This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

QAttn: Efficient GPU Kernels for mixed-precision Vision Transformers

Piotr Kluska
IBM Research Europe
Universitat Politécnica de Valéncia

klu@zurich.ibm.com

Florian Scheidegger
IBM Research Europe

eid@zurich.ibm.com

Abstract

Vision Transformers have demonstrated outstanding per-
formance in Computer Vision tasks. Nevertheless, this su-
perior performance for large models comes at the expense
of increasing memory usage for storing the parameters and
intermediate activations. To accelerate model inference,
in this work we develop and evaluate integer and mixed-
precision kernels in Triton for the efficient execution of two
fundamental building blocks of transformers —linear layer
and attention— on graphics processing units (GPUs). On
an NVIDIA A100 GPU, our kernel implementations of Vi-
sion Transformers achieve a throughput speedup of up to
7x compared with reference kernels in PyTorch floating-
point single precision (FP32). Additionally, the accuracy
for the ViT Large model top-1 drops by less than one per-
cent on the ImageNetIK classification task. We also observe
up to 6x increased throughput by applying our kernels to
the Segment Anything Model image encoder while keeping
the mIOU close to the FP32 reference on the COC0O2017
dataset for static and dynamic quantization. Furthermore,
our kernels demonstrate improved speed to the TensorRT
INTS linear layer, and we improve the throughput of base
FP16 (half precision) Triton attention on average by up to
19 + 4.01%. We have open-sourced the QAtnn framework,
which is tightly integrated with the PyTorch quantization
workflow https://github.com/IBM/qgattn.

1. Introduction

Recent advancements in Foundation Models (FM) [3], both
in Natural Language Processing (NLP) [38, 42, 45] and
Computer Vision (CV) [17, 27, 40], have extended the pre-
dictive performance of deep learning models. Nevertheless,
these advances come at a cost in terms of computational
requirements and memory resources. Currently, the base-
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line reference for FM is a transformer architecture enhanced
with an attention mechanism [48]. Initially designed for
NLP, transformers have been adapted for CV, resulting in
the development of Vision Transformers (ViT) [17]. ViTs
are encoder-only models that are typically self-supervised,
pre-trained on a large amount of data, and later adapted for
downstream tasks such as image classification, object de-
tection, or instance segmentation. Similar to large language
models [45], ViTs come in different sizes, depending on the
number of layers and, as a result, parameters, which vary
from millions to 22 billion [12]. As a result, the largest
model requires a dedicated accelerator with sufficient mem-
ory to process the data. The large size of ViTs makes them
appropriate candidates for compression methods such as
quantization, but outliers in intermediate activations pose
a challenge [4, 11]. Quantization, a compression technique
that reduces the number of bits, converts computation and
data from “continuous” (floating point) to discrete (integer).
Integer 8-bit (INTS) inference is faster and more energy-
efficient than its floating-point counterparts, but the limited
range in which we can represent values makes it susceptible
to quantization errors during computation that may affect
the final accuracy of the deep learning model [20, 30].

Modern hardware includes dedicated units that support
efficient matrix multiplication in 8-bit and 16-bit floating
point (FP8 and {FP16; BFloat16}, resp.) as well as INT8
[6, 28, 46]. To take full advantage of these computing units,
users must use a specialized hardware runtime application
programming interface (API) such as CUDA [31], which re-
quires significant programming skills to take full advantage
of the graphics proccessing unit’s (GPU) capabilities. Most
deep learning frameworks, such as PyTorch [39], imple-
ment operations that can be accelerated with GPUs. How-
ever, because it is a general-purpose framework, there may
be missing implementations that are used, for example, in
quantization.
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Table 1. Operation count (OPs) by percentage for ViT models and
latency measurements. We count only nodes used during the infer-
ence. Attention is counted as one operation even though it contains
two matrix multiplications with softmax. Number of layers, OPs,
and latency are provided as a percentage of the ViT large model.
We provide latency numbers for batch size b = 1 and b = 128.

Type #Layers  OPs b=1  b=128
Linear 40 96.43 61.87 87.16
Attention 10 3.09 1251 9.8
Conv2D <1 025 051 0.27
Add 20 0.16 7.67 1.07
GELU 10 0.13  4.89 1.31

LayerNorm 20 0.08 1252 1.01

Currently, there are specialized frameworks for acceler-
ating selected models on dedicated platforms, such as ggml
[18] or MLX [19]. ggml supports multiple hardware tar-
gets (x86, ARM, CUDA, Metal, etc.) and selected mod-
els, but requires the hardware API to accelerate inference.
MLX is a dedicated tensor framework for Apple’s silicon
chips to accelerate inference of deep learning models us-
ing the chip’s unified memory. However, while it has a fa-
miliar Python API, extending MLX with new kernels re-
quires C++ or Metal API knowledge. Alternatively, com-
pilers such as Apache TVM [7] allow custom kernels to be
written and optimised using general techniques; and next
compiled plus fine-tuned for selected target hardware, such
as a GPUs, ARM multicore processors, etc. Nevertheless,
writing developer-guided kernels in TVM is still a challeng-
ing chore that requires a significant understanding of the
target platform and, especially, the TVM compiler stack.

In contrast to the previous approaches, Triton is a
domain-specific language and compiler designed for devel-
oping efficient CUDA kernels in Python [44]. Triton com-
piles Python routines into device code with LLVM using
MLIR [23, 24]. Moreover, it provides an auto-tuning option
to hint the compiler about the sizes of the tensor operands.
Lastly, it directly integrates with PyTorch [39] and Jax [5]
(via Pallas), making it an ideal candidate for efficiently and
quickly developing new GPU kernels as it hides the com-
plexity of the CUDA language.

In our work, we focus on the quantization of the most
relevant layers and operations of ViT —the linear layer (ma-
trix multiplication) and the attention module. These are
the most dominant operation nodes in this architecture, ac-
counting for over 99% of the floating-point operations per
second (FLOPS) in the ViT large and taking up to 96.34%
of the time to process the data depending on the batch size,
as shown in Table 1. In doing so, we make the following
specific contributions:

* We develop QAttn (Quantized attention, pronounced like

katana), a Python framework with efficient GPU imple-
mentations of the linear layer and attention. Our inte-
gration with the quantization workflow in torch.fx [41]
and torch.compile [2] allows in-place replacement of Py-
Torch modules. (At this point, we note that the current
version of PyTorch does not support lowering the quan-
tized model to the GPU.)

* We evaluate the performance of matrix multiplication
with PyTorch, TVM, TensorRT [47], and our proposed
method over different sizes of linear layers present in ViT
models. The experimental results show that our imple-
mentation is competitive with closed-source TensorRT for
statically quantized matrix multiplication. Moreover, it
outperforms the TensorRT implementation and achieves
over 460 TOP/s on certain kernels.

* We compare the throughput performance of mixed-
precision attention with PyTorch memory efficient atten-
tion, the Triton FP16 reference, and FlashAttention2. Our
mixed-precision attention outperforms the FP16 baseline
implementation in Triton by up to 19+4.01% on average.

* We verify the numerical stability of our quantized and
mixed-precision kernels on the ImageNet1K [13] valida-
tion dataset across different ViT models.The experiments
with ViT-Large models show less than 1% degradation in
top-1 accuracy, with 75% weight reduction and up to 7x
speedup compared to FP32.

* We extend our matrix multiplication to support variations
of quantization granularity, e.g., scalar and per-channel.

* We apply dynamic and static quantized kernels to the im-
age encoder of the Segment Anything Model [22]. We
achieve over 5x more images processed per second for
the base and large image encoders without mIOU drop
over the COCO2017 [25] validation set for static and dy-
namic quantization. For the huge model, we achieve over
6x more images per second and no accuracy drop for dy-
namic quantization, while for static, the mIOU dropped
only by 2.66%

The rest of the paper is structured as follows. In Sec-
tion 2 we review the relevant literature in this area. In Sec-
tion 3, we introduce QAttn, starting with a brief description
of the deep learning operations and quantization. We also
present an example code that shows how the framework is
integrated with PyTorch. In Section 4, we present our exper-
imental setup and results, with subsections devoted to ma-
trix multiplication, attention, ViT performance for mixed-
precision inference, and SAM performance after quantiza-
tion. We discuss our findings in Section 5, followed by a
review of the limitations and future work in Section 6. Fi-
nally, we conclude our work in Section 7.

2. Related Work

The progression in hardware and software technology has
led to more powerful FMs. Nevertheless, the challenge re-
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mains of efficiently deploying FM by utilizing target hard-
ware resources. Currently, the standard format for inference
is FP32 or FP16. While efficient inference in FP16 is sup-
ported on modern hardware via specialized cores, e.g., Ten-
sor Cores in NVIDIA GPUs, INTS is supposed to achieve
twice the theoretical throughput [33]. Moreover, INT8 con-
sumes two times less memory for loading model weights
and intermediate activations and requires significantly less
energy [8, 46].

TensorRT is an inference framework developed by
NVIDIA that can efficiently run deep learning models, in
multiple data formats (FP32, FP16, and INTS), both on dis-
crete GPUs and Jetson boards [29, 35]. TensorRT integrates
with TensorFlow [1], PyTorch [39], and ONNX Runtime
[37] via open-source libraries that aim to minimize the ef-
fort to port the models to the TensorRT runtime. However,
TensorRT is a closed-source library.

Another framework developed by NVIDIA is Faster-
Transformer [32]. This is an open-source tool that con-
tains specialized CUDA kernels for popular NLP and CV
transformer models for FP and INT inference. However,
NVIDIA recently deprecated FasterTransformer in favor of
TensorRT-LLM, which supports only NLP models [34].

PyTorch 2.0 natively supports CPU-only quantized deep
learning models via FBGEMM [21]. For PyTorch, GPU
support is enabled by lowering the model to TensorRT run-
time via the TorchTensorRT package [36]. While TorchTen-
sorRT is an open-source package, it utilizes closed-source
kernels from TensorRT. However, PyTorch has a flexible
backend configuration that we can extend to integrate INT8
GPU inference.

bitsandbytes is an open-source framework for efficient
training using mixed-precision data types [15]. The authors
developed custom CUDA and Triton kernels for efficient
INTS and sub-byte types FP4 and normalized float 4-bit
[14]. Those kernels enable efficient training of the mod-
els as the states of the optimizers as well as the weights are
quantized [16]. The main target are large language models
(LLMs). However, they also implemented the Switchback
algorithm that could effectively train vision-language CLIP
ViT-L using the INTS linear layer with up to 25% speedup
compared to BFloat16 [50].

Lastly, methods like FQ-ViT [26] or PTQ4ViT [51] tried
to find optimal scaling factors for the weights of ViT to
avoid performance degradation. However, those methods
simulated INTS8 quantization to run the methods efficiently
on GPUs. Nevertheless, Zhang et al. [52] demonstrated
the implementation of INT8 approximated Softmax, GELU,
and Layer Normalization. They claim to achieve up to 5x
speedups compared to FP32 on Apple Silicon A13 and M1
chips.

3. QAttn

In this section, we provide a detailed description of various
aspects of the QAttn framework. Concretely, we start by
briefly discussing the quantization process, followed by a
definition of the quantized matrix multiplication and fused
attention operations. Finally, we discuss the integration of
the QAttn framework in the PyTorch quantization workflow.

3.1. Quantization

Quantization is an approximate method that can help to re-
duce memory and energy consumption for deep learning
tasks. As part of this process, the data format is compressed
by, for example, reducing the number of bits from the stan-
dard 32 in deep learning algorithms to 16 or even 8§ bits.
Additionally, we can switch from floating-point data and
arithmetic to integer to further reduce memory and energy
usage. However, by doing so, we introduce quantization
errors due to the reduced bit width and the use of integer
arithmetic. Fortunately, deep learning models are fair can-
didates for quantization since they are heavily overparame-
terized, which helps minimize the quantization error.

In our study, we consider symmetric INT8 post-training
static and dynamic quantization. In this scheme, the quanti-
zation function

QX) = [—1, ey

scales the entries of the input tensor X element-wise, and
then rounds each to the nearest integer. The scaling factor s
is calculated, based on the maximum absolute value in the
input tensor X, as

max(abs(X))
= 2
i (qmax - qmin)/2 ’ ( )

where gmin and ¢max respectively denote the lower bound
and the upper bound of the data type. (For example, in the
case of INT8 and two’s complement representation, these
respectively correspond to -128 and +127). The inverse op-
eration to quantization is dequantization, which calculates
the approximate value in the continuous format as

Q(Q(X),s) = Q(X) - 5. 3)

Considering only symmetric quantization, we do not in-
clude zero point in (1). While we can calculate the scaling
factor s for parametric layers, for intermediate activations
we need to either statically estimate that parameter based
on the calibration set or, alternatively, choose the value of
s dynamically during inference. The higher flexibility of
dynamic quantization introduces an overhead to calculate
scaling factors based on the data range of the inputs. More-
over, we can consider different granularities for computing
the scaling factor. Given a multi-dimensional tensor, we can
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apply a scalar quantization scale, which is the most storage-
efficient. In this case for the whole tensor, we store an ad-
ditional four bytes for the FP32 scale. In comparison, de-
pending on the model’s sensitivity to quantization, we can
compute per-channel scaling factors. For example. for an
m x n matrix A, if we consider quantization per row, we
add m FP32 values to dequantize the matrix.

3.2. Operations
3.2.1 Linear

The linear layer is the fundamental component in the ViT
architecture. This type of module performs a matrix mul-
tiplication involving the learned weights W and the input
activation:

c=cx,wh=x w7, (4)

where X is the input matrix, of size m x n, and W is the
weight matrix, of size £ x n. The individual entries of the
m X k result matrix C' in (4) are thus given by a linear com-
bination between the entries in the rows of X and W7

n
Cij = inpwjp. (5)
p=1

In static quantization, we quantize both X and W but
also need to re-quantize the output to INTS:

Q% =Q(C(Q(X), 2qW™))) (6)

so that, for the entries of the result,

n

S S
qij =S Z Q(wip) Q(wjp), @)
p=1
where s is a static re-quantization scaling factor that is

computed as a linear combination of the scaling factors for
X, W and C [20]:
S SX SW

s° = . ®)
sc

Note that, in order to avoid overflow during the INT8 matrix
multiplication, we use an INT32 accumulator.

In dynamic quantization, the output is instead an FP16
or FP32 matrix:

CP =c(Q(X), owWT)), 9)

with its output entries given by
e =57 Qwip) Quwjy), (10)
p=1

and the dynamic scaling factor

P = sx sw. (11)

3.2.2 Attention

The attention mechanism is an indispensable element of the
transformer that performs a pivotal function in NLP and CV
tasks. It operates on three input tensors, namely query (@),
key (K), and value (V'), all of dimension n X d, where n
denotes the context length and d corresponds to the head
size. The process recurs over h heads and a batch of size b.

The attention module operates by multiplying the values
matrix V' with a weighted matrix. That is calculated as a
function of the similarity between () and K. Concretely,
the similarity is determined by multiplying the matrices @
and K, and then scaling the result as follows:

T
Vd

The attention weights are then obtained by applying the
softmax function to the result:

P = softmax(5), (13)

and the resulting weights are used to adjust the values for
the attention output:

O =c(P,V). (14)

3.2.3 Mixed-precision Attention

Dao et al. introduced Flash Attention and Flash Attention-
2 [9, 10] with kernels designed to accelerate the forward
pass of the attention mechanism by exploiting the hardware
of data-parallel GPUs. Starting from these kernels, in this
work, we developed static and dynamic mixed-precision at-
tention in the Triton language, described next.

Similar to matrix multiplication, we have to calculate
scaling factors for input and output in static quantization.
To ensure the numerical stability of attention, we conduct
the initial matrix multiplication in INTS, and subsequently
de-quantize it to FP32:

S = 3%6(@(@» QK™)), (15)

for calculating attention weights, using softmax in floating
point arithmetic:

P = softmax(S5). (16)

For the second matrix multiplication, we also de-
quantize the values matrix V to calculate it in floating point
arithmetic. For static mixed precision, the output is of INTS8
data type,

0% = Q(C(P, Q' (Q(V),5v)))- (17)

Meanwhile, for dynamic mixed precision, the output is in
FP16,
0P =C(P,Q(Q(V),sv)). (18)
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3.3. PyTorch Integration

QAttn is a kernel library that can efficiently deploy mixed-
precision ViT models. It implements statically and dynam-
ically quantized linear layers and mixed-precision attention
modules. It is designed to work with the PyTorch FX quan-
tization workflow (via added backend configuration) and
automatically captures and lowers the graph to supported
GPU kernels. QAttn supports conventional as well as new
FP types, such as FP32, FP16, and BF16, and executes Tri-
ton kernels in INT8 or INT8/FP16. Once the model is con-
verted, it behaves like a torch nn.Module and can be ap-
plied in the same places where the previous model was used.
Moreover, QAttn supports the experimental torchdynamo
export path and PyTorch 2.0 quantization workflow. The
modules and functions are lowered to default PyTorch op-
erations representation (ATen) and then replaced with sup-
ported kernels, while the rest is kept as native PyTorch op-
erations. In Algorithm 1, we present a simple example of
how to utilize QAttn for static quantization of the model.

4. Experimental Results
4.1. Experiment setup

We used PyTorch 2.2.1, Triton 2.2.0, TensorRT 8.6.1 and
TVM 0.13.0. The measurements were performed on an
NVIDIA A100 GPU with an 80-GB HBM2e RAM. We
utilized the torch.fx package for capturing and quantizing
the models’ graphs. While the torch.fx module might not
be able to capture the graph if there are control loops or
conditional statements, it is effective for ViT graphs. For
the Segment Anything Model (SAM) [22] image encoder,
we utilized the PyTorch 2.0 dynamo graph capture mecha-
nism. We measured operation performance using TFLOP/s
(tera floating-point operations per second). We use the same
number of arithmetic for all algorithms, corresponding to
those performed by the FP32 version, even though the quan-
tized version, of those arithmetic opeartions are performed
in integer arithmetic. We run the operation 1000 times with
100 warm-up steps with L2 cache flushed in between mea-
surements. For consistency throughout the following dis-
cussion, we will refer to both as TOP/s.

We identified distinct linear layers and attention shapes
across various models and assessed the raw perfor-
mance of these operations with varying batch size b =
{1;32;64; 128;256; 512; 1,024; 2,048}. Specifically, we
compared the performance of PyTorch FP32 with TensorRT
INTS8, our implementations in TVM (static INTS), and Tri-
ton for matrix multiplication, with static and dynamic INT8
quantization.

We evaluated the models’ performance using Ima-
geNetlk validation dataset [ 13] after quantization. The met-
ric reported is the top-1 accuracy over 1,000 labels averaged
over 5 runs. Moreover, we reported the throughput speedup

Algorithm 1 Example usage of QAttn static quantization
with the torch.compile quantization workflow.

import torch

from torch._export import capture_pre_autograd_graph

from torch.ao.quantization.quantize_pt2e import (
prepare_pt2e,
convert_pt2e,

)

import gattn

from gattn.pt2e.quantizer import (
QAttnQuantizer,
get_default_gattn_quantization_config,

# 1nitialize quantizer
quantizer = QAttnQuantizer ()
quantizer.set_module_type (
torch.nn.Linear,
get_default_gattn_quantization_config(
per_channel=True,
is_dynamic=False,
input_per_channel=True,
)
)

# initialize model and sample
model = ...
sample =
# export and prepare the model
exported_model = capture_pre_autograd_graph (
model,
(sample,),

)

prepared_model = prepare_pt2e (
exported_model.cpu(),
quantizer,

) .cuda ()

# calibrate for static quantization

converted_model = convert_pt2e(
prepared_model,
fold_quantize=True,

)

# invoke lowering via torch compile

model = torch.compile (prepared_model, backend="gattn")

_ = model (sample)

of our quantized and mixed-precision kernels compared to
the native FP32 PyTorch kernel. We calibrated the models
for static quantization using 2,000 random samples from the
ImageNetlK training dataset. We experimented with ViT
models of different parameter sizes (s), patch sizes (p), and
input image sizes (¢), denoted as ViT-s/p/i. Concretely, we
consider three different ViT sizes: small (ViT-S), base (ViT-
B), and large (ViT-L); patch sizes of 16, 32; and image size
of 224, 384. Our evaluation tests are named, e.g., as ViT-
L/16/224. The model weights and code were fetched from
the timm package [49].

Similarly, for instance segmentation, we utilized the
COCO02017 validation dataset [25]. We report the mean in-
tersection over union (mIOU) metric. We dynamically and
statically quantize linear layers in the SAM image encoder.
We evaluate ViT-B, ViT-L, and ViT-H image encoders of
SAM. For SAM quantization we apply per-channel quanti-
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zation both for activations and weights.

4.2. Matrix Multiplication

Figure | presents the representative linear layers of ViT-
B/16/224 and ViT-L/32/384. On an NVIDIA A100 GPU,
we observed that for a batch size equal to 1, the high-
est TOP/s rate was achieved by the INT8 TensorRT. How-
ever, for batch sizes greater than 1, our dynamically quan-
tized matrix multiplication kernel achieved better through-
put than FP32 native PyTorch kernel. Furthermore, when
comparing statically quantized linear kernels, those im-
plemented in Triton outperformed their TensorRT counter-
parts. For ViT-B/16/224, our implementation achieved 308
TOP/s, while TensorRT attained 184 TOP/s. For a batch
size greater than or equal to 256, our kernel delivered 460
TOP/s compared to 221 TOP/s for TensorRT. Similarly, for
ViT-L/32/384 with a batch size equal to 2048, we achieved
481 TOP/s compared to 266 TOP/s for TensorRT. For ViT-
B/16/224 with TensorRT INTS8, we achieved 359 TOP/s
over all sizes compared to 190 TOP/s TensorRT, while for
ViT-L/32/384, we attained 224 TOP/s compared to 381
TOP/s on average for TensorRT and Triton, respectively.
The implementation of matrix multiplication in TVM using
the tensor expressions (te) application programming inter-
face (API) delivered 17 TOP/s.

4.3. Attention

We evaluated the performance of our attention kernels with-
out a causal mask against PyTorch’s memory efficient at-
tention FP16, Fused Attention Triton FP16, and Flash At-
tention 2 (v2.5.6). We fixed batch size to b = 512, head
dimension d = 64, variable sequence length, and number
of heads h = 12 or h = 16 present in ViT-B and ViT-L.
Unlike [9, 10], we do not shrink the batch size as a function
of sequence length.

The designers of the ViT architecture selected “odd num-
bers for the sequence length”, e.g., 197, 577, and 785. For
those values, we observed a drop in the kernels’ perfor-
mance, except for our statically mixed-precision attention
implementation when the sequence length is equal to 197.
In that case, we achieved twice the performance compared
to FlashAttention2. Moreover, we matched its performance
for the 577 sequence length and for 785, we outperformed
this kernel. We also improved the performance compared to
the reference Triton FP16 implementation by an average of
19 + 4.02% for 16 heads.

4.4. Vision Transformers

As part of the experiments, we tested the numerical stability
of our quantized kernels on ViTs using the ImageNet1K val-
idation dataset. In Table 2, we present throughput speedup
over FP32 models with our static linear layer and mixed-
precision attention. We observed speedups over 3x for ViT-

Table 2. Throughout speedup (FP32 vs ours static) of ViT models
measured over ImageNet1K validation dataset.

Model Batch Size  Speedup (x)
ViT-S/16/224 2048 3.4
ViT-S/16/384 1024 3.55
ViT-S/32/224 2048 3.32
ViT-S/32/384 1024 2.9
ViT-B/16/224 2048 5.88
ViT-B/16/384 1024 591
ViT-B/32/224 2048 5.08
ViT-B/32/384 1024 5.22
ViT-L/16/224 2048 7.34
ViT-L/32/384 1024 6.94

S and up to 7x for ViT-L. Our findings showed that the mod-
els benefit from dynamic quantization for linear layers and
mixed-precision attention, with most models experiencing
minimal accuracy degradation; see Table 3. As expected,
we observed a low variance of the dynamic quantization
compared to the static variant due to the exact scaling fac-
tor calculated for each input. The quantization error accu-
mulated due to rounding and, small ViT models are most
vulnerable to static quantization. Nonetheless, with more
complex quantization methods, such as PTQ4ViT, we could
achieve accuracy on par with FP32. Additionally, models
such as ViT-L had lost up to 1% of top-1 accuracy while
reducing weight size by 75%.

4.5. SAM

We observed no performance degradation when applying
static and dynamic quantization for SAM’s base and large
image encoders. The mIOU slightly increased while pro-
cessing over 5.15x and 5.94x more images per second; see
Tables 4 and 5. Our dynamic kernels achieved increased
speedups by 1.8x and 2.3x compared to PyTorch operations
for the base and large variants. Unfortunately, the static im-
plementation has achieved lower throughput for base and
large variants. However, it should be noted that the inputs
and outputs of kernels had to be similarly quantized and de-
quantized as in the dynamic quantization scenario. Never-
theless, we achieved up to 6.50 more images per second pro-
cessed for the huge model compared to the baseline floating
point model.

5. Discussion

Developing efficient kernels for inference requires expert
hardware-specific knowledge. Consequently, adopting a
compiler stack designed for deep learning, such as TVM
or Triton, is appealing because it lowers the threshold to
extract high performance from the target hardware. Nev-
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Module of ViT-B/16/224; Shape m=197 k=3072 n=768

mmm torch
m TVM
= Ours dynamic
400 ™= Ours static
mmm TensorRT
300
w
8
[~
200
100 |‘ |
o m—=l III uxiil wslES wulBR mslBd B
128 256 512 1024 2048
Batch size
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Figure 1. Matrix multiply with dimensions m, n, and k over various batch sizes. Reference Pytorch runs in FP32 and TensorRT in INTS.
Our dynamic version accepts input FP16 with weights in INTS; our static implementation runs in INTS.
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Figure 2. Performance of various attention kernels: torch scaled dot product attention, FP16 triton reference implementation, dynamic
mixed-precision attention, static quantization mixed-precision attention, and FlashAttention2. The batch size was fixed to 512, the number
of heads to 12 or 16, and the head dim to 64. The sequence length varies from 197 to 8k.

ertheless, for user adoption, the stack should have concise
documentation, feature a simple API, and support special-
ized cores like Tensor Core. Unfortunately, we couldn’t
leverage this type of computational resource with the TVM
API, which explains why the performance in our experi-
ments with this framework flattens at 17 TOP/s.

The advantage of Triton is direct integration with deep
learning frameworks that enables researchers and develop-
ers to iterate and integrate custom CUDA kernels into their
codebase quickly. In the near future, Triton is expected to
support more target hardware, such as AMD ROCm GPUs
and Intel XPU, making the custom kernels portable. In
the experiments, our kernels implemented in Triton outper-

formed TensorRT closed-source INT8 matrix multiplication
achieving up to 481 TFLOP/s compared to 266 TFLOP/s for
ViT-L/32/384 with batch size equal to 2048. Moreover, for
the 16 heads with a batch size of 512, we could demonstrate
that mixed-precision attention could improve the Triton ref-
erence implementation and match the performance of the
custom FlashAttention2 CUDA kernel.

We demonstrated that the INT8 kernels implemented
in Triton are a viable alternative to CPU PyTorch and
TensorRT. Moreover, extending the PyTorch quantization
workflow with QAttn allows researchers to develop new
kernels and quantization algorithms accelerated by GPUs
for ViTs.
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Table 3. Top-1 accuracy on ImageNet1K validation dataset comparison between baselines and models with our kernels. We compare INT8
only linear with the option to add mixed-precision attention both in static and dynamic quantization (INT8-D) scenarios. Our runs are
averaged over five repetitions. The results of PTQ4ViT and Zhang et al. are as reported by the authors. In bold, we mark the best static
quantization result. With ((+)), we also include mixed-precision attention.

Model FP32 INTS8 INT8™ INTS8-D INT8-D+ PTQ4ViT Zhang et al.
ViT-5/16/224 81.38 70.96 £0.48 69.60 £0.92 78.94+£0.08 76.68+0.02 81.00 -
ViT-S/16/384 83.80 74.53 +£0.47 75.46 +1.79 &81.51 +£0.00 80.42+0.00 - -
ViT-S/32/224 7599 61.40+£0.64 60.33+1.85 73.854+0.03 71.12+£0.07 75.58 -
ViT-S/32/384 80.48 65.65+0.86 67.07 £0.98 78.49+0.01 74.08=+0.00 - -
ViT-B/16/224 85.10 82.01 £0.53 82.09+0.31 83.50£0.00 83.34+£0.02 84.25 81.81
ViT-B/16/384 8599 79.42+6.59 82.53+£0.62 84.10£0.02 84.02+0.00 85.82 -
ViT-B/32/224 80.73 70.21 £1.79 69.47+1.32 77.78£0.00 76.66 =+ 0.00 - -
ViT-B/32/384 83.35 81.17 £0.15 80.83+0.12 82.33+0.00 80.33 £ 0.00 - -
ViT-L/16/224 85.84 84.26 £0.21 84.13+0.47 &85.124+0.01 85.08£0.03 - 84.84
ViT-L/32/384 81.10 81.00£0.00 80.97 +£0.12 81.38+0.00 81.03£0.00 - -
Table 4. mIOU (%) performance on COCO2017 validation the kernels described in this paper carry over to other trans-

dataset. With ((*)), we denote the reproduced results of Segment
Anything Fast dynamic quantization (without torch.compile) [43].
With INT8 and INT8-D, we represent only static and dynamic
quantized linear layers.

Datatype SAM-B SAM-L SAM-H
FP32 53.64 56.18 58.09
INT8-D* 53.6 56.62 58.21
INT8-D 53.77 56.3 57.95
INTS 53.91 57.08 55.83

Table 5. Images per second processed by SAM models measured
over COCO2017 validation dataset with batch size equal to 32.
SAM with FP32 is the baseline implementation [22] with batch
size equal to 1. We reproduced results of FP32 and INT8-D*.

Data Type SAM-B SAM-L SAM-H
FP32 11.46 4.62 2.66
INTS8-D* 32.59 11.95 6.87
INTS8-D 58.99 27.47 16.09
INTS 47.78 25.92 17.31

We observed speedup of up to 7.34 in inference through-
put versus FP32 for ViT-L and up to 6.5x more processed
images per second for SAM-H, even after accounting for
quantization and dequantization overhead. However, we
believe that modifying the architecture of the ViT family
to use tensor shapes that are integer multiples of 32 would
improve performance even further.

6. Limitations and Future Work

This study only focuses on the ViT architecture as the base
architecture of the vision transformers family. Nonetheless,

former models, such as DeiT and Deit3. Introducing just
two kernels adds an overhead of quantization and dequan-
tization between activations and normalization layers. This
issue needs to be addressed in future work. Furthermore,
fusing QAttn with an inductor compiler to generate efficient
kernels for general operations and CUDA graphs could im-
prove the overall speed of torchdynamo-captured models.

7. Conclusions

We have shown that the implementation of INTS8 kernels in
Triton can be competitive with TensoRT. In addition, the
mixed-precision attention can match the performance of the
highly optimized CUDA FlashAttention2 implementation.
We believe that our open-source inference framework di-
rectly integrated with PyTorch will enable researchers to in-
novate, prototype, and validate their ideas for efficient infer-
ence more quickly, for example, with sub-byte types such as
INT4. In our setup, the top-1 performance of the ViT-B and
ViT-L models was not significantly degraded by applying
quantization to the INT8 linear layer and mixed-precision
attention on the ImageNet1K classification task. In addi-
tion, we demonstrated that the per-channel quantization of
the SAM image encoder did not affect the performance of
the models, which achieved up to 6.5x and 2.5x times higher
throughput, respectively, than the FP32 and INT8 PyTorch
implementations.
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