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Abstract

With the increasing complexity and influence of ma-
chine learning models, the development of model expla-
nation techniques has recently gained significant atten-
tion, giving rise to the field of Explainable Artificial In-
telligence (XAI). Although there exists vast literature on
XAI methods, they are usually compared with human eval-
uations, model-dependent metrics, or distribution shifts.
In the present work, we introduce a novel explainability
comparison metric, eXplainable Multi-Scale Gmm Distance
(XMGD). XMGD provides a principled probabilistic frame-
work for analyzing and quantifying any model or dataset
similarity through the lens of explainability. Through exper-
imental results, we demonstrate several critical advantages
of XMGD over alternative saliency comparison metrics, in-
cluding improved robustness and the ability of XMGD to
illuminate fine-grain saliency comparison distinctions.

1. Introduction

As the responsible Al ecosystem matures, more tools are
proposed for model interpretability, giving birth to the field
of Explainable Artificial Intelligence. Despite the recent
growth in XAI techniques, the utility of some XAI tools is
nevertheless still sometimes opaque, and there are few algo-
rithms today that adequately provide a means to objectively
assess and analyze different modalities of explainability.

Within the domain of XAlI, image-based explanations are
evaluated and compared by standard image similarity met-
rics, by distribution similarity, by human evaluations, or by
change in model accuracy when the input pixels are mod-
ified according to the explanation. Although these metrics
may answer different use cases, they tend to depend on in-
put samples, model selections, humans, or domains. In the
current work, we introduce an explainability-based com-
parison metric, Explainable Multi-Scale GMM Distance
(XMGD), that can be used to compare model saliencies in
a statistically-principled way.

Following the guidelines provided by [4], we aim to pro-
vide a saliency evaluation metric that encompasses an “in-
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tuitive scale”, i.e., one that utilizes only pixels and a small
number of parameters, encapsulates both spatial and distri-
butional understanding, and is sufficiently robust to saliency
noise. Our method leverages flexible Gaussian Mixture
Models (GMMs) to learn a high-order probability distri-
bution in the input pixel space at multiple scales for each
saliency comparison. We then calculate the 2-Wasserstein
distance between these two GMMs [17] — one pair for each
input scale — to quantify saliency similarity.

XMGD provides three distinct advantages over conven-
tional visual-XAI metrics. First, XMGD is less sensitive
to individual input/pixel saliency intensities and thus more
robust as an explainable similarity measure than alternative
metrics, because we fit a high-order distribution (c¢f. KL-
Divergence which performs a discrete, pixel-level calcula-
tion). Additionally, XMGD is not sensitive to dataset size
and it therefore does not suffer from poor convergence prop-
erties due to small datasets. XMGD metric also operates
directly on saliency maps, without the need for manipulat-
ing the input or the model. Finally, XMGD can enhance
explainability across a large number of diverse use cases,
including saliency comparisons for individual images, en-
tire datasets, or cross-model analysis.

We use XMGD to compare detector saliencies while
aligning with expectations based on model similarities. We
evaluate XMGD by comparing to other XAI metrics; in
terms of diversity of distances, conformity to model-based
metrics, and exposure of similar data and models.

2. Related Work

Today, there exists a large number of XAI techniques,
spanning visualization tools such as saliency maps, coun-
terfactual explanations, model uncertainty, feature attribu-
tions, and rule-based explanations. In the current work, we
emphasize saliency methods, a widely adopted and valuable
approach for interpreting neural networks.

Saliency maps depict the distribution of salient pixels
in an input image, attention map, or visual representation.
Saliency images can be compared in pixel space using tech-
niques such as SSIM [3 1], IoU [19], and RMSE, or they can
be compared in distribution space, e.g., KL divergence [15]
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Step 1: Process saliency maps, project to unit grid.

Step 2: Fit a Weighted-Data GMM (WD-GMM) to each
of the processed saliency maps/ sets of saliency maps.
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Step 3: Calculate the 2-Wasserstein
distance between the WD-GMMs.
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Figure 1. XMGD Algorithm Schematic. Different datasets or models are processed with different XAI methods. Then, a WD-GMM is
fit to each set of saliency maps. Finally, the previous step is repeated for each spatial scale obtained by convolution.

or EMD [21]. These metrics, similar to image comparison,
serve for specific comparisons in structure, area, pixel, and
distribution; thus they do not provide comprehensive simi-
larity independent of content, artifacts, or domain.

In addition, as their main use case is to understand model
responses, they can also be evaluated with respect to the
model they explain. Several metrics have been proposed to
this end, including Insertion Correlation (IC) [10], Average
Drop (AD) [5], Average Drop in Deletion (ADD) [14], and
Insertion/Deletion Area Under Curve (IAuC/DAuC) [18].
Each of these methods rely on eliminating the salient or
non-salient pixels in an input image and then measuring the
induced change in model accuracy on the manipulated im-
age. Although these metrics are useful for tying model ex-
planations to models, their evaluation requires access to the
underlying model; moreover, they are mostly sample and
image size dependent, and their computational time is de-
pendent on the model inference time.

3. Explainable Multi-Scale GMM Distance

Our method provides an XAl-forward metric to quan-
tify the dis/similarity between different ML models and
datasets. Given two input saliency maps (or aggregations
of saliency maps) representing different models or datasets,
XMGD can be proceeds in four steps (Fig. 1): (i) We pre-
process the saliency maps and project them to the 2D unit
grid. (i) Next, we fit a Weighted-Data GMM (WD-GMM)
to each of the two processed saliency maps. (7i7) Then,
we calculate the 2-Wasserstein distance between the WD-
GMMs. (iv) Finally, to generate a fine-grain saliency com-
parison metric capturing spatial properties, we repeat the
above steps across additional spatial scales by introducing a
convolution operation. The final XMGD score consists of a
weighted sum of these multi-scale distances.

3.1. XMGD Formulation

Given two sets of saliency images, or aggregations of
saliency images where a mean, per-pixel saliency is cal-

culated across the set of images, SY D s* : i < |I] and
S7 > s7 1 j < |J| we apply min-max normalization so that
ST 87 €0, 1]wxh,

Next, we train a data-weighted GMM [&] to fit each
saliency image. We first transform each saliency image into
a corresponding “dataset” in the input pixel space. Con-
cretely, we convert each pixel in the saliency image to a
unit grid: [0, 1] x [0, 1], and then determine each per-pixel
normalized saliency value as a data weight. For example,
if pixel ,,,, € S! has normalized saliency score SI . we
map this weight to the corresponding pixel in the unit grid.

The formal weighted-GMM problem has been solved
n [9], where the authors demonstrate that the solution
for the weighted-GMM is equivalent to “duplicated point
GMM?”, where one can simply duplicate data points in cor-
respondence with data weights and solve using classical
Expectation-Maximization. We duplicate data points in this
fashion by introducing a tunable binning parameter b, so
that n;; = | %], where n;; denotes the number of data
point duplications for point x;;. With our dataset corre-
sponding to spatial saliency defined over the unit grid with
duplicated points, we fit a GMM using the EM algorithm
for each of the two input saliency images S and S”, which
we will denote as P and Q).

Then, given two GMMs,

Ko K,
P=) myiand Q=Y aiu (1)
i=1 i=1

Vi € {1,...,K0},Vj S {1, ...,Kl}

we calculate mixed 2-Wasserstein distance similar to [17]:

MW?(P,Q) = min} W3 (i, 1y) )

0,J

where 2-Wasserstein distance is expressed in closed form:
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Step 4: Repeat previous steps across additional spatial scales
by introducing a convolution operation in the processing step.

XMGD score
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Figure 2. Saliency Comparison. Aggregated saliency maps over 7 detectors are compared by SSIM, KL, and XMGD (our metric).

3.2. Solving XMGD

In Eqn. 2, v can be solved using discrete optimal trans-
port [24]. Note that efficient Python solvers for both
GMM fitting [30] and optimal transport [7] are available.In
our case, one XMGD comparison takes approximately one
minute using an Intel Xeon™ processor for saliency images
of size (256, 256).

3.3. XMGD Parameterization

Lastly, in order to generate a more fine-grained saliency
comparison metric capturing spatial properties, we com-
pute MW?2(P, Q) across [ spatial scales, using [ — 1, 2D
convolutions with kernel sizes {Cy, X Cy, Coxwp—1 X
Coxw—1,--- + on saliency maps, respectively. The final
XMGD score is computed by } >, MW?2(P,, Q) as the
average of the distances from all levels. The number of lev-
els [, sizes of convolution kernels w, number of bins b, and
number of Gaussians for the GMM fit can be tunable per
domain, dataset, and image size. For our domain, we set
I = 3, so in addition to the original saliency images, we ap-
plied convolutions with kernel sizes 5 x 5 and 3 x 3 to the
original saliency images when calculating XMGD.

4. Experimental Settings

For our evaluations, we employ the FaceForen-
sics++ [20] (FF++) dataset containing 1000 real videos
and 5000 corresponding deepfakes generated using Deep-
Fakes [1] (DF), Face2Face [29] (F2F), Face Shifter [16]
(FSh), Face Swap [2] (FSw), and Neural Textures [28]
(NT). We create saliency maps using several widedly-
adopted, gradient-based XAI methods: Saliency [23],
Guided Backpropagation [25], Integrated Gradients [26],
and DeepLIFT [22]. These saliency methods are employed
across seven deepfake detectors, namely MesoNet [3],
Mesolnception4 [3], ResNet [11], Xception [6], Incep-
tion [27], MobileNet [12], and SqueezeNet [13], culminat-
ing in nearly 1 million saliency maps. To relate saliency

maps back to the model explanations, we compute IC [10],
AD [5], and ADD [14] metrics, with respect to these mod-
els. Finally, we use SSIM and KL Divergence as baseline
saliency similarity metrics to compare against XMGD.

5. XMGD Evaluation

To evaluate XMGD, we compare its representativeness
in terms of (¢) diversity of distances, (i¢) relevance to
model-based metrics, and (4i7) preserved correlations of de-
tectors/generators. We also discuss its “free” benefits.

In Tab. 1, we compute model-dependent metrics to set
a baseline expectation about metric performance. IC and
AD removes non-salient pixels and computes the average
increase and drop in accuracy. ADD removes salient pixels
and computes the average drop in accuracy. Higher IC and
ADD and lower AD defines a better saliency map. IG seems
to perform the best for this domain on all three metrics.

‘ IG Saliency DeepLift GuidedBP
ncr 0.612 0.358 0.561 0.518
AD] -0.082 0.344 0.289 0.229
ADD? | 1.064 -0.070 0.201 -0.120

Table 1. Model-dependent Saliency. We compare IIC, AD, and
ADD on four saliency methods, where 1G performs the best.

Fig. 2 shows experimental results for generated salien-
cies aggregated over the afmorementioned detector models;
we then pairwise compare the similarity of these aggregated
saliency maps across the four XAI methods. When com-
pared with baseline saliency comparison methods KL Di-
vergence and SSIM, XMGD demonstrates the most differ-
entiated levels of distances between distributions, support-
ing (i) (also observed in the first row of Fig. 3). Comparing
Tab. 1 and Fig. 2 for (ii), we observe similar differentia-
tion of IG, by both XMGD and three model-based metrics.
This observation is critical, as it demonstrates that XMGD
can capture model-based insights without the need for input
manipulation and additional inference.
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Figure 3. XMGD vs. KL Comparison. Single detector and generator saliency maps generated by four XAI methods are compared by KL
Divergence (top row) and XMGD (ours, bottom row), where XMGD shows higher correlation when generator or detector is preserved.

To capture (iii), we select two different detectors and
two different generators: SqueezeNet and Inception, and
Deepfakes and NeuralTextures, respectively. Then, we
compare the saliency maps of single-generator trained
models of these combinations by KL and by XMGD in
Fig. 3. While KL-based comparisons are minimally in-
formative (as most comparison scores are nearly equal
across many of the XAI methods), XMGD comparisons
by constrast yield more meaningful differentiantions. We
dive deeper and compute pair-wise correlations of XMGD
scores in the second row of Fig. 3, assuming that same
detector and same generator comparisons will surface
as high correlations. Deepfakes+SqueezeNet (mid) and
Deepfakes+Inception (left) yields 0.813 correlation, Deep-
fakes+SqueezeNet (mid) and NeuralTextures+SqueezeNet
(right) gives 0.810 correlation, whereas the pair without
common components yields only 0.742 correlation, as a
supporting point for (i¢¢) with room for more exploration.

XMGD is furthermore less sensitive to individual
pixel/input saliency features, thus it is more robust as a simi-
larity measure for explainability. This property is due to the
fact that XMGD fits a high-order probability distribution,
i.e., a GMM, unlike KL Divergence, which relies on dis-
crete, pixel-level calculations. In addition, XMGD is less
sensitive to dataset size — particularly for small datasets — as
it overcomes poor convergence properties associated with
Fréchet Distance-based measures [17]).

6. Discussion

As XMGD is a multi-scale metric, it should normal-
ize the effects of different receptive fields of detectors on
saliencies. We observe that it indeed normalizes Incep-
tion’s similarity and distinguishes sharp saliencies better.
We propose investigating ERF and saliency dependency us-
ing XMGD for more supporting analysis.

We also propose exploring saliency maps of temporal
detectors or transformer-based models, then investigating
differences between consecutive saliency maps if they in-
deed form temporal properties, revealing how to best cap-
ture these properties. We end our exploration with asking,
can we extend XMGD to temporal saliency distributions?

7. Conclusions

We propose a model-free, generalizable, saliency com-
parison metric, XMGD, that can be used in principle to
compare models, datasets, and XAI methods through an ex-
plainability lens. XMGD leverages multi-scale spatial in-
formation with flexible, high-order probability distributions
to render a robust and informative similarity measure for
XAI applications. We demonstrate several key advantages
of XMGD over traditional saliency comparison algorithms
through large-scale experiments with deepfake detection.
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