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Abstract

To interpret model behavior, Al practitioners have shed
light on explainable Al techniques. While visual explana-
tions like class activation maps (CAM) and its derivatives
have demonstrated promise, their applicability within post-
hoc frameworks is often constrained by architectural limita-
tions, gradient computation capabilities, or slow execution
speeds. In this paper, we propose a lightweight gradient-
free ReciproCAM by spatially perturbing the internal fea-
ture map to exploit the correlation between activations and
a model output. From the numerical results, we achieve the
gains of 1.78 to 3.72% in the ResNet family compared to
ScoreCAM in average drop-coherence-complexity metric,
excluding the VGG-16 (1.39% drop), while ReciproCAM
exhibits 148 times faster than ScoreCAM.

1. Introduction

While deep learning demonstrates exceptional perfor-
mance, its adoption in mission-critical domains remains
cautious due to the opaqueness of its internal decision-
making mechanisms. Consequently, there is a growing de-
mand for interpretable or explainable Al (XAI) technology,
enabling the analysis of model behavior and the identifica-
tion of potential bias or errors in a model or data.

Significant advancements have been achieved in the field
of computer vision, particularly with the emergence of
CAM [24]. Despite exhibiting high performance in saliency
map generation and rapid execution, CAM faced limitations
in selecting appropriate model architectures. To address
this challenge, GradCAM [17] and its variants [2, 7, 12]
were developed. However, these methods, relying on gra-
dient calculations, encountered difficulties when applied in
post-deployment frameworks such as ONNX [1] or Open-
VINO [9].

Meanwhile, black-box XAI algorithms have emerged
for analyzing model behavior within such post-deployment
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Figure 1. Comparison of resolution capabilities among Grad-
CAM++, ScoreCAM, and ReciproCAM. The predicted class is
aircraft carrier,” while the ground truth is "warplane.” ScoreCAM
fails to differentiate the warplane from nearby objects.

frameworks. These algorithms do not necessitate additional
calculations during model inference or access to internal ac-
tivations but instead detect changes in model output through
input perturbation and generate saliency maps. RISE [13],
in particular, relies on Monte Carlo sampling of a random
mask to approximate a true saliency map, typically requir-
ing over thousands of inferences. Moreover, the number of
inferences increases with input resolution or desired expla-
nation quality. Extremal perturbation [6] introduces a gra-
dient descent-based optimization method for mask parame-
ters. Nevertheless, this also demands hundreds or thousands
of iterations, consuming several seconds of GPU computing
time to generate a saliency map for a single input image.
Recently, there has been a development in gray-box
XAI algorithms that slightly relax the black-box con-
straint, allowing access to and perturbation of model in-
ternal activations during inference. AblationCAM [4],
for instance, perturbs the model by accessing the fea-
ture map internally and removing specific channel infor-
mation. It has firstly demonstrated the ability to out-
perform GradCAM without relying on gradients. Score-
CAM [21], regarded as the current state-of-the-art XAl al-
gorithm, achieves high-resolution localization performance
by forwarding activation-perturbed input. However, due to
its reliance on the number of feature maps, ScoreCAM de-
mands considerable computational resources, as it requires
inference equivalent to the number of feature maps. Specifi-
cally, ScoreCAM is approximately 127 x slower than CAM
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or GradCAM.

Inspired by CAM and RISE, we propose ReciproCAM
by perturbing intermediate activations with spatial masks
and observing the changes of model output. By generat-
ing spatial masks on an intermediate layer with a brute-
force manner, we extremely enhance both localization per-
formance and computational efficiency as illustrated in Fig-
ure 1.

The main contributions of this paper include:

* We present a novel gray-box XAI algorithm that lever-
ages the reciprocal relationship between perturbed inter-
mediate activations and the model output prediction.

e We provide benchmark results on various XAI per-
formance metrics, i.e., drop/increase, deletion/insertion,
and average drop, coherence, and complexity (ADCC).
Specifically, ReciproCAM achieves state-of-the-art per-
formance on the ADCC metric for all architectures, ex-
cept for VGG-16.

* Our method provides 148 x faster execution performance
than ScoreCAM.

2. Related work

The pioneer work, CAM [24], generates a saliency map that
highlights the important regions of an image for a particu-
lar class by multiplying a global average pooled activation
vector with a fully connected weight vector specific to the
class. Essentially, the saliency map S° for a given class c is
obtained by

K
SEam = ReLU (Z wk’ch> (1)

k=1

where w"¢ represents the weight parameter of the last lin-

ear layer connecting channel & to class ¢, and F* denotes
the channel k of the feature map extracted from the final
convolutional layer. CAM, therefore, depends on the con-
figuration of specific layers within the model architecture,
specifically requiring a pooling layer followed by a fully-
connected layer.

To address the limitation of CAM’s architecture-specific
requirements, Selvararju et al. [17] have proposed Grad-
CAM inspired by gradient visualizations [19, 23]. Grad-
CAM achieves class-discriminative localization by weight-
ing the feature map with gradients, allowing for a more gen-
eralized approach as

K
8 C
SGradcam = ReLU (Z Z Wyuv)F k) (@

k=1 u,v

where f%(u,v) represents the pixel at coordinates (u,v)
within the feature map F*, while 3° denotes the model’s
prediction result, prior to softmax, for class c¢. Gradient-
based approaches, e.g., GradCAM++ [2], Axiom-based

GradCAM [7], and Smooth GradCAM++ [12], have gained
popularity as they offer solutions to the limitations of CAM
while enhancing interpretability. However, due to their re-
liance on gradient computations, they are not suitable as vi-
sual explanation solutions for post-deployment frameworks
like ONNX [ 1] or OpenVINO [9]. Furthermore, researchers
have identified concerns such as saturation and false confi-
dence associated with gradient-based methods [21].
ScoreCAM, introduced by Wang et al. [21], offers a solu-
tion to both the saturation and false confidence issues with-
out requiring gradient computations. It achieves this by em-
phasizing channel-wise importance from a confidence per-
spective and utilizes the average drop metric concept to en-
hance confidence. The saliency map can be formulated as

K
SgcoreCAM = ReLU (Z h(Fk © x)CFk> ) (3)
k=1

where h(F* ® )¢ is the channel-wise increase of confi-
dence score with an input image x, Hadamard product ©,
and model feedforward function h. While ScoreCAM ad-
dresses the needs of post-deployment frameworks, its ap-
plication involves more than K forward passes, leading to
a slowdown in visual explanations. On the other hands,
Smooth ScoreCAM [20] and Integrated ScoreCAM [11]
have emerged as enhancements, further improving localiza-
tion performance.

In parallel, numerous studies have explored black-box
approaches [3, 10, 13, 14] tailored specifically for post-
deployment frameworks. These methods operate solely
based on observing model outputs without requiring gradi-
ent computation or access to internal activations. Notably,
Petsiuk et al. [13] introduced RISE, employing a Monte
Carlo sampling approach to perturb input images with ran-
domly generated masks. The saliency map can be repre-
sented as

M
SRise = Z h(Mp, ® ) My, 4
n=1
where M is the n-th random mask. RISE’s approximation
of true saliency using confidence-weighted random masks
means that its localization performance relies on both the
number of masks (equivalent to the number of forward
passes) and the perturbation resolution (i.e., the desired size
of holes in a mask). Typically, explaining model behavior
with RISE necessitates thousands of inferences.

3. ReciproCAM

In order to underscore the importance of individual activa-
tions within the feature map concerning the output predic-
tion, we should selectively retain the activation at target pix-
els. This pixel corresponds to a specific region in the orig-
inal input image as dictated by the receptive field. In this
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Figure 2. Overview of ReciproCAM. The feature map of the target layer is multiplied element-wise with a set of spatial masks, each having
a single non-zero value at a unique spatial position within the feature map. This multiplication generates a new set of feature maps with the
same height and width as the original feature map. These new feature maps are then passed as input to the subsequent part of the network.
Finally, the predicted scores corresponding to the given class are collected and used to populate each position in the saliency map. Here,
K represents the number of channels,  and W denote the height and width of the feature map.

paper, we shed light on the reciprocal relationship between
activations and the output prediction by leveraging pertur-
bations on the feature map. It is posited that each perturbed
feature map comprehensively encapsulates diverse charac-
teristics of the input image. Consequently, a feature map
with multiple channels activated at a singular position is ex-
pected to furnish ample information for prediction, thereby
minimizing information overlap from adjacent positions.

3.1. Spatially perturbed feature map generation

Unlike RISE, we aim to generate spatial masks in a brute-
force manner to specify each single pixels in the feature
map. That is, the generation of a spatial mask M ™ involves
designating a single pixel in the feature map as 1, while set-
ting all other pixels to 0 as described in Figure 2. This pro-
cess is iteratively applied to every pixel in the feature map,
resulting in the creation of N spatial masks, where N is the
product of the feature map’s height and width, expressed as
N = H x W. As a result, each spatial mask is uniquely
associated with a specific pixel position in the feature map.
Instead of applying perturbation at the input like in RISE,
we apply it in the middle of the network, allowing for over-
laps according to receptive field in the original input. This
approach offers both faster execution and higher saliency
resolution.

By generating N distinct masked feature maps, we ob-
tain varied perspectives of the original feature map, each
highlighting a unique pixel position. This method enables
a more comprehensive analysis of feature map activations,
providing insights into the pixels that have the greatest im-
pact on the final output. The n-th masked feature map cor-

responding to channel k is given by
FF =M, o F*. (5)

3.2. Saliency map generation

ReciproCAM formulates a saliency map by partitioning
the network into two segments, delineated by the specified
layer. The initial part, denoted as f, constitutes the feature
extractor, whereas the subsequent layers are represented by
g. Consequently, the saliency map S for a specific class ¢
can be formulated as

y"—min(y°)
SReci =resh , (H, , (6
ReciproCAM reshape <max(yc)—min(y3) ( W) ( )
where the N x 1 confidence vector y® composed of
[y, ... ,yj‘v]T for the class c is transformed into H x W
matrix with reshape function. Each element y¢ is computed
by

e =9([Fa - EFD" (7

We note that ReciproCAM requires only a single forward
pass of f and N times of inference with g. In this paper,
we choose a backbone network for f and a single linear
classifier for g. It’s noteworthy to consider the trade-off
between localization performance and speed, which arises
from the design choices for both f and g within the overall
network. For instance, a smaller receptive field would ac-
centuate individual pixels in the original input more promi-
nently. However, this choice demands more mask genera-
tion and forward passes of g.
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Table 1. Evaluation of various CAM-based approaches using existing metrics across six different backbone architectures. Evaluation scores
for other CAM methods are sourced from [15]. The first rank in ADCC is highlighted in bold, while the second rank is indicated in blue.

VGG-16 ResNet-18
Method Drop Inc Del Ins Coher Compl ADCC | Drop Inc Del Ins Coher Compl ADCC
[T C) W () NN G NN € A NN ) MO A ) NN > I NN > N ) N © M 0
GradCAM 6642 592 11.12 1956 69.20 15.65 5352 | 4290 16.63 1343 4147 81.03  23.04 69.98
GradCAM++ 32.88 20.10 882 36.60 89.34  26.33 75.65 17.85 3446 1230 4480 98.18  44.63 74.24
SGradCAM++ 3672 16.11 1057 31.36  82.68  28.09 7172 | 20.67 2999 12.83 43.13 9753  43.11 74.20
ScoreCAM 26.13 2475 952 47.00 9383  20.27 81.66 | 12.81 4041 10.76 46.01 9835  41.78 77.30
ReciproCAM 2151 3486 950 46.88 9224 2748 80.27 | 20.68 36.30 10.19 4493 97.38  33.60 79.08
ResNet-50 ResNet-101
GradCAM 3299 2427 1749 4848 8280  22.24 7527 | 29.38 2935 18.66 4747 8197 2251 76.40
GradCAM++ 12.82  40.63 14.10 5351 97.84  43.99 75.86 1138 42.07 1499 56.65 9828  43.94 76.34
SGradCAM++ 1521  35.62 1521 5243 9747 4225 76.19 1337 37776 1432 5823 9776 4261 76.54
ScoreCAM 8.61 46.00 1333 54.16 98.12  42.05 78.14 720 4793 1463 59.57 9837  42.04 78.55
ReciproCAM 15.69 40.54 1334 5539 96.68  32.90 80.84 | 15.07 4139 1580 59.28 97.21 32.45 81.38
ResNeXt-50 ResNeXt-101
GradCAM 28.06 2942 2073 5030 8272 2557 76.09 | 24.12 3637 2047 61.04 8294 2545 77.62
GradCAM++ 11.12 4138 17.07 56.06 97.30  48.66 73.16 9.74 42,63 17.63 6290 9505  46.27 74.61
SGradCAM++ 1270 36.58 1690 56.76  97.32 4748 73.58 949 4043 17.67 64.16 96.81  49.24 73.03
ScoreCAM 720 4570 1559 5792  98.00  46.86 75.38 537 4770 1730 63.61 97.03  46.83 75.60
ReciproCAM 1370  40.82 1894 5893 96.37  37.36 79.10 | 12.03 42.69 2025 64.70 9750  35.62 80.74
4. Experiments Table 2. Execution time comparison of five methods. The ex-

We here show the localization performance and the speed of
ReciproCAM by quantitative and performance analysis in
Sections 4.1 and 4.2, respectively. The qualitative analysis
is given in Appendix 4.3.

4.1. Quantitative analysis

For quantitative analysis, we adopt the ADCC metric pro-
posed by [15], following their experimental setup. We eval-
uate ReciproCAM on the ILSVRC2012 [16] validation set
and compare our results with those of [15] across various ar-
chitectures, including VGG-16 [18], ResNet-18/50/101 [8],
ResNeXt-50/101 [22]. Each CAM approach is applied to
the last block or convolution layer. The results obtained us-
ing ReciproCAM are integrated with those from [15], and
the consolidated findings are presented in Table 1.

Table 1 illustrates that ReciproCAM attains SOTA per-
formance on the ADCC metric across five architectures, ex-
cept for VGG-16. A detailed examination of the ADCC
metrics reveals that ScoreCAM achieves the highest aver-
age drop score across the five architectures, while Recip-
roCAM exhibits significantly lower complexity. This dif-
ference contributes to the SOTA performance in the ADCC
metric. However, for VGG-16, the trend is reversed. While
ScoreCAM generally outperforms the proposed method in
terms of coherency, the difference is not significant enough
to affect the ADCC ranking.

The insertion metric alternates between ReciproCAM
and ScoreCAM taking the first and second positions, re-
spectively. Similarly, the deletion metric typically yields re-
sults similar to the insertion metric, although in the ResNext
model, ScoreCAM outperforms the proposed method no-
ticeably. However, it’s important to note that the au-

ecution time was measure with 1,000 inputs and calculated the
average time, so the time is execution time for single image.

Time (ms) FPS Ratio
ReciproCAM 13.8 72.46 -
GradCAM 16.0 6250 1.16x
GradCAM++ 16.2 62.73  1.17x
SGradCAM++  71.3 1294  5.60x
ScoreCAM 2039.7 0.49 147.80x

thors [15] have demonstrated that metrics such as average
drop, increase, insertion, and deletion may not adequately
evaluate explainability, particularly when using FakeCAM.
Our results also support this observation, highlighting the
importance of the ADCC metric as a more comprehensive
and distinguishable assessment tool.

4.2. Performance analysis

To the best of our knowledge, prior white-box XAl research
had not addressed post-deployment frameworks, avoiding
reliance on gradient computation or sacrificing execution
speed. However, visual explanations typically occur with
false alarms or missed detections in post-hoc analyses, ne-
cessitating consideration of execution time across XAl al-
gorithms. We conducted an average of 1000 explana-
tions on randomly selected images from the ILSVRC2012
dataset using the Torchvision ResNet-50 pretrained model.
The hardware setup comprised an Nvidia RTX3090 GPU
with an Intel 19-11900 CPU.

From Table 2, ReciproCAM demonstrates the best ex-
ecution performance, while GradCAM and GradCAM++
exhibit similar performance to ReciproCAM. The slowest
performance was observed with ScoreCAM, which is ap-
proximately 148 times slower than ReciproCAM.
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Figure 3. Single object CAM results. Street Sign and Peacock inputs process with GradCAM, GradCAM++, Smooth GradCAM++,

ScoreCAM, and ReciproCAM to generate saliency maps.
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Figure 4. Same multiple objects CAM results. Anemone Fish, Brambling, and Yawl inputs process with GradCAM, GradCAM++, Smooth
GradCAM++, ScoreCAM, and ReciproCAM to generate saliency maps.

4.3. Qualitative analysis

For the qualitative analysis of the proposed method com-
pared to other CAM methods, we employed the ResNet-50
backbone architecture and the Torchvision ImageNet pre-
trained model. We utilized the TorchCAM libarary [5]
to evaluate various saliency maps, including GradCAM,
GradCAM++, Smooth GradCAM++, and ScoreCAM. For a
comprehensive analysis, we categorized input images from
the ILSVRC2012 validation dataset into three groups: sin-
gle object-only cases, multiple objects with the same iden-
tity, and multiple objects with different identities.

Explanations for single objects. In the first case as de-
picted in Figure 3, we observe notable distinctions among
the saliency maps. For instance, when examining a street
sign, all methods primarily focus on the bottom edge and

nail head. However, ScoreCAM additionally highlights
the upper pole, while ReciproCAM emphasizes a smaller
saliency area corresponding to treetops.

Similarly, in the peacock example, ReciproCAM ex-
hibits a saliency pattern akin to GradCAM and Grad-
CAM-++, with variations particularly noticeable in the tail
region. Meanwhile, ScoreCAM covers the entire peacock,
offering a more comprehensive insight.

Explanations for multiple objects with same identity.
Moving to the second case, illustrated in Figure 4, we eval-
uate the localization capability of these methods. For in-
stance, while ReciproCAM, GradCAM++, and GradCAM
display relatively separated saliency maps for anemone fish,
ScoreCAM showcases a connected map with strong activa-
tion around the coral. Smooth GradCAM exhibits a slightly
connected map but with lower saliency scores for the coral
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Figure 5. Multiple objects’ saliency map results. Spoonbill, Kelpie, and Banana inputs process with GradCAM, GradCAM++, Smooth
GradCAM++, ScoreCAM, and ReciproCAM to generate saliency maps. In this analysis, Smooth GradCAM++ and ScoreCAM showed

unusual results.

region. An intriguing observation is the maximum saliency
of ScoreCAM being on the right fish, contrasting with other
CAMs which peak on the left fish.

In the case of brambling, each CAM exhibits distinct
saliency map patterns. ReciproCAM and Smooth Grad-
CAM++ indicate relatively lower saliency scores for the
left birds, while GradCAM and GradCAM++ present simi-
lar saliency maps, with GradCAM++ showing higher scores
for the left birds compared to GradCAM. However, Score-
CAM stands out by assigning high saliency scores to all
birds, making it the preferred choice in this scenario.

Similarly, in the last yawl case, ReciproCAM, Grad-
CAM++, and GradCAM produce comparable saliency
maps with the highest scores assigned to the fourth yawl
from the left. In contrast, Smooth GradCAM++ and Score-
CAM attribute the highest saliency values to the third yawl
from the left. Here, Smooth GradCAM++ emerges as the
optimal choice as it provides a saliency map that compre-
hensively covers all yawls.

Explanations for multiple objects with different identi-
ties. In the case of multiple objects within the same im-
age, we aim to assess the resolution capability of the meth-
ods concerning different objects, as the saliency map should
ideally exhibit class-dependent results, with different-class

objects being deactivated. The results are presented in Fig-
ure 5.

The first row of Figure 5 illustrates an image of a spoon-
bill, which also contains mallard objects. Despite ResNet-
50 predicting it as a pelican with a 23.48% probability, Re-
ciproCAM, GradCAM++, and GradCAM suggest an over-
focus on the beak part, potentially contributing to the mis-
classification. However, Smooth GradCAM++ exhibits the
highest saliency score on the left spoonbill body part, also
covering the mallards. In this case, it fails to separate dif-
ferent objects from the target class objects. ScoreCAM, on
the other hand, highlights the lake surface, providing mis-
leading information.

To delve deeper, we generated a spoonbill saliency map,
depicted in the second row. Here, all methods exhibit
similar broad coverage on body parts, with Smooth Grad-
CAM-++ extending to encompass mallards.

Moving to the third row, we encounter another mis-
predicted case, where ResNet-50 identifies the image as a
Kelpie with a 19.89% probability, while its ground truth
is a chihuahua. With all methods except Smooth Gard-
CAM++ indicating saliency between the second and third
dogs, it suggests confusion by ResNet-50 due to mixed
features. Smooth GradCAM++, however, offers a broad
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saliency map covering all dogs, with the hottest area aligned
with the ground truth, indicating its limitations as debug in-
formation.

Finally, the fourth row presents the saliency map for
a banana image. Here, all CAM methods exhibit dis-
tinct patterns but effectively cover the banana area, except
for the Smooth GradCAM++ method, which also encom-
passes pumpkins. These observations highlight the nuances
and challenges associated with object resolution and class-
dependent saliency mapping in complex image scenes.

5. Conclusion

We proposed a novel gradient-free saliency map generation
method and demonstrated its superiority by quantitative and
performance analysis. As a result, the proposed method
achieved state-of-the-art results on the ADCC metric and
in execution time.
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