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Abstract

Many visualization techniques have been created to ex-
plain the behavior of computer vision models, but they
largely consist of static diagrams that convey limited infor-
mation. Interactive visualizations allow users to more eas-
ily interpret a model’s behavior, but most are not reusable
for new models. We introduce Visual Feature Search, a
novel interactive visualization that is adaptable to most
modern vision models and can easily be incorporated into
a researcher’s workflow. Our tool allows a user to highlight
an image region and search for images from a given dataset
with the most similar model features. We demonstrate how
our tool elucidates different aspects of model behavior by
performing experiments on a range of applications, such as
in medical imaging and wildlife classification. Our tool is
open source and can be used by others to interpret their own
models.'

1. Introduction

Computer vision models such as convolutional neural net-
works (CNNs) and vision transformers are notoriously hard
to interpret due to their size and complexity. Various tech-
niques have been proposed to help visualize and “explain”
these models with static figures; for instance, attribution
heatmaps [3, 13, 31, 32, 39] such as Grad-CAM [30] visu-
alize which input image regions are important for a model’s
output decision, and feature visualization techniques help
explain internal aspects of models (e.g. what visual stimuli
most activates a given neuron) [4, 21, 24, 31, 37].
However, researchers have recently focused on creating
interactive visualizations of CNNs, which can present more
data in an easy-to-use way. Several works [5, 8, 15, 20, 23,
25, 29] provide graphical interfaces that allow the user to
interact with CNNs and produce rich visualizations. While
these tools are effective at explaining CNN behavior, they
are generally only designed for a handful of pre-selected
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Figure 1. Overview. The user highlights a patch in the query
image via our interactive tool (left); then, our tool computes
a model’s intermediate features for the selected query (¢) and
searches through an image dataset to find patches with similar fea-
tures (cz;) via cosine similarity. Patches with the highest similar-
ity scores to ¢ in feature space are displayed (right) to visualize
the model’s intermediate features for the query. See Section 2 for
more details.

models. A key criterion for the adoption of interpretabil-
ity techniques is how easy they are to incorporate into a
researcher’s workflow; significant effort is required to uti-
lize these interactive tools in new experiments, so they are
unfortunately not widely used in practice.

Some works, such as Teachable Machines [35], What If
[36], TensorBoard [1], and Interactive Similarity Overlays
(ISO) [14] are more lightweight and easy to integrate with
new models, but only the latter two can visualize internal
feature data. TensorBoard only supports basic feature vi-
sualizations (i.e. plotting distributions of activations) while
ISO enables users to qualitatively compare spatial CNN fea-
tures, but only for a handful of images at a time.

In this paper, we introduce Visual Feature Search (VES),
a novel interactive visualization that empowers machine
learning researchers to easily explore the visual features of
almost any computer vision model. Our tool is designed to
be lightweight and flexible so that users can quickly set up
VES to analyze the intermediate features of arbitrary CNNs
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and vision transformers; the only requirement is that the
model has intermediate spatial features (i.e. a 3D tensor of
shape H x W x (). Our visualization allows a user to
highlight a free-form region in an image, and it searches for
other images in a dataset that contain similar feature repre-
sentations to the highlighted region and displays the most
similar results (Fig. 1). In essence, this provides a visual
explanation to answer the question, “what does the model
consider to be most similar to this image region?” To fully
showcase the interactivity of VFS, we provide several in-
teractive Jupyter notebooks in addition to this paper (see
supp. mat.).

Our work is similar to CNN-based approaches that tackle
content-based instance retrieval (CBIR), which aims to find
visually similar images to a query image [9, 12, 38]. How-
ever, our work differs from CBIR methods in two ways:
First, our goal is to understand a CNN (i.e. interpretability)
by investigating what visual patterns are similar in feature
space, whereas instance retrieval aims to retrieve visually
similar images (and often uses CNN features to do so). Sec-
ond, we explicitly focus on leveraging interactivity to allow
users to quickly and iteratively gain insights on their se-
lected models (e.g. by experimenting with multiple ideas in
quick succession).

In the remainder of this paper, we summarize our im-
plementation of VFS and include several experiments to
highlight how it can be used to better understand com-
puter vision models. While our method is similar to those
commonly used in prior instance retrieval works (i.e. near-
est neighbor search via cosine similarities) [9], VFS im-
plements these search techniques in a novel, easy-to-use
Python library that is designed specifically for interpreting
arbitrary computer vision models. Our tool works best with
PyTorch, but it can be used with models and datasets in
other frameworks as well. Our source code and interactive
Jupyter notebooks are available on GitHub;> our goal is to
enable other researchers and practitioners to use VFS as a
new method for interactively interpreting their models.

2. Approach

To use VFS, the user first selects a model and a layer within
it to study, as well as a dataset of images to search across.
We provide the user with an interactive widget for selecting
a query image and highlighting a free-form region in it to
use as the search query. To perform a feature search across
the dataset, our tool computes the feature maps of images
immediately after the user’s selected layer and compares the
highlighted regions within these maps.

Formally, let f;(q) € RTXWXC be the [-th layer’s fea-
ture map for the query image q. If we down-sample the
user’s selected region of q into a mask m; € [0, 1]#*W,
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we can apply the mask to obtain a 3D tensor z € R *WxC
s.t. 2 k) = S1(d) @5k - My@,j)- To convert this into a
query vector ¢ for similarity search, we crop z to remove
any zero padding and flatten the resulting data into a vec-
tor. We use a similar process to convert the feature maps
of all images in the search dataset into vectors. We apply
the mask m; as a sliding window over each image in the
search dataset to create region vectors J; with the same di-
mensions as ¢. This allows us to compare the query vector
to each d: via cosine similarities; we sort all search regions
by their similarity scores and display the most similar image
regions to the user (Fig. 1), thereby visualizing images with
the most similar intermediate features to the user’s selected
region.

In order to use this algorithm for large-scale, real-time
searches, we precompute the features f;(d;) by performing
a forward pass for all dataset images d;, and we store the re-
sulting data in a compressed cache file via the Zarr Python
library [22]. The cache file allows VFS experiments to be
easily shared and reproduced between multiple users, such
as by downloading the file and running VFS on Google Co-
lab environments. Furthermore, if the user wishes to search
across a large dataset with features that cannot be stored in-
memory, then VFS can load features from the cache file in
batches to compute search results. Additionally, VFS is im-
plemented with several GPU optimizations in PyTorch [26]
in order to compute results in real time (see supp. mat. for
more details).

VES is most efficient when the cache can be loaded en-
tirely into a GPU’s VRAM: for instance, when testing on a
Google Colab instance with an NVIDIA T4 GPU, VFS can
search through the ResNet50 conv5 features of 50,000 im-
ages in 0.26 seconds on average, well within an acceptable
time range for providing real-time visualizations. How-
ever, when the cache’s size exceeds the available memory
on the user’s GPU, then VFS must resort to loading fea-
tures from RAM or disk in batches, with data bandwidth
becoming the primary performance bottleneck for the tool
(see supp. mat.). As a result, we expect that VFS will be
most useful for interpreting a model’s features on valida-
tion sets with around 100,000 images (i.e. approximately
9.3GB in ResNet50 conv5 features), as well as for analyz-
ing the performance of models on downstream tasks with
smaller datasets.

3. Experiments and Demonstrations

Domain Generalization. One application of VFS is
to understand how robust a model is when presented
with novel images. To demonstrate this, we visualize
ResNet50 [16] conv5 features of in- and out-of-domain
(0.0.d.) images in two sets of experiments; our goal is to in-
vestigate whether a model’s internal feature representations
of in-domain images are similar to those of 0.0.d. images.
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Figure 2. Domain Generalization. Each row contains one query image and a highlighted patch on the left, followed by multiple VFS
results and similarity scores. a: Three queries of mosque images from ImageNet, ImageNet-A [17], and ImageNet-Sketch [33] on an
ImageNet-trained model. b: queries and results from the iWildCam dataset [6] on a pretrained classifier. The iWildCam dataset contains
images from multiple domains (i.e. camera trap locations); results include the top-3 overall results and the top-3 results for unique domains,
with at most one image per camera location. The ImageNet model features for out-of-domain (ood) mosque images appear to be most
similar to images with similar textures (rather than those containing mosques), while the iWildCam model produces animal features that

generalize to ood settings.

The first experiments search for the most similar images
in the ImageNet validation set [27] when similar query re-
gions are selected from images in the ImageNet test set (in-
domain), ImageNet-A dataset [17], and ImageNet-Sketch
dataset [33] (both 0.0.d.). One example is shown in Fig-
ure 2a, where images of mosques are selected as query im-
ages from all three datasets. The nearest neighbor results
for all three queries show that the model can accurately ex-
tract semantic data from the in-domain query image, but
it fails to encode the other two queries as mosques due to
their out-of-distribution scale and texture; additionally, the
cosine similarities are much higher for the in-domain query
as opposed to the two o.0.d. queries. Additional queries
corroborate these trends (see supp. mat.).

The second set of experiments uses the iWildCam
dataset [6], which consists of images of wildlife from var-
ious trap camera locations. Some locations are included in
the training subset while some are withheld and are thus
out-of-domain. We investigate the conv5 features from a
pretrained model that was trained to detect the presence of
animals and classify their species [19]; representative VFS
queries and results are shown in Figure 2b. These results
support the finding in [19] that the model is able to gener-
alize fairly well, as the feature representations for animals
have high similarity scores (e.g. 0.9) across different do-
mains; in contrast, when a background patch of an image is
queried, only images from the same domain have similarity
scores above 0.7.

Chest X-ray Classifiers. Another use of VFS is to under-
stand why a model made a particular decision by finding

image regions that correlate with certain classification la-
bels. To demonstrate this, we turn to the domain of chest
X-ray classification: we study the last feature layer of a pre-
trained DenseNet-121 [11, 18] that classifies pathologies in
the ChestXray-14 dataset [34].

We specifically investigate an X-ray image of a patient
with cardiomegaly (i.e. a condition where the heart is en-
larged). The model is able to correctly classify this patient
as having cardiomegaly, and we use the same X-ray image
as a query in VFS to provide interpretable visualizations of
the model features. Our results are shown in Figure 3: we
find that highlighting the heart of the patient returns near-
est neighbor regions of other hearts from patients with car-
diomegaly; in contrast, searching for an unrelated region
of the same patient’s X-ray (e.g. right lung) yields near-
est neighbors with mixed diagnoses. Empirically, when the
heart is highlighted, images of patients with cardiomegaly
tend to have higher similarity scores than images of pa-
tients without the condition; in contrast, when the lung is
selected as the search query, the distribution of similarity
scores is virtually identical for X-rays with and without car-
diomegaly. This suggests that the classifier’s prediction of
cardiomegaly is correlated specifically with the heart region
of the X-ray.

Editing Classifiers. Recently, a method to correct for sys-
tematic CNN mistakes was introduced [28]. For instance,
[28] found that a VGG16 ImageNet classifier consistently
misclassifies vehicles that are on a snowy surface and typi-
cally predicts these images as snowmobiles or snowplows.
Their CNN-editing method mitigated this mistake by updat-
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Figure 3. Chest X-ray Classification. Two queries and results of
a patient X-ray with cardiomegaly (a condition where the heart is
enlarged) from the ChestXray-14 dataset [34]. The same image
is used for both queries, but the heart is selected in the top row
while the lung is selected in the bottom row. Box plots display the
distribution of cosine similarities between the query regions and
all dataset images. While the qualitative results between the two
queries only differ slightly, the box plots show that the similarity
scores of images containing cardiomegaly tend to be higher than
those without when the query region contains the heart.

ing the model’s weights such that the model treats snowy
terrain as if it were asphalt. We use VFS to explore the
original and edited VGG models in the “vehicles on snow”
example and visualize how the edit affected the model’s fea-
tures by analyzing nearest neighbor search results from the
ImageNet validation set.

Our visualizations suggest that the snow-to-asphalt edit
works and has a noticeable effect on intermediate features.
We highlight an example in Figure 4a. Our search results
show that the original model does not have a clear under-
standing that the ground should be treated like an asphalt
road; the nearest neighbors include other objects on snowy
surfaces, such as snowmobiles and snowplows. In contrast,
the search results from the edited model include asphalt
surfaces and several cars (as opposed to snowmobiles and
snowplows in the original search results), which indicates
that the model edit successfully changed the feature repre-
sentation of snowy roads to achieve the desired result.

ImageNet vs. PASS. We next study how the choice of
training dataset affects a model’s feature representation. To
mitigate privacy concerns of training on images with hu-
mans, the authors of [2] introduced PASS, a dataset of un-
labeled images that do not contain human faces or body
parts. PASS is meant to serve as an ImageNet replacement
for self-supervised learning and has been shown to perform
as well as ImageNet-trained models on human-centric tasks
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Figure 4. Editing a Classifier and Training on PASS. a: Edit
a classifier using [28] to improve accuracy for vehicles on snow.
The top row shows that for the original model, the most similar
images to the query are those that contain other objects on snowy
or icy surfaces. In contrast, the bottom row shows that the edited
model’s most similar images contain vehicles on asphalt, which
suggests that the classifier edit was successful. b: Facial feature
data for an ImageNet- vs. PASS-trained model.> Despite not being
trained on images containing humans, the PASS model encodes
features that can match the query face to other faces in the dataset.

(e.g. pose estimation). We compare the feature representa-
tions from two ResNet50 models, one trained on ImageNet
and the other on PASS, that were trained via MoCo-v2 [10]
self-supervision. Our results when using VFS on both mod-
els are included in Figure 4b. The most notable observa-
tion is that the PASS-trained model can accurately match
face queries to other faces in the dataset, despite never be-
ing trained with images of humans. However, the similarity
scores for the ImageNet model results are generally greater
than those for the PASS model.

4. Conclusion

In summary, we propose a new interactive tool for under-
standing the intermediate activations of CNNs. Many ex-
isting interactive visualizations can not be easily applied to
new models and/or datasets; thus, they are often not uti-
lized by others as regular research tools. We demonstrate
through our experiments that our tool is much more flexi-
ble in comparison: it can be used to quickly visualize new
models and datasets, and we hope that this flexibility al-
lows other researchers to use it to better understand their
own models. Lastly, we emphasize that our tool is qualita-
tive and should be paired with quantitative analysis to fully
corroborate findings.

3Faces in this figure are blurred to preserve the privacy of the pho-
tographed individuals.
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