
SUNY: A Visual Interpretation Framework for Convolutional Neural Networks
from a Necessary and Sufficient Perspective

Xiwei Xuan1,∗ Ziquan Deng1 Hsuan-Tien Lin2 Zhaodan Kong1 Kwan-Liu Ma1
1University of California, Davis 2National Taiwan University ∗Corresponding Author
{xwxuan, ziqdeng}@ucdavis.edu htlin@csie.ntu.edu.tw {zdkong, klma}@ucdavis.edu

A. Appendix

This appendix section is organized as follows:
• Sec. A.1 presents the flexibility of SUNY to consider ei-

ther a feature map or a model filter in a convolutional
layer as a cause for analysis.

• Sec. A.2 provides a comparison between SUNY and pre-
vious SHAP image analyses [3].

• Sec. A.3 provides a more detailed description of SUNY
implementation.

• Sec. A.4 provides more SUNY examples for qualitative
evaluations.

• Sec. A.5 presents the training setting for our experiments.

A.1. A General Framework

As mentioned at the end of Section 2.1, our proposed frame-
work provides the flexibility to consider either a feature map
or a model filter in a convolutional layer as a cause for anal-
ysis. We differentiate between these two options as SUNY-
feature and SUNY-filter in the Appendix, and provide an
overview of the SUNY-filter framework in Fig. A1.

Figure A1. Overview of SUNY-filter framework.

A.2. Comparison with SHAP Methods

For our requirement G1, i.e. “to measure the importance of
each individual cause in a group of coordinating causes,”
shapely value [2] provides us a rational optimal solution
to quantify the marginal contributions across diverse coali-
tions:

ϕi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[v(S ∪ {i})− v(S)],

(A1)
where ϕi is the Shapley value for an element i, F is the set
of all elements, S is a subset of F that does not include
element i, v(S) is the value function that gives the total
payoff that the subset of elements S can obtain by them-
selves. In our work, EN (·) and ES(·) (Eqn.s (1) and (2),
respectively) can be seen as two value functions with dif-
ferent causal semantics. In practical applications, however,
Equation A1 encounters a widely recognized issue of com-
putational complexity. The primary reason for this issue is
attributable to the excessive size of the total set S. Con-
sidering the unique attributes of the CNN model as applied
to image processing, we have implemented the following
modifications:
• Constraining the scope of the subset S. Rather than

blindly covering all subsets and elements, we tend to fo-
cus on more necessary (sufficient) ones. We retain indi-
viduals with a higher EN (i) (/ES(i)) to form FN (/FS)
to constrain the scopes of the subset S and the element i.

• Combine the model to select element i effectively. In
previous SHAP image analysis [3], images are divided
into uniformly sized patches, each treated as element i
for Shapley value calculation. This method limits the use
of smaller patches due to high computational demands,
leading to SHAP saliency maps that lack fine-grained im-
portance distinctions, as illustrated in the Fig. A2. Our
method, when integrated with the model, allows for the
selection of either feature maps or filters as the object of
analysis, thereby facilitating the provision of fine-grained
visualization results.

Furthermore, we provide value functions (Eqns.(1) and (2))

1

with distinct causal interpretations to aptly characterize the
significance derived from N and S.

Figure A2. SHAP[3] explanation example.

A.3. Algorithm Details

We present the implementation of SUNY in Alg. 1. Fol-
lowing the definitions in Sec. 2.1 in the main paper, SUNY
provides causality-driven CNN visual explanations regard-
ing input features or model filters as hypothesized causes,
respectively, represented by the cause type E in Alg. 1
with values “feature” or “filter”. The corresponding ex-
planations are SUNY-feature and SUNY-filter. We first de-

Algorithm 1 SUNY: Causal Explanation of CNN

Require: Image I , model M , layer l, class c, cause type E
Ensure: N-S saliency maps: Nmap, Smap

1: pc(•) = Softmax(M(•))[c]▷ prediction probability on c
2: Al ←Ml(I) ▷ feature maps of the layer l
3: FN , FS ← getHypCauses(I,M, l, E)
4: RN , RS ← zeros(Al.shape[0]) ▷ initialize

responsibilities
5: if E is “feature” then
6: for An

l in FN do
7: mask ← norm(upsample(An

l))
8: Compute RN (An

l) based on Eqn.(3)
9: for As

l in FS do
10: mask ← norm(upsample(As

l))
11: Compute RS(A

s
l) based on Eqn.(4)

12: else if E is “filter” then
13: for Fn

l in FN do
14: Mn ← pruneFilters(M,Fn

l)
15: pnc (•) = Softmax(Mn(•))[c]
16: Compute RN (Fn

l) based on Eqn.(3)
17: for F s

l in FS do
18: Ms ← pruneFilters(M, (Fl \ F s

l))
19: psc(•) = Softmax(Ms(•))[c]
20: Compute RS(F

s
l) based on Eqn.(4)

21: Nmap = norm(upsample(Relu(
∑

RN
iAi

l)))
22: Smap = norm(upsample(Relu(

∑
RS

iAi
l)))

23: return Nmap, Smap

fine pc(•) as a function to calculate the model’s prediction
probability w.r.t. a class c for the input denoted by •, as
shown in line 1 of Alg. 1. Next, in line 3, we construct
FN and FS , where FN is the set of hypothetical single

causes fn with relatively higher N Effect, EN (fn), (re-
fer to Eqn. (1) in Sec. 2.1 of the main paper). Similarly,
FS contains all hypothetical single causes fs with higher S
Effect, ES(fs), (refer to Eqn. (2) in the main paper). We
then calculate N-S Responsibilities for every single cause
in FN and FS following lines 5 - 20 (refer to Eqn. (3), (4)
in the main paper). Specifically, for SUNY-feature (lines
6 - 11), we upsample and normalize the feature maps, An

l

and As
l , and use the generated mask as a feature extrac-

tor to intervene on input features from the image I . The
intervention do(F \ F∗) (removing F∗) is realized by the
Hadamard product, (I

⊙
(1 − mask)). Similarly, do(F∗)

(keeping F∗) is implemented as (I
⊙

mask). SUNY-filter
(lines 13 - 20) removes and keeps the hypothesized causes
by filter pruning, which means setting the corresponding fil-
ters’ weights to zero. Line 14 and line 18 correspond to
do(F \ Fn

l) and do(F s
l), respectively. After calculating

N-S Responsibilities for all single causes, in lines 21 and
22, we obtain small saliency maps by Relu(

∑
RN

iAi
l),

Relu(
∑

RS
iAi

l) and then upsample and normalize them
to get the final saliency maps. The operation norm rep-
resents the min-max normalization w.r.t. each single map,
norm(X) = X−min(X)

max(X)−min(X) , and upsample represents
the bilinear interpolation.

A.4. Additional Heatmap Examples

In this section, we provide more examples of semantic eval-
uations, where Fig. A3 and Fig. A4 present comparisons be-
tween SUNY and other methods, and Fig. A5 include more
causal explanation examples to demonstrate the usefulness
of necessity and sufficiency ((a)(b)(c)) and textual explana-
tion examples (as discussed below) to further examine more
semantically-meaningful explanations with SUNY .
Textual explanations with SUNY. Recent research indi-
cates that filters in a convolutional layer act as concept de-
tectors [6, 7] and describes each filter with text [1, 5]. To ex-
amine visual-textual explanations with SUNY , we adopt [1]
to automatically name the filters in a convolutional layer
and present the top filters based on N-S Responsibilities
(RN , RS) provided by SUNY , where higher RN , RS mean
the corresponding filters are more necessary, sufficient, re-
spectively. Fig. A5(d) shows some examples of visual and
textual explanations with SUNY-filter, where we sort fil-
ters in descending order of the normalized RN and RS re-
spectively, and present the top filters’ textual explanations.
For each image, SUNY visualizations highlight regions that
are Sufficient or Necessary for a specific prediction, and
the complementary textual explanations for the top N and
S filters further explain why the corresponding regions are
essential for the class. By discussing the textual explana-
tions with SUNY , we extend the usefulness of our technique
in the ability to provide both intuitive and semantically-
meaningful explanations.

Figure A3. Visual comparison of saliency maps from different methods based on a VGG16 trained on ILSVRC. Each row is corresponding
to one image from the ILSVRC validation set that is classified correctly by the model. The specified class for generating explanations is
the predicted class, which is shown at the beginning of each row.

Figure A4. Visual comparison of saliency maps from different methods based on a VGG16 trained on CUB. Each row is corresponding
to one image from the CUB validation set that is classified correctly by the model. The specified class for generating explanations is the
predicted class, which is shown at the beginning of each row.

Figure A5. (a)-(c) Semantic evaluation of SUNY explanations for a VGG16 trained on CUB for bird species classification. The bird
images in the first row are from four bird species belonging to two families and the correct/incorrect predictions are marked by Ë and é,
respectively. For the two images marked by é, the model mistakes the actual species with the other species under the same family. Each
column corresponds to one image; the second and third rows are sufficiency and necessity heatmaps, respectively. The small image in the
bottom corner of each heatmap presents the highlighted image portion. (d) Examples of visual and textual explanations with SUNY-filter
for a VGG16 trained on ILSVRC. For textual explanations, we provide top filters corresponding to the highest RS and RN , respectively.

A.5. Experiment Details

We implement SUNY and the seven aforementioned vi-
sual explanation methods in Python using PyTorch frame-
work [4]. Specifically, we run the official or publicly avail-
able code of other methods as the results at the same data
scale are unavailable. The platform is equipped with two
NVIDIA RTX 3090 GPUs. Unless explicitly stated, the
comparisons discussed in this section are conducted follow-
ing the same settings, including –

(1) Images are resized and converted to the RGB format,
transformed to tensors, and normalized to the range of [0, 1].

(2) For every single input image across three datasets,
visual explanation results are generated to explain every
model with respect to (w.r.t.) every ground-truth class.

(3) For images with multiple ground-truth classes, the
overall performance is measured by the mean quantification
score across all classes.

Bird Species Classifier Training Details.
We trained bird species classifiers using CUB-200-2011

(CUB) with pre-trained VGG16, ResNet50, and Incep-
tion v3, respectively. All models are retrieved from the
TorchVision model zoo. We use the cross entropy loss and
the SGD optimizer with a momentum of 0.9. The learn-
ing rate is 0.001 for VGG16 and ResNet50, and 0.0001 for
Inception v3.

Saliency Attack Details.
In the saliency attack evaluation, the image regions high-

lighted by a specific visual explanation method are cor-
rupted using random Gaussian noise with mean µ = 0,
variance σ2 = 0.03. Specifically, we generate a noise ma-
trix noise of the same size as the original input image I ,
where noise[i, j] ∼ N (0, 0.03) . For each visual explana-
tion method, we have its saliency map as a matrix, where
map[i, j] ∈ [0, 1]. The final image that we feed into the

Figure A6. Saliency attack results based on different visual explanations. The original image on the top left is from the validation set of
ILSVRC with the label Affenpinscher, which is classified correctly by the model. For the image grid, from the first to third row:
heatmap, heatmap on the image, image with noise on the heatmap-highlighted region. The Ë and é indicate the model’s correct/incorrect
prediction of the corresponding image. Each column corresponds to one visual explanation. The number below each column is the size of
the region highlighted by the saliency map (Sizemap), where red indicates a successful saliency attack and green indicates a failed attack
(For successful attacks, lower Sizemap is better).

model is generated by I ′ = I + noise
⊙

map. Recall-
ing our paper, the size of the region highlighted by the
saliency map is calculated by Sizemap = AttackSize =∑

i,j(1truemap[i,j] ̸=0)

map.h×map.w .
In Fig. A6, we provide examples corresponding to one

original image, where we add noise to the saliency regions
and test whether such noise can fool the model. The orig-
inal image shown in Fig. A6 is classified correctly. From
the Ë and é marks over the images with noise, we can
find that the saliency attack is successful for most explana-
tions (wrong classifications) except Score-CAM and Cex-
CNN (correct classifications). Moreover, for the explana-
tions corresponding to successful saliency attacks, SUNY-
filter and SUNY-feature have the smallest Sizemap, indi-
cating the most “minimal and essential” attacks.

The entire SUNY codebase and experiment setup will be
made publicly available upon the publication of this paper.

References
[1] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and An-

tonio Torralba. Network dissection: Quantifying interpretabil-
ity of deep visual representations. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
6541–6549, 2017. 2

[2] Sergiu Hart. Shapley value. In Game theory, pages 210–216.
Springer, 1989. 1

[3] Scott M Lundberg and Su-In Lee. A unified approach to in-
terpreting model predictions. Advances in neural information
processing systems, 30, 2017. 1, 2

[4] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic differ-
entiation in pytorch. 2017. 4

[5] Yu Yang, Seungbae Kim, and Jungseock Joo. Explaining deep
convolutional neural networks via latent visual-semantic filter
attention. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8333–8343,
2022. 2

[6] Matthew D Zeiler and Rob Fergus. Visualizing and under-
standing convolutional networks. In European conference on
computer vision, pages 818–833. Springer, 2014. 2

[7] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and
Antonio Torralba. Object detectors emerge in deep scene cnns.
arXiv preprint arXiv:1412.6856, 2014. 2

	. Appendix
	. A General Framework
	. Comparison with SHAP Methods
	. Algorithm Details
	. Additional Heatmap Examples
	. Experiment Details

