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Abstract

Since large number of high-quality remote sensing im-
ages are readily accessible, exploiting the corpus of images
with less manual annotation draws increasing attention.
Self-supervised models acquire general feature representa-
tions by formulating a pretext task that generates pseudo-
labels for massive unlabeled data to provide supervision for
training. While prior studies have explored multiple self-
supervised learning techniques in remote sensing domain,
pretext tasks based on local-global view alignment remain
underexplored, despite achieving state-of-the-art results on
natural imagery. Inspired by DINO [6], which employs an
effective representation learning structure with knowledge
distillation based on global-local view alignment, we for-
mulate two pretext tasks for self-supervised learning on re-
mote sensing imagery (SSLRS). Using these tasks, we ex-
plore the effectiveness of positive temporal contrast as well
as multi-sized views on SSLRS. We extend DINO and pro-
pose DINO-MC which uses local views of various sized
crops instead of a single fixed size in order to alleviate the
limited variation in object size observed in remote sensing
imagery. Our experiments demonstrate that even when pre-
trained on only 10% of the dataset, DINO-MC performs on
par or better than existing state-of-the-art SSLRS methods
on multiple remote sensing tasks, while using less computa-
tional resources. All codes, models, and results are released
at https://github.com/WennyXY/DINO-MC.

1. Introduction
Computer vision models provide promising solutions for
remote sensing image analysis to be applied in numerous
real-world tasks, including disaster prevention [46], forestry
[25], agriculture [29], land surface change [18], biodi-
versity [45]. However, training large-scale deep learning
models in a traditional supervised manner requires exten-
sive labeled datasets. Labeling large datasets is costly and

error-prone, particularly within the remote sensing domain,
which requires expert knowledge [38]. Therefore, reduc-
ing the reliance of the model on labeled images is crucial
for resolving specific downstream tasks. Self-supervised
learning (SSL) paradigm is a common solution to learn
useful features from copious data without labels, which
comprises two distinct phases: the initial pretext task pre-
training phase followed by the subsequent downstream task
fine-tuning phase. Since different pretext tasks prompt the
model to acquire diverse feature aspects, devising an ap-
propriate task for which labels can be automatically derived
from the data is essential for fostering generalized represen-
tations.

Based on the pretext tasks, SSL models can be catego-
rized into three distinct categories. Generative tasks allow
the model learn feature representations by reconstructing
or generating original images. For example, the image in-
painting [33] uses the original data as labels to train the
model to recover several masked parts of the original im-
age. The discriminative tasks [7, 14] train the network to
distinguish certain characteristics or properties. For exam-
ple, [13] trains the model to predict the relative position of
a patch to its neighbors, and each image patch is defined to
have up to eight adjacent patches. However, the feature rep-
resentations learned by generative and discriminative meth-
ods highly rely on the designed pretext tasks, and an inef-
fective pretext task might reduce the transfer-ability of the
pre-trained model [49]. In stead of solving a straightfor-
ward and specific pretext task, contrastive SSL approaches
extract features by maximising the similarity between the
latent representations of two positive instances (e.g., two
augmented views of the same image) and the distance be-
tween two negative instances. However, simply following
this approach will easily lead to an identity map for each
pair of positive samples, i.e., model collapse [49].

DINO [6] utilizes knowledge distillation and centering
and sharpening of the teacher network [23] to handle this
issue. DINO exhibits impressive performance in numerous
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computer vision tasks, including image retrieval, copy de-
tection, and video instance segmentation. Although some
previous work has applied DINO to remote sensing domain
[36, 48, 50], a comprehensive evaluation and extension of
the self-supervised objective for remote sensing imagery
deserves further exploration. In particular, the size of in-
stances observed during pre-training on traditional natural
scenes shows wider variation than seen in remote sensing
imagery. Thus, the alignment of the latent representation
of the multi-sized local augmented crops against the global
augmented views is of interest in remote sensing imagery
as it leads to a more challenging pretext task. Remote sens-
ing data holds spatial-temporal heterogeneity offering rich
time series information due to the repetitive capture of im-
agery by satellites over the same geographic area. Some
studies [3, 27, 51] have explored employing the temporal
information for SSL and their results indicate promising
potential. [3] integrated temporal information of video se-
quences into instance discrimination based contrastive SSL.
[27, 51] constructed large-scale SSLRS datasets involving a
wide spatio-temporal range of remote sensing imagery.

Inspired by the inherent characteristics of the size varia-
tion of semantic content observed between traditional natu-
ral scenes and remote sensing imagery, we propose DINO-
MC which uses size variation in local crops to drive better
representation learning of the semantic content in remote
sensing imagery. Additionally, we explore applying tempo-
ral views as positive instances into contrastive SSL method.
We evaluate our model with different backbones including
two transformer-based models and two convnets. Although
the majority of current SSL methods for remote sensing
imagery rely on ResNet and Vision Transformers (ViTs)
as backbone architectures, there is growing interest in ex-
ploring the self-supervised feature extraction capabilities of
Wide ResNets (WRN) [53] and Swin Transformers [26] in
the remote sensing domain. We incorporate these two ar-
chitectures into our analysis. In the linear probing eval-
uation, the findings demonstrate that DINO-MC has great
transfer-ability which achieves 2.56% higher accuracy with
a smaller pre-trained dataset than SeCo. When fine-tuned
on two remote sensing classification tasks and change de-
tection task, DINO-MC outperforms DINO and SeCo.

Our main contributions are summarized as follows:
• We apply temporal views as positive instances to recent

contrastive self-supervised models (DINO-TP). We an-
alyze different backbone networks to explore their ef-
fectiveness on different remote sensing tasks when pre-
trained under this setting.
• We combine a new multi-sized local cropping strategy

with DINO and propose DINO-MC. We pre-train DINO-
MC with different backbones on a satellite imagery
dataset SeCo-100K to learn general representations.
• DINO-MC outperforms SeCo with only 10% pre-training

dataset, and achieves state-of-the-art results on BigEarth-
Net multi-label and EuroSAT multi-class land use clas-
sification, as well as Onera Satellite Change Detection
(OSCD) task.

2. Related Work

2.1. Contrastive Self-supervised Learning.

SSL methods create task-agnostic signals to instruct the
model in learning versatile features which can effectively
generalise across various downstream tasks [42]. In gener-
ative and discriminative SSL, the loss function is computed
based on the disparity between the ground truth and the
model’s prediction. Conversely, in contrastive models, the
loss is determined by the dissimilarities among feature rep-
resentations within the latent space [49]. Contrastive SSL
exhibits promise in transferability and gains increasing at-
tention. Furthermore, the statistics of recent studies shows
that nearly half of the remote sensing self-supervised stud-
ies applied contrastive learning models [49].

Instance discrimination [14] proves to be a highly ef-
fective pretext task commonly used in contrastive learning.
In this task, augmented views originating from the same
input are labeled as positive, whereas distinct instances
are designated as negative. The model is then trained to
maintain proximity between positive pairs and create sep-
aration between negative pairs in the representation space
[36, 44, 52]. Several studies have explored positive/negative
samples generating strategies. [31] regards the diagonally
connected patches as the positive instances otherwise neg-
ative, and [43] incorporates same spot views from different
sensory as the positive instances. [21] proposes MoCo-V1
with a momentum encoder to effectively maintain multiple
negative samples for representation learning. SimCLR [7]
employs very large batch sizes instead of momentum en-
coders, and provides experimental results on 10 forms of
data augmentation. Inspired by SimCLR, MoCo-V1 is ex-
tended to MoCo-V2 [9], and MoCo-V3 [10] integrates ViT
as the backbone architecture.

Clustering method is another line of contrastive learn-
ing, which demands no precise indication from the inputs
[4]. [5] introduces a contrasting cluster assignment that
learns features by Swapping Assignments between multi-
ple Views of the same image (SwAV). SwAV can be readily
applied to different sizes of datasets due to its utilization
of clustering rather than pairwise comparisons. [5] pro-
poses a data augmentation named multi-crop to increase the
instances without drastically additional memory and com-
putation. Specifically, when doing multi-crop, images are
cropped to a collection of views with lower resolutions in-
stead of the full-resolution views. [1] maps the feature rep-
resentations of two randomly augmented views (with one
view having randomly masked patches) to a shared cluster
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Figure 1. DINO: the self-supervised contrastive algorithm with knowledge distillation. It is the basic structure of both DINO-TP and DINO-
MC. For DINO-TP, we use three temporal views to generate global crops and multi-sizes local crops as the input to do positive contrastive
representation learning. For DINO-MC, we generate global and local crops from one imagery, then apply two different augmentations to
global views and multi-sizes local views, respectively, to get the input of teacher and student network.

space to maximize their similarity.
Knowledge distillation in contrastive learning can be

employed for feature extraction without the need to dif-
ferentiate between images [6]. [19] proposes Bootstrap
Your Own Latent (BYOL) based on the online and target
networks whose weights are updated with each other. In-
spired by BYOL, [6] explores the further synergy between
SSL and different backbones, especially ViTs, and proposes
a simple form of self-distillation with no labels (DINO).
DINO uses same networks architecture as BYOL but with
different loss function and backbones. When pre-trained
on ImageNet [35], DINO achieves better linear and KNN
probing evaluation results than other self-supervised meth-
ods with fewer computation resources [5, 6, 19]. [37] sug-
gests incorporating two distillation modes within SSL: self-
distillation and cross-distillation, to improve the semantic
feature alignment across two networks. [24] enables the in-
termediate layers to learn from the final layer by employing
contrastive loss through, i.e., self-distillation.

2.2. Self-supervised Learning in Remote Sensing.

[41] experiments with SSL models on different pretext
tasks, including image inpainting [33], context prediction
[13], and instance discrimination [52] on remote sensing
imagery tasks. [47] proposes to learn practical represen-
tations from satellite imagery by reconstructing the visible
colors (RGB) from its high-dimensionality spectral bands
(Spectral). [2] explores the application of contrastive SSL
to large-scale satellite image datasets. [27] leverages sea-
sonal information of remote sensing imagery and demon-
strates that the performance of MoCo-V2 is enhanced with
the incorporation of temporal positives (TP). TP regards the
temporal views as the positive instances and trains mod-
els match their representations allowing the model to learn
essential features that do not change over time. Besides,
they introduce a negative temporal contrastive model named

SeCo designed to capture variations or discrepancies result-
ing from temporal changes. [48] uses Swin Transformer as
the backbone of DINO and applies it to remote sensing im-
agery tasks. DINO-MM [50] extends DINO by combining
synthetic-aperture radar (SAR) and multispectral (optical)
images and is applied to BigEarthNet land use classifica-
tion task.

Current studies have demonstrated the utility and viabil-
ity of SSL models for practical applications in tasks involv-
ing remote sensing images. But the full potential of SSL
in remote sensing warrant further investigation. Our work
targets to bridge this gap and extend existing SSL model by
generating more effective contrastive instances.

3. Methodology
Our work is mainly based on a contrastive SSL model
named DINO, which has been applied into both natural and
remote sensing imagery tasks [6, 50, 51]. We aim to learn
useful, transferable features for remote sensing imagery by
exploring positive temporal contrastive SSL model DINO-
TP (Sec. 3.1) and contrastive SSL model with multi-sized
crops DINO-MC (Sec. 3.2). In addition, we experiment
with the feature extraction ability of different backbones in
SSL.

3.1. DINO-TP

Architecture Fig. 1 shows the model structure. The student
and teacher networks in DINO have same architecture g but
different weights θt and θs. Two sets of augmented views
x1 and x2 are generated from the same image. The global
view covers the majority of the initial image and the local
view only covers a small part. The student network receives
both global and local crops as inputs, whereas the teacher
network only receives global crops. The model is trained
to match the individual local views to global views in the
feature space.
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Rather than a pre-trained and frozen teacher network
[8, 17], DINO dynamically updates the teacher weights by
using EMA on student weights, i.e.,

θt ← θtλ+ (1− θs) (1)

The λ values adhere to a cosine schedule between 0.996 and
1, indicating that the teacher network is less dependent on
the present student and more dependent on the integration
of the student network in each round; hence, the weights are
updated slowly.

Centering and sharpening are used to prevent model col-
lapse. Centering is adding a bias term c to the features of
the output of the teacher model, i.e.,

gt(x) = gt(x) + c (2)

The bias term c is dynamically updated by the EMA, where
m > 0 denotes the update rate and B is the batch size.

c← mc+ (1−m)
1

B

B∑
i=1

gθt(xi) (3)

Sharpening is achieved by softmax normalization using low
temperature in the teacher network to avoid consistent dis-
tribution. The teacher network consistently outperforms the
student network during pre-training, which is used as the
feature extractor in downstream tasks [6].

Temporal Contrastive This work performs self-
supervised pre-training on SeCo-100K [27] to integrate
temporal information. SeCo-100K is an unlabeled remote
sensing imagery dataset collected from Sentinel-2 [16] with
100K instances, and each instance is composed of five dif-
ferent temporal views of the same location. DINO-TP
regards the temporal views of the same location as the
positive instances, i.e., the teacher and student networks
are trained to match temporal views in the feature space.
In the pre-training phase, we randomly select three tem-
poral views and name them as t0, t1, t2. As shown in
Fig. 2, t1, t2 can be regarded as the temporal augmenta-
tion views of t0. The temporal image t0 is directly used
as q to generate 6 local crops of various sizes, includ-
ing 1842, 1642, 1442, 1242, 1042 and 842. After apply-
ing color jittering, grayscale, and Gaussian blur to each
of the three temporal perspectives, we acquire k0, k1, k2
views. k0, k1, k2 are scaled and resized into 2242 serving
as three global crops utilized as the inputs. In prior work,
different techniques are paired with different crop scaling
ranges. DINO-TP not only learns the relationship between
the whole and the pieces of the image, but also discovers
the interrelation among various temporal perspectives.

3.2. DINO-MC

The structure of DINO-MC is nearly identical to DINO-TP.
This work changes the cropping strategy for local crops in

DINO to create a more challenging pretext task. We use
multi-sized crops instead of the fixed-size local crops used
in DINO. Keeping the number of global and local crops
same as DINO, DINO-MC outperforms DINO on both lin-
ear and KNN probing as well as end-to-end evaluation on
multiple downstream tasks. Color-related pretext tasks have
been proven to be effective in multiple image tasks in the
field of remote sensing [1, 47, 54]. Due to the strong con-
nection between color and semantics, we set two strategies
of color transformations for global and local crops respec-
tively. The global views are augmented by random color
jittering and GaussianBlur. The local views are augmented
by random color jittering, random grayscale shifting, and
random Gaussian blur all together. Random color jittering
modifies the brightness, contrast, saturation and hue of the
image with a specified probability within a certain range.
This process aims to replicate the effects of capturing im-
ages in diverse lighting conditions and real-world shoot-
ing scenarios. Random grayscale converts an image into a
grayscale image randomly, aiming to diminish the influence
of color while capturing additional image characteristics be-
yond color properties. We use different settings for crop-
ping and color transformation. The experiments verify that
our strategy is effective and DINO-MC outperforms DINO
on both linear probing and end-to-end fine-tuning on three
downstream tasks (classification and change detection).

4. Experiments
In this study, the features learned from the self-supervised
pre-training are evaluated on three downstream tasks: Eu-
roSAT [22] and BigEarthNet [39] land use classification
tasks, and OSCD change detection task [12]. Due to its
flexibility and computational efficiency, we utilize DINO as
the foundation for our experiments and further extend its
capabilities. SeCo-100K [27] serves as the dataset for self-
supervised representation learning in this experiment, con-
taining 100K unlabeled remote sensing images. During the
pre-training phase, the student and teacher networks receive
two separate sets of temporal views depicting the same ge-
ographical region. The SSL model is trained to aligns these
views within the feature space to generate representations
that exhibit temporal consistency. In DINO-MC and DINO-
TP, the scaling range of multi-crop is (0.05, 0.32) for local
crops and (0.32, 1) for global crops.

4.1. DINO with Different Backbones

When employed as the backbone of DINO, ViT demon-
strates superiority over ResNet [6]. In this work, there
are four different networks applied as the backbone of
DINO, DINO-TP, and DINO-MC, including ViT, Swin
Transformer, ResNet, and WRN.

ViT preserves the Transformer structure used in NLP as
much as possible and exhibits promising performance in
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Figure 2. The process of handling temporal views of contrastive learning in DINO-TP. We randomly select three temporal views of the
same location and augment them to obtain global and local crops, which is the input of the teacher and student network. Different temporal
views of the same location in DINO-TP are considered as positive examples, and we train the model to match their representations in the
feature space.

computer vision tasks [15]. The input of transformer en-
coder is the embedding formed by adding the patch embed-
ding with the position encoding. The transformer encoder
of ViT consists mainly of layer normalization (LN) which is
applied before each block, multi-head attention, and multi-
layer perceptron block (MLP). Inspired by ViT, Swin Trans-
former is proposed with a hierarchical transformer, which
computes representation with both regular and shifted win-
dows to capture features from different levels and resolu-
tions [26].

A deep residual learning framework (ResNet) is pro-
posed to overcome the degradation issue of the deep neural
networks [20]. They add shortcut connections to transmit
the information of shallow layers directly to the deeper lay-
ers of the neural network and require no additional compu-
tation. With this mechanism, the residual net is deepened
to 152 layers and achieves state-of-the-art results in multi-
ple computer vision tasks. Furthermore, with the emerging
and development of self-supervised representation learning,
ResNet also serves as an effective backbone widely used
in multiple SSL architectures [7, 19, 28, 31, 43]. WRN
[53] is proposed to improve the performance of ResNet by
increasing the width of the residual block, i.e., widening
the convolutional layers. When employing an equal num-
ber of parameters, wide residual blocks yield superior re-
sults with reduced training time compared to the original
residual blocks. Despite the quadratic increase in parameter
numbers and computational complexity associated with the
width factor, it proves to be a more efficient approach com-
pared to expanding the number of layers in ResNet. This is

because larger tensors can better leverage the parallel com-
puting capabilities of GPUs [53]. WRN has been proved to
achieve advanced results in a supervised manner in terms
of classification F1-Score and training efficiency [32]. This
project intends to explore the feature extraction capability
of WRN in SSL framework.

Implementation Details ViT-small is used as the back-
bone and the implementation follows DINO. In the experi-
ments, we load different backbones as the teacher and stu-
dent network without pre-trained weights. WRN-50-2 has
similar structure to ResNet, with the exception of the bot-
tleneck number of channels, which is twice as large in each
block. We follow the recommendation from DINO to use
AdamW optimizer. Cross-entropy is employed as the loss
function to measure the disparity between feature represen-
tations generated by two networks. We evaluate the learned
representations by applying KNN and linear probing on Eu-
roSAT land use classification task.

Quantitative Results A common method for assessing
feature representations is training a classifier on top of the
frozen feature extraction model for a supervised learning as-
signment. In order to evaluate the representations indepen-
dently, we freeze the pre-trained backbone model and only
train the linear and KNN classifiers on EuroSAT land use
classification task. The results are shown in Tab. 1. From
the table, DINO-MC performs better than both DINO and
DINO-TP when using ViT-samll, WRN-50-2, and ResNet-
50 backbones. DINO-MC with WRN-50-2 pre-trained on
100K data is even 2.56% higher than the linear probing ac-
curacy of SeCo pre-trained on 1 million data. Additionally,
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Model Arch #images KNN Linear

MoCo-V2 ResNet-50 1M - 83.72
SeCo-1M ResNet-50 1M - 93.14

DINO ResNet-50 100K 90.09 89.65
DINO-TP ResNet-50 100K 79.05 86.70
DINO-MC ResNet-50 100K 93.94 95.59

DINO WRN-50-2 100K 92.74 91.65
DINO-TP WRN-50-2 100K 86.37 88.15
DINO-MC WRN-50-2 100K 94.65 95.70

DINO ViT-small 100K 93.35 91.50
DINO-TP ViT-small 100K 93.15 93.89
DINO-MC ViT-small 100K 93.41 94.09

DINO Swin-tiny 100K 92.15 86.87
DINO-TP Swin-tiny 100K 92.83 91.94
DINO-MC Swin-tiny 100K 93.22 90.54

Table 1. Linear and KNN probing classification on EuroSAT. We
evaluate our models with different backbones on EuroSAT and
record the top-1 accuracy of KNN and linear probing on the val-
idation set. MoCo-V2 [9] and SeCo-1M [27] are pre-trained on
SeCo-1M dataset, and their linear probing results on EuroSAT are
from SeCo [27]. Other listed models are pre-trained on SeCo-
100K dataset with only 10% images of SeCo-1M.

DINO-MC with ViT-samll has 2.59% higher accuracy than
DINO with ViT-samll which indicates the effectiveness of
our strategy. In comparison to the other three backbones,
Swin-tiny performs less well. One possible reason could be
that the model size of Swin-tiny is much smaller than the
other three models. Another interesting observation is that
the DINO-TP performs worse with two convnets than the
DINO, but better with two transformer models. Among the
different self-supervised models, ViT-small and Swin-tiny
performed more consistently than ResNet-50 and WRN-50-
2. Overall, DINO-MC is particularly effective.

4.2. Land Use Classification on EuroSAT

EuroSAT is a widely used benchmark dataset for remote
sensing land use classification tasks. It is used for repre-
sentation evaluation in this study, allowing the results of
models based on it to be easily compared to those of other
models. The dataset, which collects 27,000 remote sensing
images from the Sentinel-2 satellite, is divided into 21,600
and 5,400 images for training and evaluation respectively in
our experiments.

Implementation Details The pre-trained backbones of
the SSL models are evaluated as feature extractors in this
land use classification downstream task. Based on the pre-
trained backbone models, we incorporate a fully-connected
layer as the classifier, leveraging the extracted features to
predict the classification results. Both the feature extractor

Model Backbone Accuracy

Supervised WRN-50-2 98.72
Supervised ResNet-50 98.78
Supervised ViT-base 98.83

DINO ViT-small 97.98
DINO-MC ViT-small 98.15
DINO-MC Swin-tiny 98.43
DINO-MC ResNet-50 98.69
DINO-MC WRN-50-2 98.78

Table 2. End-to-end accuracy results on EuroSAT land use classi-
fication task. The three supervised models listed are pre-trained on
ImageNet-1K [35], and we load and fine-tune them on EuroSAT.
While DINO and DINO-MC are only pre-trained on SeCo-100K
dataset, which has only 10% the number of images of ImageNet-
1K.

and the classifier are fine-tuned on this supervised classifi-
cation task. We train the models for around 200 epochs with
a batch size of 32. The learning rate is 1e− 3 or 3e− 3 for
different models. We use the CosineAnnealingLR scheduler
to update the learning rate. Same as SeCo [27], we use SGD
optimizer without weight decay to update weights.

Quantitative Results Tab. 2 compares our pre-trained
models against three supervised baseline models on Eu-
roSAT land use classification task. DINO-MC with WRN-
50-2 achieves similar results to the three supervised mod-
els, in particular, it is pre-trained on only 100K images,
while the three supervised models are pre-trained on 1M
images. This further confirms the effectiveness of the rep-
resentations learned by DINO-MC.

4.3. Land Use Classification on BigEarthNet

BigEarthNet [39] is a widely used benchmark dataset for
land use classification task, containing a total of 590,326
images. This work uses BigEarthNet-S2 [39], which specif-
ically gathers remote sensing images from Sentinel-2 only,
and each image is annotated by multiple land use categories.
The dataset provides 12 spectral bands for each image and
a JSON file with its multi-labels and metadata information.
Following SeCo [27], we employ a new nomenclature of 19
classes introduced in [40], and around 12% of the patches
that are totally masked by seasonal snow, clouds, or cloud
shadows are eliminated in this experiment. We used the
training/validation splitting strategy suggested by [30] with
311,667 instances for training and 103,944 images for vali-
dation.

Implementation Details We add a linear classification
layer on top of the backbone model as the output layer and
then fine-tune it on 10% and 100% BigEarthNet, respec-
tively, to evaluate the features learned by the SSL models.
In this experiment, the Adam and AdamW optimizer with
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Model Backbone Param. 10% 100%

SeCo-100K ResNet-50 23M 81.72 87.12
SeCo-1M ResNet-50 23M 82.62 87.81

DINO ResNet-50 23M 79.67 85.38
DINO-TP ResNet-50 23M 80.10 85.20
DINO-MC ResNet-50 23M 82.55 86.86
DINO-MC WRN-50-2 69M 82.67 87.22
DINO-MC Swin-tiny 28M 83.84 88.75
DINO-MC ViT-small 21M 84.20 88.69

Table 3. Mean average precision (MAP) results on BigEarthNet-
S2 land use classification. We use the same train/validation splits
as SeCo [27]. We fine-tune the pre-trained SSL models with dif-
ferent backbones on 10% and 100% training dataset, and evaluate
them on the identical validation dataset. SeCo-100K and SeCo-1M
represent SeCo pre-trained on SeCo-100K and SeCo-1M, respec-
tively, and their results listed are from [27]. DINO, DINO-MC,
and DINO-TP are pre-trained on SeCo-100K only.

default hyper-parameters are used to update the weights of
the models. Identical to SeCo, we set the learning rate to
1e− 5 and scale it down by ten in epochs of 60% and 80%,
respectively. We use the MultiLabelSoftMarginLoss as the
loss function, which allows assigning a different number of
target classes to each sample.

Quantitative Results Tab. 3 provides the results of pre-
trained models in the end-to-end BigEarthNet classification
task. We assess the performance of each model by mean
average precision (MAP). When fine-tuned on the 10%
BigEarthNet, DINO-MC outperforms SeCo-100K with the
same backbone. Additionally, DINO-MC with ViT-small
achieves 1.65% higher MAP than with ResNet-50, 2.48%
higher MAP than SeCo-100K, and even 1.58% higher MAP
than SeCo-1M. The performance of DINO-MC with each of
the four backbone models exceeds that of SeCo-100K, and
even outperforms SeCo-1M except for ResNet-50.

When fine-tuned on the whole BigEarthNet, DINO-
MC achieves comparable result to SeCo-100K with the
same backbone. Interestingly, DINO-MC with Swin-tiny
achieves 1.89% higher MAP than with ResNet-50, 1.63%
higher MAP than SeCo-100K, and 0.94% higher than
SeCo-1M. The results demonstrate that the representations
learned by DINO-MC generalize well in the multi-label
classification task on BigEarthNet.

4.4. Change Detection on OSCD

OSCD is a benchmark dataset of which the images are
collected from Sentinel-2, which mainly focuses on urban
growth and disregards natural changes [12]. Change detec-
tion is a fundamental problem in the field of earth observa-
tion image analysis. The input is a pair of images captured
at the same location, while the label is a mask map high-

Model Backbone Pre. Rec. F1

Supervised ResNet-50 56.49 43.63 48.61
Supervised WRN-50-2 53.76 47.11 49.72
PatchSSL (21M param.) 40.44 69.10 51.00
MoCo-V2 ResNet-50 64.49 30.94 40.71
SeCo-1M ResNet-50 65.47 38.06 46.94

DINO ResNet-50 57.37 44.21 49.53
DINO-MC ResNet-50 51.94 54.04 52.46
DINO-TP ResNet-50 51.10 49.03 49.74

DINO WRN-50-2 53.58 52.28 52.41
DINO-MC WRN-50-2 49.99 56.81 52.70
DINO-TP WRN-50-2 55.77 47.30 50.61

Table 4. Fine-tuning accuracy results on OSCD change detection
task. We adopt the same train/validation splits as SeCo [27]. Fol-
lowing SeCo, we freeze the pre-trained backbone and only update
the weights of U-net [34]. Our WRN-50-2 and ResNet-50 models
are pre-trained on 100K satellite images. The result of PatchSSL is
from [11]. The listed MoCo-V2 [9] and SeCo-1M are pre-trained
on 1M satellite images and are results provided by [27].

lighting the change parts. It is a binary classification task in
which labels are assigned to each pixel based on a series of
images sampled at different times: change (positive) or no
change (negative). The results are measured by F1 Score,
precision, and recall in this experiments.

Implementation Details The OSCD dataset is divided
into 14 and 10 pairs for training and validation separately,
as recommended by prior research [12, 27]. In addition, the
categories of change and unchanged in this dataset are un-
balanced due to the property of the task. We use the same
U-net architecture as SeCo for the change detection task,
which employ the pre-trained backbone models to extract
features as the encoder in the U-net. We apply the pre-
trained WRN-50-2 and ResNet-50 backbone models as the
encoder and select the first convolution layer, and Layer 1
to 4 as the copy and cropping layers. As for the decoder
module, it is constructed to rebuild an image with the same
width and height as the input. And the input and output
sizes of its layers are set according to the input and output
of the specific encoder layers, in order to concatenate them
in the direction of the channel. Upsampling here is achieved
by interpolate function, which can be understood simply as
a technology to increase the resolution of the output. The
last layer of the U-net is a 1× 1 convolutional layer, which
is used to map the channel of the feature vector to the num-
ber of output classes. During fine-tuning, in order to avoid
overfitting, only the U-net weights are updated. In this task,
the pre-trained WRN are fine-tuned with a batch size of 32
and a learning rate of 0.0006. The loss function used for
this task is BCEWithLogitsLoss+ SoftDiceLoss.
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Image 1
(Lasvegas)

Image 2
(Lasvegas)

Mask
(Ground truth)

SeCo-1M
F1=84.25

DINO
F1=86.83

DINO-TP
F1=88.60

DINO-MC
F1=86.69

Image 1
(Dubai)

Image 2
(Dubai)

Mask
(Ground truth)

SeCo-1M
F1=61.89

DINO
F1=65.40

DINO-TP
F1=59.64

DINO-MC
F1=68.42

Figure 3. Same as SeCo [27], our visualization is based on two instances of ’Losvegas’ and ’Dubai’ from the OSCD change detection
dataset. SeCo-1M is SeCo model pre-trained on SeCo-1M dataset, while DINO, DINO-TP, and DINO-MC are pre-trained on only SeCo-
100K. We visualize the outputs of DINO-TP and DINO-MC for comparison with DINO and SeCo. We present results on the same images
as SeCo for comparison and the two outputs of SeCo is from [27]. We also provide F1 score for each output on the bottom of output image.

Quantitative Results Tab. 4 provides the results of
DINO, DINO-MC, and DINO-TC with ResNet-50 and
WRN-50-2 respectively, compared against some supervised
and self-supervised baselines on OSCD dataset. The F1
score of DINO-MC with ResNet-50 is 5.52% higher than
that of SeCo and almost 3% higher than that of DINO.
When using WRN-50-2 as the backbone, the F1 score of
DINO-MC is 5.76% higher than that of SeCo and similar
with DINO. It is no surprise that DINO-TP does not per-
form as well as DINO and DINO-MC, because DINO-TP
receives images of the same location taken at different times
as positive instances, so it aims to learn features that do not
change over time, which is not very suitable for change de-
tection task [27]. In the results of OSCD task, the back-
bones pre-trained in DINO-MC can capture the subtle dif-
ferences of image changes over time after a simple fine-
tuning on the change detection dataset, which indicates that
DINO-MC is able to learn general and effective features us-
ing only very simple data augmentation methods.

Qualitative Results Fig. 3 gives the visualization masks
of DINO-MC on OSCD task. To do comparison to SeCo,
we select two identical examples from the OSCD valida-
tion set and present their results. The masks generated
by DINO-MC outperform SeCo-1M since they cover more
changed pixels without excessive false predictions. We ob-
serve that the performance of DINO-TP on OSCD task is
unstable since it achieves particularly high F1 score on the
first instance, which is 4.35 higher than SeCo-1M, but much
lower in the second one, which is 2.25 lower than SeCo-
1M. Although positive temporal contrast used in DINO-TP
has been proved to be undesirable for change detection task

[27], the performance of DINO-TP is comparable to SeCo-
1M when evaluated on the whole validation set.

5. Conclusions

This study introduces DINO-TP and DINO-MC, which ex-
pand upon the contrastive SSL framework in two ways: (1)
by adding a positive temporal contrast strategy, and (2) by
introducing a novel cropping and color transformation strat-
egy for local views. The results of KNN and linear probing
evaluation on EuroSAT demonstrate the effectiveness of our
cropping strategy, as well as the unstable performance of
the positive temporal contrast. We evaluate and compare
our models with established supervised and self-supervised
models on two land use classification tasks and one change
detection task in remote sensing domain, revealing the su-
perior performance and effectiveness of DINO-MC.

This study only focus on utilizing temporal views as the
positive instances, which does not demonstrate its superior-
ity in our experimental results. In future work, we will fur-
ther investigate the performance of applying temporal views
as negative instances in the contrastive SSL methods.
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