
Interactive Visual Feature Search

Supplementary Material

Code Our source code and sample Jupyter
Notebooks that showcase VFS are available at
https://github.com/lookingglasslab/VisualFeatureSearch.
The notebooks are designed to run in Google Colab, and
the repository includes additional instructions for running
VFS locally with Jupyter Notebooks.

Additional Figures In this section, we provide additional
figures for the domain generalization, editing classifiers,
and ImageNet vs. PASS experiments.

Figure 5 includes additional queries and results for the
ImageNet (in-domain), ImageNet-A, and ImageNet-Sketch
(o.o.d.) experiments. In Fig. 5a, all queries are pictures of
unicycles; when the unicycle wheels are highlighted in each
query, both the ImageNet and ImageNet-Sketch queries are
successfully matched to other unicycle wheels, while the
ImageNet-A query is matched with various unrelated near-
est neighbors. Similarly, in Fig. 5b, all three queries are
images of bell peppers; however, only the in-domain query
yields nearest neighbors that are also bell peppers. For
both the unicycle and the bell pepper queries, the result-
ing similarity scores are highest for the in-domain queries
(i.e. > 0.9) when compared to the scores for the o.o.d.
queries (i.e. < 0.8).

Similarly, Figure 6 includes additional domain gener-
alization visuals for the iWildCam dataset. Two sets of
queries and search results are shown: one is of a cow dur-
ing the day, while the other is of a deer at night. The results
for the deer query are similar to those in Figure 2, as the
features appear to be highly generalizable and have nearest
neighbors of other deer across a variety of domains. How-
ever, the encoded features for the cow are less generaliz-
able and simultaneously less accurate, as the nearest neigh-
bors in other domains have lower similarity scores (0.94,
0.93) than those from the same domain (0.96), and the near-
est neighbors from other domains contain horses, not cows.
This particular query image is misclassified by the model as
containing a horse, so the search results help visualize the
features associated with this misclassification.

Figure 7 contains an additional example of the Edit-
ing Classifiers visualization, as well as an additional visual
for the ImageNet vs. PASS experiment. Fig. 7a includes
a query of a scooter on snow-covered ground; when the
ground is highlighted, the original model’s VFS results con-
tain no other images of scooters or cars. However, when the
edited model is used, four of the top-5 results contain cars,
and the instance of a bobsled on ice from the original results
is no longer included. Thus, this example provides further
evidence that the model edit was successful.

b

a

Figure 5. Additional ImageNet Generalization. Three queries of
images from ImageNet, ImageNet-A [17], and ImageNet-Sketch
[33] on an ImageNet model. a: All queries are of unicycle wheels.
The ImageNet-Sketch unicycle is matched with other unicycle
wheels in the dataset, but the similarity scores are lower than
those from the in-domain query. b: All queries are of bell pep-
pers, but only the in-domain search contains bell peppers in the
results. Such visuals may provide insights into why a particular
model misclassified a challenging example.

Figure 7b shows an additional example of a query con-
taining a face with two sets of results for the ImageNet and
PASS models, respectively. Although several of the high-
lighted regions in the PASS results contain no faces, two
such results contain faces elsewhere in the image. Thus,
the PASS-trained model is again able to successfully encode
human faces and retrieve other images containing faces via
VFS.

https://github.com/lookingglasslab/VisualFeatureSearch


All Domains Unique Domains

Figure 6. Additional iWildCam Generalization. Two sets of queries and results for a cow (top) and a deer (bottom). While the deer
features appear to be highly generalizable with all top-3 results originating from different camera locations, the cow has a comparatively
worse feature representation since its nearest neighbors from other domains have slightly lower similarity scores (0.94, 0.93) than inner-
domain results (0.96); additionally, its nearest neighbors from other domains are images of horses, not cattle.

b

a

Figure 7. Additional Results for Edited Classifier and PASS

Training. a: An additional visualization of the “vehicles on snow”
classifier edit. The original model’s VFS results consist entirely of
unrelated objects such as ice, floors, and a tabletop, whereas the
edited model’s results contain several cars on asphalt. b: An ad-
ditional search query and results for ImageNet- vs. PASS-trained
models. While the localization of nearest neighbors is relatively
poor for PASS (i.e. the highlighted regions in some search results
do not contain faces), the PASS model is able to successfully able
to match the query to other images that contain faces.

Implementation Details In Section 2, we described how
to perform the region-based similarity search for VFS.
However, in order to perform the search efficiently, we use a
modified version of this algorithm that substitutes the slid-
ing window approach with a convolution operation. This
allows us to compute the searches on a GPU via PyTorch,

which allows for extensive parallelization and enables each
search to be much faster than if it were run on a CPU.

To implement the convolution-based searches, we first
take the 3D tensor z 2 RH⇥W⇥C from Section 2 and ap-
ply the mask ml on it once more. We then crop the tensor,
which we define as removing all rows/columns on the ex-
terior of the feature map which only contains zero-valued
elements. Let the resulting tensor be z0, where:

z0(i0,j0,k0) = Crop(z(i,j,k) ·ml(i,j)) (1)

z0 has dimensions H 0⇥W
0⇥C, where H 0  H and W

0 
W . We use z0 as a 2D convolutional filter and apply it to a
feature map fl(s) from the search database.

c := fl(s) ⇤ z0 (2)

Each element c(a,b) is equivalent to the inner product ~q · ~di,
for a unique region vector ~di within the search image’s fea-
ture map. We can perform a similar convolution to obtain
the magnitudes of each ~di, so we can thus compute the co-
sine similarities for all searchable regions within the image
s without iteratively computing results with a sliding win-
dow.

Runtime Performance We measured the runtime perfor-
mance of our VFS implementation by running multiple sets
of searches over varying dataset sizes. We used subsets
of the ImageNet dataset with n = 25,000, 50,000, 75,000,
and 100,000 images; the similarity searches were computed
for a ResNet50 model’s conv5 features with dimensions
7 ⇥ 7 ⇥ 512. In order to understand the impact of mem-
ory bandwidth, we performed two sets of experiments: the
first set used a cache that was pre-loaded directly into a



GPU’s VRAM, while the second set loaded the feature data
in batches from a cache in regular RAM. For each dataset
size and cache location, we computed search results for 20
hand-drawn queries; the mean runtimes and standard errors
are included in Table 1. All searches were computed on a
Google Colab VM with a 16 GB NVIDIA T4 GPU.

n Cache Size VRAM Time (s) RAM Time (s)

25k 2.34 GB 0.139± 0.004 0.820± 0.009
50k 4.67 GB 0.263± 0.006 1.668± 0.021
75k 7.01 GB 0.420± 0.010 2.542± 0.018
100k 9.35 GB 0.564± 0.008 3.435± 0.023

Table 1. Runtime Performance. The mean runtime (and SEM)
of VFS was measured over a set of 20 query regions, with a search
dataset of size n = 25, 000 through 100, 000. Searches were com-
puted for ResNet50 conv5 features with dimensions 7 ⇥ 7 ⇥ 512
and 32-bit precision; the resulting cache sizes for all feature data
are included for reference. Results are reported for two cache lo-
cations: one set of experiments pre-loaded the cache entirely onto
a GPU’s VRAM, while the other set loaded features from a cache
in regular RAM in batches. The results indicate that VFS is most
efficient when the feature cache is able to be loaded directly into
VRAM; loading from RAM may be necessary for especially large
datasets, but this increases runtime significantly.

The results in Table 1 show that VFS is most efficient
when the dataset’s feature cache can be loaded entirely in a
GPU’s VRAM. The mean runtime for searching through a
set of 50,000 images is 0.263 seconds, which enables VFS
to be a fast and highly interactive tool. Computing search
results with a cache in regular RAM is much slower, mainly
due to the bandwidth required to move each batch of feature
data to the GPU for similarity search. However, if a user’s
dataset features are too large to fit in their GPU VRAM,
then loading from batches in RAM is a viable (albeit slower)
method when using VFS.


	. Introduction
	. Approach
	. Experiments and Demonstrations
	. Conclusion

