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A. Appendix

In the appendix, we provide additional results for the main
manuscript. Concretely, we give details on how we com-
pute feature visualizations in Appendix A.l. Secondly, in
Appendix A.2, the distribution of polysemanticity through-
out neurons of ResNet [3] models is shown in higher detail.
Further, we provide additional examples of resulting dis-
entangled representations when applying Purifying Repre-
sentations (PURE) in Appendix A.3. Lastly, Appendix A.4
provides more results for evaluating feature interpretability
after purification of neurons.

A.1l. Feature Visualizations

An important part in understanding neurons are feature vi-
sualizations that aim to communicate the underlying seman-
tics or concept of a neuron. In literature, either real data
samples, or synthetically generated samples are used for vi-
sualization purposes [5]. Throughout our experiments, we
utilize reference samples from the original dataset to render
visualizations that are as natural as possible, ideally staying
in-distribution w.r.t. to the foundational models of CLIP [8]
and DINO [7] in evaluations.

When using reference samples from the dataset, it is cru-
cial to crop images to the actually important part for a neu-
ron, as semantics can be very localized, as, e.g., visible in
Fig. A.1 when comparing “full” against “cropped” samples.
In order to detect this “relevant” part, Achtibat et al. [1] pro-
pose to explain neuron activations using LRP [2] in a first
step, which results in neuron-specific input feature attribu-
tions. Specifically for convolutional layers, the maximum
activation of a feature map is explained. In a second step,
the attributions are smoothed using a Gaussian filter with
kernel size K, normalized to a maximum value of one, and
the image cropped and masked to include only attributions
above a threshold of T'. For the masked part, black color is
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Figure A.1. Feature visualizations for neurons #1028 (fop),
#1029 (middle) and #1030 (bottom) for full, cropped-only and
cropped as well as masked reference samples. It is visible that
cropping improves visualizations by removing irrelevant and dis-
tracting image parts not relevant for a neuron semantics.

overlaid with 40 % transparency.

When evaluating visualizations with CLIP and DINO,
we use cropped samples with K = 5 and 7' = 0.01. We re-
frain from masking samples, as masks could introduce out-
of-distribution data. For visualizations in plots, we include
masks as proposed by [1] using K = 51 and 7" = 0.01.



A.2. Distribution of Polysemanticity

In Sec. 4.1, we measure the degree of monosemanticity by
using CLIP embeddings and computing distances in embed-
ding space for feature visualization pairs of a neuron. Small
distances between embeddings presumably correspond to
visually similar feature visualizations.

For polysemantic neurons, where, e.g., two monoseman-
tic features superimpose, we would see two distinct clusters
for each set of reference samples (of each pure feature) in a
UMAP [4] embedding. The inter-cluster distance, in this
case, will be high, whereas intra-cluster distance will be
low. In the following, we apply k-means clustering (k = 2)
on CLIP embeddings for all neurons w.r.t. the 100 most ac-
tivating reference samples, and measure the overall as well
as inter- and intra-cluster distances as given by Eq. (5).

In Fig. A.2, we show the distribution of distances (intra-
and inter-cluster distance difference, and overall distance)
for ResNet-50. It is apparent, that for most neurons, cluster-
ing improves the visual similarity of feature visualizations
according to CLIP. However, for some (a few hundred of
the 2048 neurons), a larger improvement can be seen, indi-
cating more polysemantic neurons.

Examples with UMAP embeddings and clustered ref-
erence samples for neurons of varying degrees of polyse-
manticity are shown in Fig. A.2 (bottom). Neurons #1028
and #1984 have low overall CLIP embedding distance and
correspond to monosemantic features, e.g., “human arms”
and “human crowds”, respectively. Further, neurons #696
and #107 have large improvement in embedding distance
when clustered, indicating polysemanticity, e.g., “dog face”
vs. “text/horizontal lines” and “shark under water”, respec-
tively. Lastly, we show neuron #1177 with high overall
distances, where clustering does not strongly decrease dis-
tances. This is apparently due to three existing semantics in
the neuron, where clustering using two clusters is not opti-
mal for disentanglement.

Additionally, we provide distribution plots for ResNet-
34 and ResNet-101 in Fig. A.3. It is to note, that ResNet-
34 only consists of 512 instead of 2048 neurons in the
penultimate layer. Comparing ResNet-34 and ResNet-100
distributions, improvements in CLIP embedding distances
through clusters seem to be lower for ResNet-34, potentially
indicating a smaller degree of polysemanticity. However,
we leave comparison across architectures for future work.

A.3. Examples for Applying PURE

In the following, we present additional examples when ap-
plying PURE to neurons with different separability levels,
which, for neurons with high separability score, leads to
multiple virtual (ideally more disentangled) neurons.

As in Sec. 4.1, we create two virtual neurons using k-
means for each neuron of a ResNet-50 in the penultimate
layer. We then visualize the UMAP embeddings of the

PURE attributions given by Eq. (3) and the resulting clus-
tered feature visualizations.

In Fig. A.4 we show five randomly sampled neurons
which exhibit different levels of separability; we see that
both monosemantic (#162 and #1804) and polysemantic
(#141, #1657, and #310) neurons can be found. Regard-
ing the polysemantic units #1657 and #310, PURE leads
to well separated reference samples. For #141, three se-
mantics seem to exist, where clustering with two clusters
does not optimally disentangle the unit.

In Fig. A.5, we focus on neurons with higher degree
of polysemanticity (indicated by a large inter-cluster dis-
tance and low intra-cluster distance on PURE embeddings),
which can be meaningfully disentangled into multiple vir-
tual monosemantic neurons using PURE. For instance,
e.g. neuron #1381 encodes both for “printed letters” and
“orca”, which PURE effectively disentangled. Similarly,
neurons #916 and #915 refers to semantics such as “two
dogs” and “bird wings” and of “badger” and “ketchup and
mustard in hot dog” features, respectively.

Fig. A.6 illustrates examples of neurons encoding for
pure features with small differences in inter- and intra-
cluster distances (with a low level of separability). Note-
worthy, instances include neurons such as #1, which repre-
sents “chain”, or neuron #1 60, encoding “seashore/shore”.
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Figure A.2. Distribution of CLIP embeddings distances for all neurons of the ResNet-50 model. We show the overall distances between
feature visualizations of a neuron on the horizontal axis, and the difference between inter- and intra-cluster distance after clustering
visualizations into two clusters on the vertical axis. (Bottom): Examples are given for neurons with various degrees of polysemanticity.
UMAP embeddings for PURE attributions as well as reference samples for the original and two virtual neurons are shown when applying
PURE.
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Figure A.3. Distribution of CLIP embeddings distances for all neurons of the ResNet-34 (fop) and ResNet-101 (bottom) model. We show
the overall distances between feature visualizations of a neuron on the horizontal axis, and the difference between inter- and intra-cluster
distance after clustering visualizations into two clusters on the vertical axis.
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Figure A.4. Examples of applying PURE to randomly chosen neurons. Here we see the UMAP embeddings of the maximally activating

patches, and the resulting reference sets before and after applying purification when identifying two circuits via k-means. In ResNet-50
neurons with different level of polysemanticity can be found.
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Figure A.5. Examples of applying PURE to neurons with high degree of polysemanticity. Here we see the UMAP embeddings of the
maximally activating patches, and the resulting reference sets before and after applying purification when identifying two circuits via
k-means. We show that neurons with high degree of polysemanticity can be successfuly disentangled into two (or more) monosemantic

neurons.
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Figure A.6. Examples applying PURE to neurons with low degree of polysemanticity. Here we see the UMAP embeddings of the maximally

activating patches, and the resulting reference sets before and after applying purification when identifying two circuits via k-means. The
neurons encode one or similar features in this case, resulting in one circuit to be identified.



A .4. Evaluating Neuron Purification using CLIP

In Sec. 4.2, we evaluate the effectiveness of disentangle-
ment via CLIP. Specifically, we create £ new virtual neu-
rons for each neuron by clustering the 100 most activating
reference samples of a neuron into k clusters. Then, the
reference samples of each cluster are evaluated using CLIP,
where ideally, the CLIP embedding distance decreases in-
side clusters and increases across clusters, indicating well
(visually) separated clusters. In Fig. A.8, we present addi-
tional results for the main manuscript (where & = 2 and
ResNet-101 model results are shown) for ResNet-34 and
ResNet-50 for k € {2,3,4,5}. For all experiments, PURE
leads to better cluster seperation than activation-based clus-
tering. Notably, the higher £ is, the lower intra-cluster
distances are in general, indicating visually more monose-
mantic feature visualizations per virtual neuron. However,
inter-cluster distance often decreases when k is increased,
which indicates that most neurons are rather monoseman-
tic, as also discussed in Appendix A.2.

A clustering that is aligned with CLIP results from sim-
ilar distances between feature visualization pairs according
to the respective methods. Concretely, CLIP and DINOv2
embeddings S (and eP™O'2) are computed using fea-
ture visualizations (cropped reference samples) as the input
for reference sample ¢ w.r.t. to a neuron p in layer L. For
PURE distances are computed on lower-level layer attribu-
tions R~ as given by Eq. (3) when explaining neuron p.
Further, for activation-based distances, activations AL in
layer L are used, as proposed by [6]. The more aligned
to CLIP, the higher the correlation of distances between
the methods is. We provide additional results for Sec. 4.2
with results for ResNet-50 and ResNet-34 in Fig. A.7, for
which PURE also shows higher correlations than activation.
The correlation analysis involves examining the pairwise
distances for the top-50 most activating reference samples
across all neurons in the penultimate layer. The standard
error of mean is computed by partitioning distances in 30
subsets (over which the mean is computed).

A.4.1 When Disentanglement Diverges from CLIP

In the following, we present examples, when activation-
based or PURE attribution-based clustering of reference
samples diverges from how CLIP embeddings cluster fea-
ture visualizations for the ResNet-50.

Activation We observe unfaithful clustering with activa-
tions when a significant portion of feature visualizations is
of a single class, leading to high activation similarities (due
to similar features present in the reference samples). The
reference samples of the same class dominate in clustering,
leading to all samples from different classes being clustered
in another cluster. This is given, e.g., for neurons #143
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Figure A.7. Correlation between feature visualization distances of
CLIP to other methods for ResNet-50 (left) and ResNet-34 (right),
which extends the results given in Fig. 4.

(class “custard apple”), #385 (class “shoji”’), #614 (class
“lacewing”), or #1055 (class “buckeye”). Further, all ref-
erence samples can have small activation similarity if, e.g.,
most are from different classes, which is the case for neuron
#1147, leading to noisy clustering.

PURE Similarly, as for activation, attributions can result
in different clustering (compared to CLIP), e.g., for neurons
#614 or #1055 as shown in Fig. A.10, where very small
distances between reference samples from the same class
(“lacewing” and “buckeye”, respectively) lead to unaligned
clustering. For other neurons, semantics can be more ab-
stract and difficult to understand, such as #1032 (radially
outspreading lines) or #1121. In these cases, CLIP seems
to result in clustering reference samples corresponding to
same depicted object classes (e.g., dogs or monkeys, respec-
tively). This is also the case for neuron #271, where the
semantics seems to correspond to triangular shapes that can
be found for toy windmills or dog ears. Here, CLIP sepa-
rates dogs from windmills, even though they correspond to
the same semantics, indicating also a disadvantage of using
CLIP for evaluation. Especially for abstract concepts, at-
tributions can result in low distances, whereas according to
CLIP, bigger distances exist. This also raises the question
whether the ultimate goal of disentanglement is to separate
clusters according to visual difference or semantic differ-
ence (as seen by the model).
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Figure A.8. Results for measuring the degree of monosemanticity of clustered feature visualizations using CLIP embedding distances, as
discussed in Sec. 4.2 for all ResNet architectures and different number of clusters (virtual neurons).
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Figure A.9. Examples for diverging disentanglement using activations compared to CLIP embeddings for the ResNet-50 model. We
show UMAP embeddings and the corresponding feature visualizations before (“‘all”’) and after (cluster “1” and “2”) disentanglement using
activations (fop) and CLIP embeddings (bottom)
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Figure A.10. Examples for diverging disentanglement using PURE attributions compared to CLIP embeddings for the ResNet-50 model.
We show UMAP embeddings and the corresponding feature visualizations before (“all”) and after (cluster “1” and “2”) disentanglement
using attributions (fop) and CLIP embeddings (bottom)
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