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We provide details of the methods considered for our
evaluation and explainability analysis. Specifically, we pro-
vide the rationale behind the chosen methods, a review of
the main aspects of each method. We also provide details
of the parameter settings, and training details, and imple-
mentation details in common to all privacy models for a fair
comparison under the settings designed in the main paper.

A. Privacy models

A.1. MLP

Tonge et al.’s method [10] uses a convolutional neural
network, pre-trained on ImageNet [2], for multi-label object
recognition. The feature vector with the confidence of the
1,000 objects is converted into binary values by assigning 1
to the top-k most confident classes and 0 to the all the other
classes. The binarised feature vector is used as input to a
classifier trained to predict the privacy of an image. Sup-
port Vector Machine was used as classifier and k was set to
10 in the study [10,11]. Baranouskaya and Cavallaro [1] de-
fined different input features, such as person presence, per-
son cardinality, outdoor scene, and sensitive features (e.g.,
violence), and evaluated both a logistic regression and an
MLP as privacy models.

Following the ideas and results of these two studies, we
devise a baseline that aims to reproduce the method but us-
ing the objects and their features as defined in the main
paper (see Section 2). Specifically, we replace the multi-
label object recognition with the object detector, and the
binary feature vector with the cardinality and confidence
features. We also use an MLP as privacy classifier given
its best-performing results in Baranouskaya and Cavallaro’s
work [1]. We simply refer to this baseline as MLP.
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A.2. Graph-based methods

GIP [14] and GPA [9] belong to the two-stage end-to-
end training-based category. Both methods model a graph
of objects and two additional nodes representing the public
and private classes (privacy nodes). The 80 COCO cate-
gories [7] are used as objects.

GIP relates objects and privacy nodes with a weighted,
undirected, bipartite graph using the frequency of each ob-
ject with respect to all images labelled as either private or
public in a given dataset [14]. A convolutional neural net-
work (VGG-16) is fine-tuned to extracts deep features from
the regions of interest localised in an image and associated
with the corresponding object node in the graph. The pri-
vacy nodes are initialised with the deep features extracted
from the whole image by another fine-tuned convolutional
neural network (ResNet-101). When objects are not lo-
calised in an image, their features are initialised to 0. All
features are also complemented with a 1-hot encoding vec-
tor to distinguish the privacy nodes, the object nodes, and
the object nodes with zero-initialised features.

GPA relates objects with each other by finding at least
one co-occurrence of the objects in the dataset, resulting in
an unweighted and undirected graph. GPA uses cardinality
as object features and initialises the features of the privacy
nodes with the logits from a trainable fully connected layer
that maps the outputs (logits) of a ResNet-50 pre-trained
for scene recognition to the two privacy classes. The scene
classifier is also fine-tuned during the training of GPA. Both
GPA and GIP use a Graph Reasoning Model [13] to propa-
gate and refine the node features according to the modelled
graph structures, and then use a fully connected layer for
the final classification. The Graph Reasoning Model con-
sists of three layers of Gated Graph Neural Network [6] and
a modified Graph Attention Network [12, 13].
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A.3. From end-to-end to a hybrid approach

To adapt the two methods to a two-stage hybrid ap-
proach, we decoupled the graph component (Graph Reason-
ing Model and fully connected layer) from the CNNs, and
we initialise the nodes with the cardinality and confidence
features obtained from the pre-trained object detector. This
means that there is no longer the end-to-end training of the
whole pipeline and fine-tuning of the CNNs.

Under our setting, we cannot initialise the privacy nodes
of GIP with the high-dimensionality (4,096) feature vectors
extracted by ResNet-101 and hence we initialise the fea-
tures of the two nodes to 0. We refer to this model as GIP△

in Table 1 of the main paper. Note that GIP was trained and
evaluated only on the Image Privacy dataset [14], whereas
we train a new GIP model trained only on PrivacyAlert.

Similarly, we removed the dependency of the scene clas-
sifier and the trainable fully connected layer for GPA. Be-
cause of the presence of the privacy nodes, we also discard
the background category that was included to account for
images with no detected objects. We therefore train a model
as close as possible to the original implementation1 where
the features of the object nodes are the cardinality and the
binary flag2. However, we replace the features of the pri-
vacy nodes with pseudo-randomly generated values in the
interval [−20, 20] according to the range of the logits esti-
mated by the fine-tuned CNN to simulate a non-optimised
and non-zero initialisation of the features. We refer to this
model as GPA⋆ in Table 1 of the main paper. Note that we
also evaluated a variant with zero-initialisation of the fea-
tures of the privacy nodes and we obtained the same results.

As we noticed a misplacement of the adjacency matrix
in the original implementation, we also corrected this error
and train a second model. For this second model, we use
both cardinality and confidence features, without the binary
flag, for a fair comparison with the other models. We refer
to this model as GPA⋄ in Table 1 of the main paper. We also
tried with either of the two features, as well as using the pro-
jection to a higher dimensionality as done for GA-MLP, but
all of these models degenerate to predicting a single class.

B. Parameters setting and training details
Object detector. We use YOLOv3 [8], pre-trained on the
80 categories of COCO [7], as object detector. When lo-
calising the objects, we allow a maximum of 50 objects for
each image while retaining the most confident ones after
re-ranking. We also use a minimum threshold of 0.6 and
a non-maximum suppression threshold at 0.4. According
to the detector settings, we resize images to a resolution
of 416×416 pixels. Note that these settings are different

1https://github.com/smartcameras/GPA/
2In our experiments, we found that the flag does not provide any con-

tribution to the model.

from GIP and GPA, which limit the maximum number of
regions of interest only to 12. Moreover, GIP used Mask
R-CNN [4] as object detector with a threshold of 0.7 on the
object confidence and the weighted edges of their modelled
graph included images from the testing set (data leakage).
On the contrary, GPA used YOLOv3 [8] with a threshold
of 0.8 on the object confidence. Our choice to decrease the
threshold is to allow the localisation of more objects in an
image, increasing the detected categories and the cardinal-
ity for more discriminative features. However, the lower
threshold can also result in more false positives and affect-
ing the input features of the privacy model that should be
designed to handle noisy data.
Training. For reproducibility of models and experiments,
we set the seed to an arbitrary value of 789. Note that we
do not analyse variations in the performance due to multiple
and different seeds, which is beyond the scope of this paper.
As training strategy, we follow the recipe of Benchmarking
Graph Neural Networks [3]. We use Adam as optimizer [5]
with an initial learning rate of 0.001 and without weight de-
cay. We schedule the learning rate to halve if the balanced
accuracy of the validation set does not improve for at least
10 epochs (patience). We use early stopping to interrupt
the training of the models if the learning rate decreases to
a value lower than 0.00001 or the training time lasts longer
than 12 hours. In case none of the two conditions is satis-
fied, we also set the maximum number of epochs to 1,000.
Note that we save the model at the epoch with the highest
balanced accuracy in the validation split and We use this
model for the evaluation on the testing split. Moreover, we
set the batch size to 100.

C. Implementation

We implement all models using PyTorch 1.13.1. We use
the PyTorch Geometric library for GIP, GPA, and GA-MLP.
We trained all models on a Linux-based machine with a
NVIDIA GeForce GTX 1080 Ti (12 GB RAM). To en-
sure the fairness of the benchmark, all methods share the
same training and testing software (i.e., only the model is
replaced).
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