
 

 
Abstract 

 
In this study, we identify the need for an interpretable, 

quantitative score of the repeatability, or consistency, of 
image generation in diffusion models. We propose a 
semantic approach, using a pairwise mean CLIP 
(Contrastive Language-Image Pretraining) score as our 
semantic consistency score. We applied this metric to 
compare two state-of-the-art open-source image 
generation diffusion models, Stable Diffusion XL and 
PixArt-α, and we found statistically significant differences 
between the semantic consistency scores for the models. 
Agreement between the Semantic Consistency Score 
selected model and aggregated human annotations was 
94%. We also explored the consistency of SDXL and a 
LoRA-fine-tuned version of SDXL and found that the fine-
tuned model had significantly higher semantic consistency 
in generated images. The Semantic Consistency Score 
proposed here offers a measure of image generation 
alignment, facilitating the evaluation of model 
architectures for specific tasks and aiding in informed 
decision-making regarding model selection.  

1. Introduction 
As the study and application of image generation with 

diffusion models grows, there is a need for better 
interpretability, explainability, and understandability of 
the outputs generated by these models [1]. 

When applying diffusion models to image generation, 
there is variability in the generated output. This variability 
is a result of stochastic elements that are inherent to the 
process of diffusion, including random initialization of the 
diffusion process, sampling from probability distributions, 
and nonlinear activations [2].  

While variability is inherent to diffusion models, there 
are differences in the level of variability across different 
models, due to differences in model architecture, training 
procedures (including approximations), and techniques 
used to control or guide the generation process [3]. When 
applying these models to real world problems, the 
challenge lies in reconciling the desire for diversity and 

creativity in generated outputs with the need for 
consistency and coherence relative to the input prompt.  

Quantifying the consistency, or repeatability, of 
generated outputs would allow for the quantification of 
this variability and would enable decisions to be made on 
this reconciliation between creativity and consistency 
when deciding on a diffusion model for a particular 
application or task. This quantification can provide an 
assessment of model stability and consistency, detect 
unintended bias, validate interpretations of model outputs, 
and enhance user understanding.  

2. Related Work 
It is commonplace in image generation research to 

repeat experiments due to “random variation” during 
inference in diffusion models [4]. However, the number 
of times an experiment is repeated is often arbitrary 
because there is no score to assess the effect of this 
random variation on repeatability or consistency of image 
generation tasks. This repeatability is likely model 
dependent, but this has not been studied. 

2.1. Measuring Image Quality 

There has previously been work to measure similarity 
between two different images, with the primary use case 
being to assess quality of generated images, like the 
Inception Score (IS), the Fréchet Inception Distance (FID), 
and the Kernel Inception Distance (KID) which evaluate 
the distribution of generated images or their features, and 
in FID and KID, compare it with the distribution of a set of 
real images or their features [5]. While these methods have 
been used extensively in image quality assessment, they 
have not been used to assess the consistency of image 
generation models. Further, these methods may be 
challenging to use when explaining consistency of image 
generation models due to their lack of direct relevance to 
human perception of image quality or repeatability, 
compared to a semantic approach.  

2.2. Semantic Evaluations 
Recently, research into the evaluation of consistency 

image-text matching in image generation has explored a 
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semantic approach using embeddings of text and images in 
multimodal embedding models [6-8]. CLIPScore, which 
uses CLIP to assess image-caption compatibility without 
using references, achieved high correlation with human 
judgements [8]. Semantic approaches have also been used 
to calculate loss for style-consistent image synthesis [9] 
and in measuring the success of diffusion models in 
imitating human artists [4].   

3. Methods 

3.1. Semantic Consistency Score 

We have identified the need for a score to quantify the 
repeatability or consistency of image generation in 
diffusion models. In this paper, we propose a semantic 
approach to this score, using a pairwise mean CLIP score 
(Equation 1).   
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Equation 1 shows our Semantic Consistency Score, 

which is a pairwise mean CLIP score, where N is the 
number of images, Ei and Ej are the CLIP visual 
embeddings for images i and j, respectively. For better 
interpretability and understanding, the score is bound 
between 0 and 100, with scores closer to 100 indicating 
more semantically consistent generated images. The 
summation of all pairwise cosine similarities is divided by 
the total number of unique image pairs. The mean is used 
to ensure that the metric is sensitive to outliers.  

CLIP [10] is a cross-modal retrieval model. It was 
trained on 400M (image, caption) pairs from 500K web 
search queries. Similar to the original CLIP Score [8], the 
CLIP model used to compute the Semantic Consistency 
Score is the ViT-B/32 version, which uses a Vision 
Transformer [11, 12]. This network outputs a single vector 
representing the content of the image with 512 dimensions. 
The weights of the model are trained to maximize the 
scaled cosine similarity of true image/caption pairs and 
minimize the similarity of mismatched image/caption 
pairs, creating an embedding space that has been used for 
a wide range of applications, from image captioning [8] to 
image retrieval [13] and image search [14]. 

3.2. Evaluation of Image Generation Models 
We wanted to evaluate the consistency of state-of-the-

art image generation models. We decided to compare 
SDXL [15] and PixArt-α [16] because both the weights 
and architecture are open source. Closed image generation 
models including DALL-E 3, Imagen 2, and Midjourney 

are challenging to use for a consistency study because of a 
lack of transparency around image generation and the 
inability to set a random seed, which we believe is 
important for study repeatability. Another issue that 
further motivated our decision against using DALL-E 3 
for this analysis was that the API rewrites prompts, so 
neither prompts nor random seeds could be set to remove 
confounding variables when running our experiments. 

Figure 1 shows our proposed approach to evaluate 
large image generation models. First, a prompt is passed 
to an image generating diffusion model (SDXL or PixArt-
α). This is repeated for n images. Image embeddings are 
created using the CLIP image encoder. Finally, the 
pairwise cosine similarity is computed and averaged to be 
the final score for the given prompt and model.  
 
3.2.1 Dataset Curation: SDXL and PixArt-α  

To evaluate SDXL and PixArt-α, we first used a text 
generation large language model (Anthropic, claude-3-
opus-20240229) to write 100 unique prompts for our 
image generation models. We standardized these prompts 
across models. Additionally, we used predefined random 

 

Figure 1: A single prompt is passed through a diffusion model n 
times with pre-set random seeds. Generated images are passed 
through the CLIP Image Encoder and a pairwise cosine similarity 
is taken between the embeddings of all images generated from a 
single prompt. 
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seeds across both models to ensure study repeatability, 
where a random seed corresponded to a repetition. All 
other parameters were kept consistent across runs: the 
width and height were set to 768 pixels, half of the 
maximum resolution available. The scheduler used was 
K-Euler. The guidance scale was set to 7.5 and the 
number of inference steps was set to 20. For SDXL, no 
refiner was used. Model inference was run on an Nvidia 
A40 hosted on Replicate.  
 
3.2.2 Dataset Curation: SDXL and LoRA  

To investigate the impact of low-rank adaptation 
(LoRA) fine-tuning on SDXL, we fine-tuned the weights 
of SDXL using low-rank adaptation on nine Monet 
paintings from the public domain. Input images were 
processed using SwinIR (upscaling), BLIP (captioning), 
and CLIPSeg for removing regions of images not helpful 
for training (temperature 1.0). The batch size was 4, 
epochs were 1000, U-Net's learning rate was 1e-6, textual 
inversion's learning rate scaling was 3e-4, and LoRA 
embeddings' learning rate scaling was 1e-4. LoRA fine 
tuning was run on an Nvidia A40 hosted on Replicate.  

We utilized a subset of 50 of the prompts used for the 
dataset curation of the SDXL and PixArt-α model 
comparison and used the same random seeds across 
models. Prompts were modified for input into SDXL with 
“in the style of Monet” appended to the end. Similarly, 
prompts were modified for the LoRA model to append “in 
the style of TOK”, where “TOK” is the unique token 
string that was used during training to refer to the concept 
in the input images, the style of Monet’s paintings. 

3.2.3 Human Annotation 
Annotation was performed by 13 human annotators. 

We built an annotation interface that displayed galleries 
of images generated by SDXL and PixArt-α side by side, 
and annotators selected the gallery they believed had the 
highest consistency and cycled through each prompt. 
Agreement was measured by comparing the model with 
the highest semantic consistency score to each annotator’s 
choices and the collective response from all annotators 
(aggregated by frequency).  

 
3.2.4 Sensitivity Analysis 

We conducted a sensitivity analysis to determine the 
optimal number of prompt repetitions for our analysis to 
ensure a balance between accuracy and computational 
efficiency. We computed the pairwise mean CLIP score 
for 10 different prompts for both SDXL and PixArt-α. We 
computed this score for 10, 20, 30, 40, 50, 60, 70, 80, 90, 
and 100 repetitions (random seeds).  

Based on our findings from the sensitivity analysis, 
which are detailed in the Experiments section, we 
performed 20 repetitions of each prompt for each model, 
resulting in 20*100*2 = 4k images for analysis.  
 
3.2.5 Statistical Analysis 

The pairwise mean CLIP score was calculated for each 
prompt and each model. A Kolmogorov-Smirnov test of 
normality was used to determine that the distributions of 
scores for each model were not normal (p<0.05). 
Accordingly, statistical significance was examined using 
a Wilcoxon signed-rank test (non-parametric paired 

 

Figure 2: (top row) SDXL and PixArt-α show significant differences in their paired scores and distributions; visualized with 
boxplots and kernel density estimation plots. (bottom row) SDXL (base) and SDXL (LoRA fine-tuned on Monet) show 

significant differences in their paired scores and distributions; visualized with boxplots and kernel density estimation plots. 
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sample test of significance) and a two-sample 
Kolmogorov-Smirnov test (non-parametric test used to 
determine if two samples are drawn from the same 
continuous distribution). 

All code and data used in this paper have been open-
sourced here: https://github.com/brinnaebent/semantic-
consistency-score. 

4. Experiments 

4.1. Sensitivity Analysis 
We conducted a sensitivity analysis to determine the 

optimal number of prompt repetitions for our analysis to 
ensure a balance between accuracy and computational 
efficiency. We found that a minimum of 20 repetitions 
was needed to ensure the score was within 1% of the 
mean score across all repetitions and within 1% of the 
score obtained with 100 repetitions. In 95% of the 
iterations, using 20 repetitions resulted in a score within 
0.5% of both the mean score across all repetitions and the 
score obtained with 100 repetitions. 

4.2. Model Comparison: SDXL and PixArt-α 
We explored differences in image generation 

consistency between SDXL and PixArt-α, two state of the 
art open-source models (Figure 2). Across 100 prompts 
and 2k images per model, SDXL had a mean consistency 
score of 88.9±7.1 (median 91.3) and PixArt-α had a mean 
consistency score of 93.4±4.9 (median 95.1). The two-
sample Kolmogorov-Smirnov test showed significant 
differences between the distributions of scores of the two 
models (KS statistic=0.48; p-value=8.44e-11). The 
Wilcoxon signed-rank test also showed significant 
differences between the paired scores (Wilcoxon 
statistic=110.0; p-value=1.01e-16). 

The comparison between human annotations and the 
highest semantic consistency score revealed a high degree 
of agreement. The model with the highest semantic 
consistency score matched the most common selection 
among human annotators 94% of the time. Across all 
annotators, there was an average agreement rate of 90.9% 
[range 86%-94%]. 

4.3. Model Comparison: SDXL and fine-tuned 
SDXL with LoRA 

We explored differences in image generation 
consistency between base SDXL and a LoRA fine-tuned 
version of SDXL. Across 50 prompts and 1k images per 
model, SDXL had a mean consistency score of 90.1±5.4 
(median 91.7) and the LoRA fine-tuned SDXL model a 
mean consistency score of 92.9±5.0 (median 94.2). The 
two-sample Kolmogorov-Smirnov test showed significant 

differences between the distributions of scores of the two 
models (KS statistic=0.38; p-value=0.001). The Wilcoxon 
signed-rank test also showed significant differences 
between the paired scores (Wilcoxon statistic=95.0; p-
value=5.80e-09). 

4.4. Limitations 
This study would be greatly augmented by further 

comparison to human judgment of consistency of image 
generation. Furthermore, we used the CLIP embedding 
model because it has been shown in other use cases to be 
robust [4, 8-9]; however, other multimodal embedding 
models, such as BLIP2 [17], should be explored in future 
work, especially given that CLIP models have been 
shown to pick up biases from input prompts [18]. 

5. Conclusions 
The primary objective of this paper is to highlight the 

importance of measuring the consistency, or repeatability, 
of image generation models and to suggest a semantic 
method for doing so. In this paper, we propose using a 
Semantic Consistency Score based on a pairwise mean 
CLIP score. We then use this metric to compare two state 
of the art open-source models, SDXL and PixArt-α, in 
addition to SDXL and a LoRA fine-tuned SDXL.  

This evaluation highlighted PixArt-α’s superior 
consistency and reduced variability across prompts 
compared to SDXL. These findings have important 
implications for selecting the appropriate model for 
specific tasks: in applications demanding high 
consistency, opting for the more consistent PixArt-α 
model would be more advantageous. Conversely, when a 
diverse output is required, SDXL would be a more 
suitable choice. By precisely quantifying this consistency, 
we can better differentiate between models and make 
informed decisions regarding the selection of model 
architectures for different use cases. 

LoRA fine-tuning of diffusion model weights is a 
popular approach to creating models that are more aligned 
to desired outputs. Through our exploration with our 
Semantic Consistency Score, we showed that our LoRA 
fine-tuned version of SDXL was more semantically 
consistent than base SDXL. The Semantic Consistency 
Score we have proposed in this study is a measure of 
desired image generation alignment and could be used in 
evaluation of LoRA models for specific tasks. 

Other use cases include the evaluation of prompts, 
which could be useful when attempting to quantify and 
codify prompt engineering for various use cases, 
including cohesive story and movie generation using 
image generation. The idea of quantifying the consistency 
of generative model outputs could be extended beyond 
image generation to other modalities, such as evaluating 
consistency of generated text or audio-based outputs.  
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