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Abstract

In response to the escalating challenge of audio deepfake
detection, this study introduces ABC-CapsNet (Attention-
Based Cascaded Capsule Network), a novel architecture
that merges the perceptual strengths of Mel spectrograms
with the robust feature extraction capabilities of VGG18,
enhanced by a strategically placed attention mechanism.
This architecture pioneers the use of cascaded capsule net-
works to delve deeper into complex audio data patterns, set-
ting a new standard in the precision of identifying manipu-
lated audio content. Distinctively, ABC-CapsNet not only
addresses the inherent limitations found in traditional CNN
models but also showcases remarkable effectiveness across
diverse datasets. The proposed method achieved an equal
error rate EER of 0.06% on the ASVspoof2019 dataset and
an EER of 0.04% on the FoR dataset, underscoring the su-
perior accuracy and reliability of the proposed system in
combating the sophisticated threat of audio deepfakes.

1. Introduction

Automatic speaker verification (ASV) systems are crucial in
speech processing for verifying a speaker’s identity through
their voice characteristics. These systems aim to con-
firm the authenticity of a speaker’s utterance. Despite sig-
nificant advancements in ASV technology, the emergence
of sophisticated voice conversion (VC) and text-to-speech
(TTS) techniques has introduced new vulnerabilities, mak-
ing ASV systems prone to deepfake attacks [11]. Deepfake
audio poses a considerable threat to privacy, social secu-
rity, and authenticity. While significant advancements have
been made in detecting deepfake videos, the challenges

posed by audio spoofing and malicious deepfakes require
the creation of specialized models [1]. The field of pure
audio-based deepfake detection is less explored than im-
age and video-based approaches, which utilize both audio
and spatio-temporal information from videos to train deep
learning models [4]. However, the importance of classifiers
that focus exclusively on audio for detection is crucial, em-
phasizing the need for research in this area to enhance the
security of ASV systems and address the threats posed by
audio deepfakes [21].

The ASVspoof2015 dataset [23] marked the initiation of
concerted efforts in the research of automatic speaker veri-
fication spoofing and countermeasures, managing to reduce
the equal error rate (EER) by up to 1.5%. Certain types of
spoofing attacks were found to have a high EER of about
50%, but rates for novel, unseen attacks could be approxi-
mately five times higher. The subsequent ASVspoof2017
[6] focused on enhancing the detection of replay spoof-
ing attacks, achieving an EER of 6.73% and showing that
Instantaneous Frequency Cosine Coefficients (IFCC) sig-
nificantly improved the effectiveness of countermeasures.
Then, ASVspoof2019 [25] concentrated more on strength-
ening countermeasures against spoofing in the context of
automatic speaker verification, particularly in identifying
spoofed audio. Moreover, deep learning architectures like
convolutional neural networks (CNNs) have been exten-
sively applied in the field of audio deepfake detection, lever-
aging their proficiency in handling spectrogram-based anal-
yses to identify audio deepfakes [22, 24]. Beyond the stan-
dard convolutional neural network framework, a spectrum
of CNN variants including Light Convolutional Neural Net-
works (LCNN), Temporal Convolutional Networks (TCN),
and Spatial Transformer Networks (STN) have been em-
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ployed in the nuanced task of detecting audio deepfakes
[5, 27]. These advanced models extend the capabilities of
traditional CNNs, using their specialized structures to en-
hance feature extraction from audio signals. Additionally,
the strategy of transfer learning has been adopted to further
refine the detection process, taking advantage of pre-learned
patterns from vast datasets to improve the model’s perfor-
mance in the detection of audio deepfakes [22].

Despite their strengths, CNN-based models face limita-
tions due to their inherent nature. The pooling operations
often employed in CNNs can lead to a loss of temporal in-
formation, which is crucial in audio analysis. Such informa-
tion loss may necessitate a vast amount of training data and
can increase the susceptibility of the model to adversarial
attacks [17, 18]. These adversarial vulnerabilities and the
time-intensive training processes present substantial chal-
lenges in employing CNNs for audio deepfake detection.
Moreover, CNNs often fail to recognize the variations in
position, texture, and other deformations within an image,
which is vital for accurately classifying manipulated con-
tent. This inability is due to their invariance property as
they do not maintain spatial hierarchies between the high-
level and low-level features, leading to suboptimal recogni-
tion capabilities [13].

In response to these limitations, the introduction of Cap-
sule Networks (CapsNets) has been proposed as a more ca-
pable alternative. CapsNets, conceptualized by Hinton et
al. [3], offer a paradigm shift by processing information in
vector form rather than the scalars used in CNNs. This ar-
chitectural choice allows capsules to maintain the spatial re-
lationships and hierarchies between features, which is cru-
cial for detecting complex manipulations in images and po-
tentially in audio spectrograms. Unlike CNNs, CapsNets
are designed to be equivariant, i.e., they can recognize and
adjust to changes in the input data, such as rotations and
tilts, without losing the integrity of the detection process
[15]. Each capsule within a CapsNet is a collection of neu-
rons that identifies and processes a specific feature of the
input data, encapsulating both the probability of the fea-
ture’s presence and its instantiation parameters [12]. This
duality provides the network with the ability to recognize
an entity by first understanding its constituent parts, ensur-
ing that the detection is not just invariant but also equivari-
ant to input transformations. CapsNets hold promise for a
more nuanced approach to audio deepfake detection, where
recognizing the subtle deformations and inconsistencies in
synthesized audio can be critical . By preserving the in-
tricate patterns and temporal dynamics within the spectro-
gram data, CapsNets aim to outperform CNNs in the accu-
racy and reliability of deepfake identification, setting a new
standard for the field [7].

Now, in this study, we introduce the novel ABC-CapsNet
(Attention-Based Cascaded Capsule Network) architecture,

marking a significant advancement in audio deepfake de-
tection. Leveraging the nuanced processing capabilities of
Mel spectrograms and the robust feature extraction offered
by the VGG18 model, our approach emphasizes the criti-
cal role of identifying key audio characteristics. Following
the feature extraction phase, an attention mechanism is em-
ployed to prioritize and amplify the most salient features
identified by VGG18. This mechanism plays a pivotal role,
acting as a refined filter that sharpens the model’s focus, al-
lowing for a more concentrated and effective analysis of po-
tential deepfakes. The data, enriched and focused through
this process, is subsequently analyzed by cascaded capsule
networks. This design is meticulously crafted to boost de-
tection accuracy through a deeper, more nuanced examina-
tion of the complex patterns that characterize audio deep-
fakes. The strategic cascading of capsule networks affords
a thorough analysis of the audio data, leveraging the unique
capabilities of capsule technology to identify subtle manip-
ulations that conventional models might miss. The robust-
ness and efficacy of the ABC-CapsNet architecture have
been rigorously validated across two extensive audio deep-
fake datasets, FoR [14] and ASVspoof 2019 [19], showcas-
ing its effectiveness against a wide array of deepfake audio
challenges.

1.1. Contributions

The proposed ABC-CapsNet methodology introduces sev-
eral key contributions to the domain of audio deepfake de-
tection, each playing a critical role in advancing the detec-
tion capabilities and understanding of audio forgeries. The
three main contributions of this methodology are:

Advanced Feature Extraction: We integrate
Mel spectrograms with the VGG18 model to har-
ness both the perceptual accuracy of Mel scales
and the deep learning power of VGG18, enhanc-
ing the extraction of detailed audio features.

Focused Feature Analysis with Attention
Mechanism: An attention mechanism is em-
ployed post-feature extraction to highlight and
prioritize key features, allowing for more targeted
analysis of potential audio manipulations.

Depth Analysis via Cascaded Capsule Net-
works: We utilize cascaded capsule networks to
delve deeper into the structural intricacies of au-
dio data, providing a novel approach to detecting
complex patterns typical of manipulated audio.

Together, these contributions embody a comprehensive
and sophisticated approach to audio deepfake detection, es-
tablishing the ABC-CapsNet methodology as a state-of-the-
art solution in the ongoing effort to combat digital audio
manipulation.
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2. Related Works
The rising prevalence of audio deepfakes challenges voice
biometric systems and societal trust, with current audio
forensic techniques showing limited success in detecting
them. This section reviews recent studies that utilize ma-
chine learning (ML) and deep learning (DL) algorithms
across various datasets for audio deepfake detection. We
specifically focus on the effectiveness of capsule networks,
convolutional neural networks, and transfer learning in dif-
ferentiating genuine from fake audio samples.

A.Luo et. al., [7] proposed capsule network architec-
ture specifically designed with a modified dynamic rout-
ing algorithm to improve the generalization of the detec-
tion system.The feature extraction module utilized the log-
arithm of the power spectrum and linear frequency cepstral
coefficients (LFCC) to capture information from the speech
signal. The proposed capsule network demonstrated supe-
rior performance compared to other state-of-the-art meth-
ods. For the LA dataset, the capsule network achieved an
equal error rate (EER) of 3.19% and a tandem detection cost
function (t-DCF) of 0.0982 on the evaluation set.

Q. Ma et. al., [8] proposed ConvNeXt-based neural net-
work (CNBNN) designed by revising the ConvNeXt net-
work architecture to suit audio anti-spoofing tasks. The
model incorporated a Res2Net style block and a modified
efficient channel attention (MECA) layer to focus on the
most informative sub-bands of speech representations and
hard-to-classify samples. The model achieved an equal er-
ror rate (EER) of 0.64% and a minimum tandem detection
cost function (min-tDCF) of 0.0187 on the ASVSpoof 2019
LA evaluation dataset.

T. Mao et. al., [9] proposed deep capsule network model
consisting of a convolutional neural network (CNN) archi-
tecture followed by a capsule architecture. The CNN ex-
tracted hierarchical features from the input cepstrum fea-
tures, and the capsule network used dynamic routing to clas-
sify the input as bona fide or spoofed speech. Experimental
results on the ASVspoof 2019 Logical Access (LA) evalu-
ation set demonstrated that the proposed deep capsule net-
work significantly improved the baseline algorithms’ tan-
dem detection cost function (t-DCF) and equal error rate
(EER) scores by 31% and 37% respectively.

M. Mcuba et.al., [10] employed various deep learn-
ing models, including custom architectures and VGG-16,
to analyze audio features extracted through MFCC, Mel-
spectrum, Chromagram, and spectrogram representations
for forensic investigators in distinguishing between syn-
thetic and real voices by evaluating the effectiveness of dif-
ferent deep learning approaches, FG-LCNN and ResNet.
The results showed that the VGG-16 architecture performs
best for the MFCC image feature with accuracy of 86.906%
on Baidu Silicon Valley AI Lab.

A.Hamza et. al., [2] explored various machine learning

(ML) and deep learning (DL) algorithms, including support
vector machine (SVM), gradient boosting, and the VGG-16
deep learning model, to classify deepfake audio based on
the extracted MFCC features. The SVM model achieved
accuracies of 98.83% and 97.57% on the for-rece and for-
2-sec of FoR dataset, respectively. The gradient boosting
model performed well on the for-norm dataset with 92.63%
accuracy, while the VGG-16 model achieved 93% accuracy
on the for-original dataset.

A. Ustubioglu et. al., [20] proposed CNN architecture
with data augmentation to classify Mel spectrogram images
into two classes, original and forged. Mel spectrograms
were generated from the Arabic Speech Corpus and the
TIMIT speech database and achieved an accuracy of 99%
and 91% respectively.

R. Yen et.al., [26] utilized a standard 34-layer ResNet
with multi-head attention pooling to learn discriminative
embeddings for fake audio and spoof detection. The pro-
posed system employed data augmentation techniques, such
as noise addition, compression, and frequency conversion,
to improve robustness. The classification network consisted
of two fully-connected layers and a 2-dimensional softmax
layer and achieved an equal error rate (EER) of 10.1% in
Track 3.2 of ADD 2022.

Taking inspiration from the state-of-the-art works,
this work proposes a novel architecture, ABC-CapsNet
(Attention-Based Cascaded Capsule Network), designed to
tackle the challenges of audio deepfake detection. By
synthesizing the strengths of advanced feature extraction
through VGG18 with Mel spectrograms, and integrating an
attention mechanism for focused analysis, ABC-CapsNet
advances the field beyond the current limitations of tradi-
tional models. The cascaded capsule networks further dis-
tinguishes this methodology, enabling a deeper and more
nuanced exploration of audio data for identifying manipu-
lation.

3. Proposed Methodology

In this research, we propose a novel methodology
for detecting audio deepfakes, utilizing ABC-CapsNet
(Attention-based Cascaded Capsule Networks) as shown in
Fig. 1. Our approach leverages the strengths of VGG18,
an attention mechanism, and capsule networks to effec-
tively identify and differentiate between real and fake au-
dio samples. We selected VGG18 for its proven capabil-
ity in capturing distinctive audio characteristics crucial for
deepfake detection. While VGG18 is a suitable choice for
our methodology, other models with potential for feature
extraction in this context could also be considered. The
methodology comprises several pivotal steps explained in
this section.
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Figure 1. Proposed architecture of ABC-CapsNet for Audio Deepfake Detection; CN1 is Capsule Network 1 and CN2 is Capsule Network
2

3.1. Preprocessing

In the preprocessing stage, we prepare audio samples from
the ASVSpoof 2019 and FoR datasets by first resampling
them to a uniform 16 kHz to align frequency content and
compatibility with feature extraction techniques. We then
apply noise reduction algorithms to enhance clarity by re-
moving background noise, followed by normalizing the am-
plitude to a consistent range of -1 to 1 for uniform volume
levels across samples. Finally, segments of silence are re-
moved to focus the analysis on relevant audio content. Post-
preprocessing, Mel spectrograms are generated using the
Mel scale to better represent the human ear’s response to
frequenciesThe transformation from frequency to Mel scale
can be described using the formula:

m = 2595 log10

(
1 +

f

700

)
(1)

where m is the Mel scale frequency and f is the fre-
quency in Hertz. This makes Mel spectrograms particularly
useful for audio analysis tasks, as they provide a more per-
ceptually relevant representation of the sound. By using
Mel spectrograms, we can capture the essential character-
istics of the audio, such as timbre and pitch, which are cru-
cial for distinguishing between real and fake audio samples
in our deepfake detection methodology. In this study, we
generated Mel spectrograms of size 224 × 224 × 3, using

the Hanning window with a size of 2048 and a hop length
of 512. The number of Mel filter banks used was 224. The
generation of Mel spectrograms serves as a critical step in
our approach, as it prepares the audio data for the subse-
quent feature extraction and analysis stages.

3.2. Feature Extraction using VGG18

We employ VGG18 for feature extraction from audio Mel
spectrograms. Originally designed for image recognition,
VGG18 features 16 convolutional layers and 3 fully con-
nected layers, making it adept at capturing complex pat-
terns. This depth allows it to effectively extract rich fea-
tures from audio data through successive convolutional op-
erations, pooling, and non-linear activations.

Fi(x) = σ(Wi ∗ x+ bi) (2)

where Wi and bi represent the weights and biases of the
convolutional filters in layer i,x denotes the input to the
layer, and Fi(x).

The selection of VGG18 for feature extraction from au-
dio Mel spectrograms is motivated by its proven effective-
ness in capturing a wide spectrum of features in image data.
By treating spectrograms as images, we leverage VGG18’s
robustness in identifying patterns that are indicative of the
authenticity of audio signals. The extracted features encom-
pass both local and global characteristics of the Mel spectro-
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gram, providing a comprehensive representation that is es-
sential for accurately detecting deepfake audio. The appli-
cation of VGG18 introduces the concept of transfer learning
to our methodology and allows us to utilize the rich feature
set learned by VGG18 from its pre-training on extensive
image datasets, thereby reducing the need for large-scale
audio-specific training data.

3.3. Attention Mechanism

Following the extraction of features from the Mel spectro-
grams, the deployment of an attention mechanism plays a
pivotal role in refining the feature set for the detection task.
The attention mechanism operates on the principle of selec-
tively focusing on parts of the input that are most pertinent
to the task at hand, thereby enhancing the model’s sensitiv-
ity to features that are indicative of deepfake audio.

The mathematical formulation of the attention mecha-
nism can be represented as follows:

Let F denote the set of features extracted by VGG18,
where F = {f1, f2, . . . , fn} and each fi is a feature vec-
tor. The attention mechanism assigns a weight wi to each
feature vector fi, with the weights being determined by a
trainable attention layer. The output of the attention mech-
anism, F ′, is a weighted sum of the feature vectors, given
by:

F ′ =

n∑
i=1

wi · fi (3)

The weights wi are computed using a softmax function
over the scores assigned to each feature vector by the atten-
tion layer, as follows:

wi =
es(fi)∑n
j=1 e

s(fj)
(4)

where s(fi) is the score assigned to feature vector fi
by the attention layer, which is typically implemented as
a fully connected layer with a single output unit. The soft-
max function ensures that the weights sum up to 1, allow-
ing them to be interpreted as probabilities that indicate the
importance of each feature vector in the context of the de-
tection task.

The incorporation of the attention mechanism signifi-
cantly improves the model’s ability to identify and priori-
tize features that are most indicative of audio authenticity.
By dynamically adjusting the focus on different parts of the
audio Mel spectrogram, the attention mechanism allows the
model to adapt to the varying characteristics of real and fake
audio samples.

3.4. Cascaded Capsule Network Architecture

The architecture consists of two main capsule networks
connected in series, where the output of the first serves as

the input to the second. The cascading structure allows for
a refined processing pipeline that accentuates pertinent fea-
tures and temporal relationships inherent in audio signals,
which are crucial for classifying the authenticity of the con-
tent. The initial capsule network in the cascade focuses
on extracting fundamental patterns and relationships, lay-
ing the groundwork for the subsequent network to delve into
more complex and subtle features indicative of deepfakes.
Through this progressive refinement, the architecture em-
bodies a deep understanding of the audio data, setting the
stage for a robust detection mechanism.

3.4.1 Capsule Network 1 (CN1)

Capsule Network 1, being the foundational component of
the proposed cascading architecture, leverages the innova-
tive concept of capsules—groups of neurons that activate
for various properties of a particular entity type, thus main-
taining the spatial and feature hierarchy. Unlike traditional
neural layers that scalarize feature presence, capsules retain
multidimensional information that represents various prop-
erties and orientation of the features. This design allows
CN1 to capture and preserve complex phenomena within
the audio data, providing a robust platform for higher-order
feature analysis by subsequent layers and networks. The
CN1 consists of following layers.

Input Layer: The input layer of CN1 receives a fea-
ture vector, denoted as ui, which is the output from the pre-
ceding attention layer. This layer encodes and emphasizes
the most salient features within the Mel spectrogram data,
such as specific frequency bands and temporal characteris-
tics that are essential for differentiating between real and
fake audio.

Convolutional Layers: Following the input layer, there
are two convolutional layers. These layers apply a series
of learnable filters to the input data, capturing local feature
patterns such as edges or texture in the Mel spectrogram
that may signal possible manipulation. This is done prior to
the feature vector being fed into the primary capsules.

Primary Capsule Layer: This is the first layer of the
capsule hierarchy in CN1. Each primary capsule contains
a small group of neurons that specialize in identifying spe-
cific features within the received feature map from the con-
volutional layer. These capsules output a set of prediction
vectors, which are lower-dimensional representations of the
input data, encapsulating the probability of feature presence
and their spatial orientations. Prediction vectors are com-
puted for each capsule i in layer l using transformation ma-
trices Wji:

uji = squash(Wjiui) (5)

- squash function is a non-linear function that shrinks
the length of the vector to be between 0 and 1, which can be
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Figure 2. Capsule layer

given as:

squash(v) =
||v||2

1 + ||v||2
v

||v||
(6)

Each primary capsule represents a pose as a vector
within its specific area as illustrated in Fig. 2.

Dynamic Routing: This is not a layer but a process be-
tween the primary capsules and the higher-level capsules.
Dynamic routing is an algorithm that allows capsules to
communicate and send information to higher-level capsules
[16]. It determines the connections between capsules based
on the current input data, ensuring that the network focuses
on the spatial hierarchies in the data and involves comput-
ing the coupling coefficients cij between capsules. The dy-
namic algorithm is shown in Algorithm 1.

Algorithm 1 Dynamic Routing Algorithm

1: Initialization: For all capsule pairs i, j: bij ← 0
2: for r routing iterations do
3: For all capsule pairs i, j: compute coupling coeffi-

cients cij via softmax:
4: cij ← exp(bij)∑

k exp(bik)

5: For each capsule j in layer l+1: compute total input
sj :

6: sj ←
∑

i cijuji

7: Squash to get the output vector of capsule j:
8: vj ← squash(sj)
9: Update the log probabilities for the next iteration:

10: bij ← bij + uji · vj
11: end for

Digit Capsule Layer: A digit capsules layer follows the
primary capsules. This layer represents more complex com-
binations of the features detected by the primary capsules.
For audio deepfake detection, this could include detecting
irregularities in frequency patterns that do not correspond
to natural human speech variations.

Output: The output from CN1 consists of a set of activ-
ity vectors, each from a capsule in the last capsule layer of
CN1. These vectors encapsulate the instantiation parame-
ters of the features detected in the audio data. The length of
each vector indicates the probability that a certain feature is
present in the input data, while its orientation in the vector
space represents the instantiation parameters of that feature.
The output of CN1 then serves as the input for CN2, where
the process of feature abstraction and representation contin-
ues at an even higher level.

3.4.2 Capsule Network 2 (CN2)

Capsule Network 2 (CN2) functions as the subsequent stage
in the cascaded architecture, where the primary goal is to
process and interpret the complex features relayed by Cap-
sule Network 1 (CN1). CN2 is specifically designed to
take the output vectors vj from CN1 and subject them to
a secondary phase of transformation and dynamic routing.
This is achieved through a secondary capsule layer that fine-
tunes the feature detection process.

Input Layer: The input to CN2 consists of the output
vectors vj from CN1. These vectors encapsulate high-level
feature information and the likelihood of their presence as
determined by the previous network’s dynamic routing.

Secondary Capsule Layer: Here, the dynamic routing
algorithm is executed again. However, the prediction vec-
tors u′

ji created in CN2 are derived from the outputs vj re-
ceived from CN1, which means they are based on already
processed and interpreted feature data. This layer employs
transformation matrices similar to those in CN1 to generate
prediction vectors for each higher-level capsule. The dy-
namic routing process then iteratively updates the coupling
coefficients between the capsules based on the ”agreement”
between their predictions, refining the representation of the
data.

Dynamic Routing in CN2: The dynamic routing mech-
anism in CN2 iteratively refines the coupling coefficients
between the secondary capsules, with the objective of iden-
tifying and emphasizing complex, high-level features that
are most indicative of audio authenticity or tampering.

Output Layer: The output of CN2, denoted by v′j com-
prises the final activity vectors of the secondary capsules.
These vectors represent the network’s distilled knowledge
and conviction regarding the presence of intricate patterns
and relationships within the audio data, which are potential
markers of deepfake manipulation.
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3.5. Classification and Marginal Loss

The culmination of the capsule network’s processing is the
classification stage, where the authenticity of audio samples
is determined. This stage utilizes the lengths and orienta-
tions of the digit capsules’ output vectors to classify audio
samples as real or fake. The geometric properties of these
vectors serve as a powerful mechanism for distinguishing
between real and fake audio content.

Margin Loss Function: The margin loss function is
critical for guiding the network towards accurate classifica-
tion. It is formulated to penalize incorrect classifications
while providing a balance between sensitivity and speci-
ficity [13]. This balance is crucial for audio deepfake de-
tection, where the cost of false positives and negatives can
be significant. The mathematical expression for margin loss
is

Lk = Tk max(0,m+ − ||vk||)2

+ λ(1− Tk)max(0, ||vk|| −m−)2 (7)

where Tk is 1 if the class k is present and 0 otherwise,
m+ and m− are the margins for correct and incorrect clas-
sifications, respectively, and λ is a down-weighting term for
the absence of a class.

4. Experimental Setup and Results

4.1. Datasets

ASVspoof 2019: The ASVspoof 2019 dataset addresses
three primary forms of spoofing attacks—replay, speech
synthesis, and voice conversion, within a unified competi-
tion framework. This dataset is divided into two distinct
scenarios: logical access (LA) and physical access (PA),
each offering a unique dataset tailored to its respective ac-
cess control challenges. In our research, we have concen-
trated on the LA scenario. The LA subset encompasses
a diverse range of 17 spoofing attacks, from A01 to A19,
blending various speech synthesis and voice conversion
techniques. It includes high-quality speech synthesis with
WaveNet (A01), the WORLD vocoder for scenarios with
limited WaveNet data (A02), and the Merlin toolkit for ease
of TTS system construction (A03). Waveform concatena-
tion via MaryTTS (A04) emphasizes natural speech, while
A05 and A06 introduce neural network-based VC, leverag-
ing a Variational AutoEncoder and a transfer-function ap-
proach, respectively. The remaining attacks (A07 to A19)
explore a diverse blend of methods, including Generative
Adversarial Networks and neural source-filter models, tar-
geting various aspects of speech synthesis and conversion
to challenge automatic speaker verification systems effec-
tively.

Fake or Real dataset (FoR): FoR dataset contains over
198,000 utterances from state-of-the-art TTS algorithms
and real speech. It’s published in four versions: for-original,
for-norm, for-2seconds, and for-rerecorded to simulate real-
world attacks.

for-original: Contains raw audio files from TTS systems
and real human speech, providing a baseline for compari-
son.

for-norm: Features audio files that have been normal-
ized to ensure consistent volume levels across the dataset.

for-2seconds: Includes audio clips shortened to 2 sec-
onds to focus on short-duration speech analysis.

for-rerecorded: Consists of the original dataset audio
played and recorded in a real environment to simulate real-
world conditions and background noises.

In our research, we have employed each version of the
dataset both individually and by combining them into a uni-
fied, extensive dataset for analysis.

4.2. Experimental Setup

In our study on audio deepfake detection, the experimen-
tal setup for the ABC-CapsNet integrates VGG18 for initial
feature extraction and an attention mechanism for precise
feature refinement, followed by a novel implementation of
two cascaded capsule networks for detailed analysis. The
training was conducted with a batch size of 32 across 100
epochs, utilizing the Adam optimizer for its adaptability and
efficiency with a learning rate of 0.0001 for both the feature
extraction phase and the first capsule network. The cross-
entropy loss function was chosen for its effectiveness in bi-
nary classification tasks, critical for distinguishing between
real and fake audio samples. Evaluation metrics focused on
accuracy and the Equal Error Rate (EER), providing a dual
perspective on the model’s performance by assessing both
its precision and its ability to balance false positives and
negatives.

4.3. Results on ASVspoof 2019 (LA)

We conducted a series of experiments on the LA senario
of ASVspoof 2019 dataset, testing individually on attacks
A07 to A19 and on the dataset as a whole. The accura-
cies obtained were high, with the lowest being 95.5% for at-
tack A17 and the highest reaching 98.1% for the entire LA
senario , as depicted Fig. 3a. Such high accuracy demon-
strates the model’s proficiency in correctly classifying audio
samples across a range of attack conditions.

The EER(%) values present a more nuanced un-
derstanding of the model’s performance as depicted in
Fig. 3b. EER(%) spans from as low as 0.06% for the full
ASVspoof2019 dataset to a peak of 1.36% for attack A18.
The majority of individual spoofing attacks (A07 to A17)
maintain an EER below 0.41%, demonstrating the model’s
robustness. However, the EER does rise significantly for
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attacks A18 and A19, with A18, in particular, reaching
1.36%. This suggests that the features presented by attack
A18 are more challenging for the model to discern, pointing
to potential areas for further model refinement and training.

(a) Radar plot of accuracy (b) EER(%) evaluation

(c) Radar plot of accuracy (d) EER(%) evaluation

Figure 3. Evaluation of ASVspoof2019 (a) and (b) and FoR
dataset (c) and (d). (where O is for-original, N is for-norm, 2s
is for-2seconds and RR is for-rerecording)

4.4. Results on FoR dataset

We carried out a comprehensive set of experiments across
all four versions of the FoR dataset, as well as on the dataset
as a whole, to evaluate the ABC-CapsNet architecture’s pro-
ficiency in audio deepfake detection. The results, illustrated
in Figs. 3c and 3d, demonstrate the system’s proficiency,
with an EER of only 0.04% and an accuracy of 99% on
For dataset. Analysis of the individual dataset versions re-
vealed consistently low EERs: ’for-original’ at 0.09%, ’for-
norm’ at 0.07%, and ’for-2s’ at 0.13%. The ’for-rerec’ ver-
sion, which presents a more complex challenge, recorded a
higher EER of 2.2%. Nonetheless, the accuracy remained
robust across all scenarios, notably 97.3% for ’for-original’,
98.8% for ’for-norm’, 98.0% for ’for-2seconds’, and 96.3%
for ’for-rerecording’.

Fig. 3, illustrates the robust capability of ABC-CapsNet
in accurately identifying and classifying deepfake audio
content across a spectrum of manipulations, solidifying its
standing as a state-of-the-art system in this critical aspect of
digital security.

Study Dataset Architecture EER (%)

[7] ASVspoof2019 Capsule Network 1.07
[9] ASVspoof2019 MFCC Capsule 9.21
[9] ASVspoof2019 CQCC Capsule 5.09
Our Method FoR ABC-CapsNet 0.04
Our Method ASVspoof2019 ABC-CapsNet 0.06

Table 1. Comparison with state-of-the-art methods

4.5. Benchmarking

In the benchmarking landscape of audio deepfake detection,
our work pioneers the use of cascaded capsule networks,
representing a novel approach in the field. Prior studies
exploring the use of capsule networks for this purpose are
sparse. For instance, [7]. implemented a capsule network-
based model and achieved an EER of 1.07%, while [9] ex-
perimented with two distinct models: MFCC-capsule and
CQCC-capsule, which yielded EERs of 9.21% and 5.09%,
respectively. In contrast, our ABC-CapsNet architecture
has set a new benchmark, obtaining an EER of 0.04% on
the FoR dataset and 0.06% on the ASVspoof 2019 dataset.
This substantial improvement underscores the efficacy of
cascaded capsule networks in classifying audio authentic-
ity, positioning our model at the forefront of current audio
deepfake detection technologies.

5. Conclusion
In this study, we proposed ABC-CapsNet, a novel archi-
tecture for audio deepfake detection, integrating Mel spec-
trograms, VGG18 feature extraction, and attention mecha-
nisms with cascaded capsule networks. This comprehen-
sive approach demonstrated superior efficacy across diverse
datasets, including ASVspoof 2019 and FoR, achieving un-
precedented low EERs. In future, we intend to extend our
model to accommodate a broader array of audio manipu-
lation techniques and explore adaptive mechanisms to en-
hance model efficiency and reduce computational demands,
ensuring broader applicability and scalability.
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