
Supplementary of “CA-Stream: Attention-based pooling for interpretable image
recognition”

A. More on the connection between Attention
and CAM

Following the explanation of Cross-Attention acting as a
class agnostic version of CAM demonstrated in section 3.2,
we provide a visual explanation of this connection in Fig-
ure 1.
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Figure 1. Visualization of eq.(5)). On the left, a feature tensor
F ∈ Rw×h×d is multiplied by the vector α ∈ Rd in the channel
dimension, like in 1 × 1 convolution, where w × h is the spatial
resolution and d is the number of channels. This is cross attention
(CA) [1] between the query α and the key F. On the right, a linear
combination of feature maps F 1, . . . , F d ∈ Rw×h is taken with
weights α1, . . . , αd. This is a class activation mapping (CAM)
[4] with class agnostic weights. Eq.(5)expresses the fact that these
two quantities are the same, provided that α = (α1, . . . , αd) and
F is reshaped as F = (f1 . . . fd) ∈ Rp×d, where p = wh and
fk = vec(F k) ∈ Rp is the vectorized feature map of channel k.

B. More on experimental setup
Implementation details Following the training recipes
from the pytorch models1, we choose the ResNet proto-
col given its simplicity. Thus, we train over 90 epochs
with SGD optimizer with momentum 0.9 and weight decay
10−4. We start our training with a learning rate of 0.1 and
decrease it every 30 epochs by a factor of 10. Our models
are trained on 8 V100 GPUs with a batch size 32 per GPU,
thus global batch size 256. We follow the same protocol
for both ResNet and ConvNeXt, though a different protocol
might lead to improvements on ConvNeXt.

C. More Visualizations
In addition, Figure 2 shows examples of images from the
MIT 67 Scenes dataset [2] along with raw attention maps

1https://github.com/pytorch/vision/tree/main/references/classification

obtained by CA-Stream. These images come from four
classes that do not exist in ImageNet and the network sees
them at inference for the first time. Nevertheless, the atten-
tion maps focus on objects of interest in general.

D. More Architectures

Table Table 1 presents interpretability metrics for both
ResNet18 and ConvNeXt-S. Complementary experiments
are reported on Table 2 for CUB and Pascal VOC for
ResNet 50.

NETWORK ATTRIBUTION POOLING AD↓ AG↑ AI↑ I↑ D↓

RESNET-18

Grad-CAM
GAP 17.64 12.73 41.21 63.13 10.66
CA 16.99 17.22 44.95 65.94 10.68

Grad-CAM++
GAP 19.05 11.16 37.99 62.80 10.75
CA 19.02 14.76 40.82 65.53 10.82

Score-CAM
GAP 13.64 12.98 44.53 62.56 11.37
CA 11.53 18.12 50.32 65.33 11.51

CONVNEXT-S

Grad-CAM
GAP 42.99 1.69 12.60 48.42 30.12
CA 22.09 14.91 32.65 84.82 43.02

Grad-CAM++
GAP 56.42 1.32 10.35 48.28 33.41
CA 51.87 9.40 20.55 84.28 52.58

Score-CAM
GAP 74.79 1.29 10.10 47.40 38.21
CA 64.21 8.81 18.96 82.92 57.46

Table 1. of CA-Stream vs. baseline GAP for more networks and
interpretability methods on ImageNet.

Results on CUB in Table 2 show that our CA-Stream
consistently provides improvements when the model is fine-
tuned on a smaller fine-grained dataset.
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Figure 2. Raw attention maps obtained from our CA-Stream on images of the MIT 67 Scenes dataset [2] on classes that do not exist in
ImageNet. The network sees them at inference for the first time.

CUB-200-2011 - RESNET-50

POOLING ACC↑

GAP 76.96
CA 75.90

INTERPRETABILITY METRICS

METHOD POOLING AD↓ AG↑ AI↑ I↑ D↓

Grad-CAM GAP 10.87 10.29 45.81 65.71 6.17
CA 10.44 17.61 53.54 74.60 6.56

Grad-CAM++ GAP 11.35 9.68 44.32 65.64 5.92
CA 11.01 16.50 51.63 74.64 6.21

Score-CAM GAP 9.05 10.62 48.90 65.58 5.94
CA 6.37 19.50 60.41 74.22 2.14

PASCAL VOC 2012 - RESNET-50

POOLING MAP↑

GAP 78.32
CA 78.35

INTERPRETABILITY METRICS

METHOD POOLING AD↓ AG↑ AI↑ I↑ D↓

Grad-CAM GAP 12.61 9.68 27.88 89.10 59.39
CA 12.77 15.46 34.53 88.53 59.16

Grad-CAM++ GAP 12.25 9.68 27.62 89.34 54.23
CA 12.28 16.76 34.87 89.02 53.34

Score-CAM GAP 14.8 6.76 36.41 71.10 39.95
CA 10.96 21.35 43.82 89.21 51.44

Table 2. Accuracy, respectively mean Average Precision, and in-
terpretability metrics of CA-Stream vs. baseline GAP for ResNet-
50 on CUB and Pascal dataset.

E. Ablation Experiments
We conduct ablation experiments on ResNet50 because of
its modularity and ease of modification. We investigate the
effect of the cross attention block design, the placement of
the CA-Stream relative to the backbone network.

Cross attention block design Following transformers [1,
3], it is possible to add more layers in the cross attention
block. We consider a variant referred to as PROJ→CA,
which uses linear projections WK

ℓ ,WV
ℓ ∈ Rdℓ×dℓ on the

key and value

CAℓ(qℓ, Fℓ) := (FℓW
V
ℓ )⊤hℓ(FℓW

K
ℓ qℓ) ∈ Rdℓ , (1)

while (10) remains.

BLOCK TYPE #PARAMS ACCURACY

CA 6.96M 74.70
PROJ→CA 18.13M 74.41

Table 3. Different cross attention block design for CA-Stream.
Classification accuracy and parameters using ResNet-50 on Im-
ageNet. #PARAM: parameters of CA-Stream only.

Results are reported in Table 3. We observe that the
stream made of vanilla CA blocks (6) offers slightly bet-
ter accuracy than projections, while having less parameters.
We also note that most of the computation takes place in
the last residual stages, where the channel dimension is the
largest. To keep our design simple, we choose the vanilla
solution without projections (6) by default.

CA-Stream placement To validate the design of CA-
Stream, we measure the effect of its depth on its perfor-
mance vs. the baseline GAP in terms of both classification
accuracy / number of parameters and classification metrics
for interpretability. In particular, we place the stream in
parallel to the network f , starting at stage ℓ and running
through stage L, the last stage of f , where 0 ≤ ℓ ≤ L.
Results are reported in Table 4.



ACCURACY AND PARAMETERS

PLACEMENT CLS DIM #PARAM ACC↑

S0 − S4 64 6.96M 74.70
S1 − S4 256 6.95M 74.67
S2 − S4 512 6.82M 74.67
S3 − S4 1024 6.29M 74.67
S4 − S4 2048 4.20M 74.63

INTERPRETABILITY METRICS

METHOD PLACEMENT AD↓ AG↑ AI↑ I↑ D↓

GRAD-CAM

S0 − S4 12.54 22.67 48.56 75.53 13.50
S1 − S4 12.69 22.65 48.31 75.53 13.41
S2 − S4 12.54 21.67 48.58 75.54 13.50
S3 − S4 12.69 22.28 47.89 75.55 13.40
S4 − S4 12.77 20.65 47.14 74.32 13.37

GRAD-CAM++

S0 − S4 13.99 19.29 44.60 75.21 13.78
S1 − S4 13.99 19.29 44.62 75.21 13.78
S2 − S4 13.71 19.90 45.43 75.34 13.50
S3 − S4 13.69 19.61 45.04 75.36 13.50
S4 − S4 13.67 18.36 44.40 74.19 13.30

SCORE-CAM

S0 − S4 7.09 23.65 54.20 74.91 14.68
S1 − S4 7.09 23.65 54.20 74.92 14.68
S2 − S4 7.09 23.66 54.21 74.91 14.68
S3 − S4 7.74 23.03 52.92 74.97 14.65
S4 − S4 7.52 19.45 50.45 74.19 14.46

Table 4. Effect of stream placement on accuracy, parameters and
interpretability metrics for ResNet-50 on ImageNet. Sℓ−SL: CA-
Stream runs from stage ℓ to L (last); #PARAM: parameters of CA-
Stream only.

From the interpretability metrics as well as accuracy, we
observe that stream configurations that allow for iterative
interaction with the network features obtain the best per-
formance, although the effect of stream placement is small
in general. In many cases, the lightest stream of only one
cross attention block (S4 − S4) is inferior to options allow-
ing for more interaction. Since starting the stream at early
stages has little effect on the number of parameters and per-
formance is stable, we choose to start the stream in the first
stage (S0 − S4) by default.

Class-specific CLS As discussed in subsection 3.3, the
formulation of single-query cross attention as a CAM-based
saliency map (1) is class agnostic (single channel weights
αk), whereas the original CAM formulation (1) is class spe-
cific (channel weights αc

k for given class of interest c). Here
we consider a class specific extension of CA-Stream using
one query vector per class. In particular, the stream is ini-
tialized by one learnable parameter qc

0 per class c, but only
one query (CLS token) embedding is forwarded along the
stream. At training, c is chosen according to the target class
label, while at inference, the class predicted by the baseline
classifier is used instead.

ACCURACY AND PARAMETERS

REPRESENTATION #PARAM ACC↑

Class agnostic 32.53M 74.70
Class specific 32.59M 74.68

INTERPRETABILITY METRICS

METHOD ThRepresentation AD↓ AG↑ AI↑ I↑ D↓

Grad-CAM Class agnostic 12.54 22.67 48.56 75.53 13.50
Class specific 12.53 22.66 48.58 75.54 13.50

Grad-CAM++ Class agnostic 13.99 19.29 44.60 75.21 13.78
Class specific 13.99 19.28 44.62 75.20 13.78

Score-CAM Class agnostic 7.09 23.65 54.20 74.91 14.68
Class specific 7.08 23.64 54.15 74.99 14.53

Table 5. Effect of class agnostic vs. class specific representation
on accuracy, parameters and interpretability metrics of CA-Stream
for ResNet-50 and different interpretability methods on ImageNet.
#PARAM: parameters of CA-Stream only.

Results are reported in Table 5. We observe that the class
specific representation for CA-Stream provides no improve-
ment over the class agnostic representation, despite the ad-
ditional complexity and parameters. We thus choose the
class agnostic representation by default. The class specific
approach is similar to [50] in being able to generate class
specific attention maps, although no fine-tuning is required
in our case.

References
[1] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1, 2

[2] Ariadna Quattoni and Antonio Torralba. Recognizing indoor
scenes. In 2009 IEEE conference on computer vision and pat-
tern recognition, 2009. 1, 2

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neu-
ral Information Processing Systems. Curran Associates, Inc.,
2017. 2

[4] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and
Antonio Torralba. Learning deep features for discriminative
localization. In CVPR, 2016. 1


	. More on the connection between Attention and CAM
	. More on experimental setup
	. More Visualizations
	. More Architectures
	. Ablation Experiments

