fig. 7).

Via classifier-free guidance parameters: The values gs
and gy (Eq. 1) determine how much weight each condition
has in the image generation process. (Fig. 8).

B) Textual Captions as Conditioning Inputs Leverag-
ing the multimodal properties of CLIP, content cues can
be provided as either captions or images at sampling time.
When a textual prompt is provided, our diffusion model is
used for generating an image conditioned on its CLIP de-
scriptor and an empty style descriptor. Considering this
generated image as y, the sampling procedure continues as
in Section 3.5.

Figure 8. Effect of gs and gy . Top: as the value of gs increases, so
does the influence of the style. bottom: gy is increased, offering a
more notable semantic influence from the content cue.

Figure 9. Images generated from text prompts for both modalities.
PARASOL accepts both visual and textual inputs for better trans-
ferring the user’s intent.

The style cue can also be provided in textual format. The
prompt can be encoded using CLIP and projected to a joint
space through a pre-trained projector network [38]. By in-
dexing all images in the “Style Database” S through AL-
ADIN and projecting them to the joint feature space, a sim-
ilar style image can be retrieved and used as input s to the
sampling pipeline (Fig. 9).

C) Content Diversity with Consistent Semantics Al-
though PARASOL offers the option of preserving the fine-
grained content details in y, it can also be used for synthe-
sizing images with consistent semantics and style yet di-
verse details and image layouts (Fig. 10). Following a sim-
ilar procedure to that in Section 4.4 (B), an image can first
be generated from y and used to guide the inversion process
for transferring the semantics of y with new fine-grained
content details.

4.5. Applications
A) Content and Style Interpolation PARASOL can syn-
thesize images by interpolating different styles and/or con-
tents, unlocking the potential of generating a wider range of
creative images (Fig. 11, Fig. 1). For demonstrating this ca-
pacity, a crowd-source AMT evaluation is performed (Tab.
4), positioning PARASOL as the preferred method by users
in terms of both content and style interpolation.
B) Generative Visual Search PARASOL can be applied
for the task of Generative Search, where search results are
not constrained to a static corpus but fused with generation
to yield images that more closely match a user’s search in-
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Figure 10. Diversity of fine-grained content. PARASOL can
be used for synthesizing images with same semantics and fine-
grained style yet diverse fine-grained content.

User Study RDM DiffuseIT PARASOL
Pref. Content Interpolation 12.037% 43.518% 44.444%
Pref. Style Interpolation 16.808% 31.932% 51.260%

Table 4. AMT user evaluation of content and style interpolations,
comparing PARASOL with RDM [3] and DiffuseIT [26]. Model
preference is measured via majority consensus voting (3 out of 5).

Figure 11. Style and content interpolation. Images generated by
interpolating two styles and two content images.

tent. Assuming an initial query in textual form, we use pre-
existing text encoders (per Section 4.4 (B)) for CLIP and
ALADIN to retrieve two sets of images that match their in-
tent semantically and stylistically (Fig. 12, middle). The
user picks images from each set, each of which may be in-
teractively weighted to reflect their relevance to the users’
intent. Using the fine-grained interpolation method of Sec-
tion 4.5 (A), PARASOL is then used to generate an image
which may either be accepted by the user or used as a fur-
ther basis for semantic and style search. PARASOL thus
provides a fine-grained way to disambiguate a single text

Figure 12. Generative Search. Our model can be used for aiding
in image retrieval process (See Section 4.5 (B)).

Figure 13. Failure cases - more details in Section 5.

prompt by expressing a pair of modalities and can help sur-
face images beyond those that would be available in a static
text corpus.
5. Conclusion
We introduced PARASOL, a method that leverages para-
metric style embeddings for multimodal image synthesis
with fine-grained parametric control over style. We show
PARASOL can be applied to text, image or embedding con-
ditioned generation enabling disentangled control over style
and content at inference time. We also propose a novel
method for obtaining paired training data leveraging cross-
modal search. We show a use case in generative search,
providing an image that can be used as query for a more
fine-grained search.

Limitations While the use of modality-specific encoders
offers numerous advantages in attribute disentanglement
and parametric control, facilitating interpolation and search,
certain styles can still present challenges due to ambiguity
regarding which features should be considered as part of the
content or style (Fig. 13a). Additionally, addressing chal-
lenging contents such as faces (Fig. 13 b) often necessitates
specific additional training. Future research could explore
alternative modalities (i.e. sketches or segmentation maps)
to target regions locally with fine-grained cues [51].
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