
QAttn: Efficient GPU Kernels for mixed-precision Vision Transformers

Piotr Kluska
IBM Research Europe

Universitat Politècnica de València
klu@zurich.ibm.com

Adrián Castelló
Universitat Politècnica de València

adcastel@disca.upv.es

Florian Scheidegger
IBM Research Europe
eid@zurich.ibm.com

A. Cristiano I. Malossi
IBM Research Europe
acm@zurich.ibm.com

Enrique S. Quintana-Ortı́
Universitat Politècnica de València

quintana@disca.upv.es

Abstract

Vision Transformers have demonstrated outstanding per-
formance in Computer Vision tasks. Nevertheless, this su-
perior performance for large models comes at the expense
of increasing memory usage for storing the parameters and
intermediate activations. To accelerate model inference,
in this work we develop and evaluate integer and mixed-
precision kernels in Triton for the efficient execution of two
fundamental building blocks of transformers –linear layer
and attention– on graphics processing units (GPUs). On
an NVIDIA A100 GPU, our kernel implementations of Vi-
sion Transformers achieve a throughput speedup of up to
7x compared with reference kernels in PyTorch floating-
point single precision (FP32). Additionally, the accuracy
for the ViT Large model top-1 drops by less than one per-
cent on the ImageNet1K classification task. We also observe
up to 6x increased throughput by applying our kernels to
the Segment Anything Model image encoder while keeping
the mIOU close to the FP32 reference on the COCO2017
dataset for static and dynamic quantization. Furthermore,
our kernels demonstrate improved speed to the TensorRT
INT8 linear layer, and we improve the throughput of base
FP16 (half precision) Triton attention on average by up to
19 ± 4.01%. We have open-sourced the QAtnn framework,
which is tightly integrated with the PyTorch quantization
workflow https://github.com/IBM/qattn.

1. Introduction
Recent advancements in Foundation Models (FM) [3], both
in Natural Language Processing (NLP) [38, 42, 45] and
Computer Vision (CV) [17, 27, 40], have extended the pre-
dictive performance of deep learning models. Nevertheless,
these advances come at a cost in terms of computational
requirements and memory resources. Currently, the base-

line reference for FM is a transformer architecture enhanced
with an attention mechanism [48]. Initially designed for
NLP, transformers have been adapted for CV, resulting in
the development of Vision Transformers (ViT) [17]. ViTs
are encoder-only models that are typically self-supervised,
pre-trained on a large amount of data, and later adapted for
downstream tasks such as image classification, object de-
tection, or instance segmentation. Similar to large language
models [45], ViTs come in different sizes, depending on the
number of layers and, as a result, parameters, which vary
from millions to 22 billion [12]. As a result, the largest
model requires a dedicated accelerator with sufficient mem-
ory to process the data. The large size of ViTs makes them
appropriate candidates for compression methods such as
quantization, but outliers in intermediate activations pose
a challenge [4, 11]. Quantization, a compression technique
that reduces the number of bits, converts computation and
data from “continuous” (floating point) to discrete (integer).
Integer 8-bit (INT8) inference is faster and more energy-
efficient than its floating-point counterparts, but the limited
range in which we can represent values makes it susceptible
to quantization errors during computation that may affect
the final accuracy of the deep learning model [20, 30].

Modern hardware includes dedicated units that support
efficient matrix multiplication in 8-bit and 16-bit floating
point (FP8 and {FP16; BFloat16}, resp.) as well as INT8
[6, 28, 46]. To take full advantage of these computing units,
users must use a specialized hardware runtime application
programming interface (API) such as CUDA [31], which re-
quires significant programming skills to take full advantage
of the graphics proccessing unit’s (GPU) capabilities. Most
deep learning frameworks, such as PyTorch [39], imple-
ment operations that can be accelerated with GPUs. How-
ever, because it is a general-purpose framework, there may
be missing implementations that are used, for example, in
quantization.

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3648

Table 1. Operation count (OPs) by percentage for ViT models and
latency measurements. We count only nodes used during the infer-
ence. Attention is counted as one operation even though it contains
two matrix multiplications with softmax. Number of layers, OPs,
and latency are provided as a percentage of the ViT large model.
We provide latency numbers for batch size b = 1 and b = 128.

Type # Layers OPs b=1 b=128

Linear 40 96.43 61.87 87.16
Attention 10 3.09 12.51 9.18
Conv2D < 1 0.25 0.51 0.27
Add 20 0.16 7.67 1.07
GELU 10 0.13 4.89 1.31
LayerNorm 20 0.08 12.52 1.01

Currently, there are specialized frameworks for acceler-
ating selected models on dedicated platforms, such as ggml
[18] or MLX [19]. ggml supports multiple hardware tar-
gets (x86, ARM, CUDA, Metal, etc.) and selected mod-
els, but requires the hardware API to accelerate inference.
MLX is a dedicated tensor framework for Apple’s silicon
chips to accelerate inference of deep learning models us-
ing the chip’s unified memory. However, while it has a fa-
miliar Python API, extending MLX with new kernels re-
quires C++ or Metal API knowledge. Alternatively, com-
pilers such as Apache TVM [7] allow custom kernels to be
written and optimised using general techniques; and next
compiled plus fine-tuned for selected target hardware, such
as a GPUs, ARM multicore processors, etc. Nevertheless,
writing developer-guided kernels in TVM is still a challeng-
ing chore that requires a significant understanding of the
target platform and, especially, the TVM compiler stack.

In contrast to the previous approaches, Triton is a
domain-specific language and compiler designed for devel-
oping efficient CUDA kernels in Python [44]. Triton com-
piles Python routines into device code with LLVM using
MLIR [23, 24]. Moreover, it provides an auto-tuning option
to hint the compiler about the sizes of the tensor operands.
Lastly, it directly integrates with PyTorch [39] and Jax [5]
(via Pallas), making it an ideal candidate for efficiently and
quickly developing new GPU kernels as it hides the com-
plexity of the CUDA language.

In our work, we focus on the quantization of the most
relevant layers and operations of ViT –the linear layer (ma-
trix multiplication) and the attention module. These are
the most dominant operation nodes in this architecture, ac-
counting for over 99% of the floating-point operations per
second (FLOPS) in the ViT large and taking up to 96.34%
of the time to process the data depending on the batch size,
as shown in Table 1. In doing so, we make the following
specific contributions:
• We develop QAttn (Quantized attention, pronounced like

katana), a Python framework with efficient GPU imple-
mentations of the linear layer and attention. Our inte-
gration with the quantization workflow in torch.fx [41]
and torch.compile [2] allows in-place replacement of Py-
Torch modules. (At this point, we note that the current
version of PyTorch does not support lowering the quan-
tized model to the GPU.)

• We evaluate the performance of matrix multiplication
with PyTorch, TVM, TensorRT [47], and our proposed
method over different sizes of linear layers present in ViT
models. The experimental results show that our imple-
mentation is competitive with closed-source TensorRT for
statically quantized matrix multiplication. Moreover, it
outperforms the TensorRT implementation and achieves
over 460 TOP/s on certain kernels.

• We compare the throughput performance of mixed-
precision attention with PyTorch memory efficient atten-
tion, the Triton FP16 reference, and FlashAttention2. Our
mixed-precision attention outperforms the FP16 baseline
implementation in Triton by up to 19±4.01% on average.

• We verify the numerical stability of our quantized and
mixed-precision kernels on the ImageNet1K [13] valida-
tion dataset across different ViT models.The experiments
with ViT-Large models show less than 1% degradation in
top-1 accuracy, with 75% weight reduction and up to 7x
speedup compared to FP32.

• We extend our matrix multiplication to support variations
of quantization granularity, e.g., scalar and per-channel.

• We apply dynamic and static quantized kernels to the im-
age encoder of the Segment Anything Model [22]. We
achieve over 5x more images processed per second for
the base and large image encoders without mIOU drop
over the COCO2017 [25] validation set for static and dy-
namic quantization. For the huge model, we achieve over
6x more images per second and no accuracy drop for dy-
namic quantization, while for static, the mIOU dropped
only by 2.66%
The rest of the paper is structured as follows. In Sec-

tion 2 we review the relevant literature in this area. In Sec-
tion 3, we introduce QAttn, starting with a brief description
of the deep learning operations and quantization. We also
present an example code that shows how the framework is
integrated with PyTorch. In Section 4, we present our exper-
imental setup and results, with subsections devoted to ma-
trix multiplication, attention, ViT performance for mixed-
precision inference, and SAM performance after quantiza-
tion. We discuss our findings in Section 5, followed by a
review of the limitations and future work in Section 6. Fi-
nally, we conclude our work in Section 7.

2. Related Work
The progression in hardware and software technology has
led to more powerful FMs. Nevertheless, the challenge re-

3649

mains of efficiently deploying FM by utilizing target hard-
ware resources. Currently, the standard format for inference
is FP32 or FP16. While efficient inference in FP16 is sup-
ported on modern hardware via specialized cores, e.g., Ten-
sor Cores in NVIDIA GPUs, INT8 is supposed to achieve
twice the theoretical throughput [33]. Moreover, INT8 con-
sumes two times less memory for loading model weights
and intermediate activations and requires significantly less
energy [8, 46].

TensorRT is an inference framework developed by
NVIDIA that can efficiently run deep learning models, in
multiple data formats (FP32, FP16, and INT8), both on dis-
crete GPUs and Jetson boards [29, 35]. TensorRT integrates
with TensorFlow [1], PyTorch [39], and ONNX Runtime
[37] via open-source libraries that aim to minimize the ef-
fort to port the models to the TensorRT runtime. However,
TensorRT is a closed-source library.

Another framework developed by NVIDIA is Faster-
Transformer [32]. This is an open-source tool that con-
tains specialized CUDA kernels for popular NLP and CV
transformer models for FP and INT inference. However,
NVIDIA recently deprecated FasterTransformer in favor of
TensorRT-LLM, which supports only NLP models [34].

PyTorch 2.0 natively supports CPU-only quantized deep
learning models via FBGEMM [21]. For PyTorch, GPU
support is enabled by lowering the model to TensorRT run-
time via the TorchTensorRT package [36]. While TorchTen-
sorRT is an open-source package, it utilizes closed-source
kernels from TensorRT. However, PyTorch has a flexible
backend configuration that we can extend to integrate INT8
GPU inference.

bitsandbytes is an open-source framework for efficient
training using mixed-precision data types [15]. The authors
developed custom CUDA and Triton kernels for efficient
INT8 and sub-byte types FP4 and normalized float 4-bit
[14]. Those kernels enable efficient training of the mod-
els as the states of the optimizers as well as the weights are
quantized [16]. The main target are large language models
(LLMs). However, they also implemented the Switchback
algorithm that could effectively train vision-language CLIP
ViT-L using the INT8 linear layer with up to 25% speedup
compared to BFloat16 [50].

Lastly, methods like FQ-ViT [26] or PTQ4ViT [51] tried
to find optimal scaling factors for the weights of ViT to
avoid performance degradation. However, those methods
simulated INT8 quantization to run the methods efficiently
on GPUs. Nevertheless, Zhang et al. [52] demonstrated
the implementation of INT8 approximated Softmax, GELU,
and Layer Normalization. They claim to achieve up to 5x
speedups compared to FP32 on Apple Silicon A13 and M1
chips.

3. QAttn
In this section, we provide a detailed description of various
aspects of the QAttn framework. Concretely, we start by
briefly discussing the quantization process, followed by a
definition of the quantized matrix multiplication and fused
attention operations. Finally, we discuss the integration of
the QAttn framework in the PyTorch quantization workflow.

3.1. Quantization

Quantization is an approximate method that can help to re-
duce memory and energy consumption for deep learning
tasks. As part of this process, the data format is compressed
by, for example, reducing the number of bits from the stan-
dard 32 in deep learning algorithms to 16 or even 8 bits.
Additionally, we can switch from floating-point data and
arithmetic to integer to further reduce memory and energy
usage. However, by doing so, we introduce quantization
errors due to the reduced bit width and the use of integer
arithmetic. Fortunately, deep learning models are fair can-
didates for quantization since they are heavily overparame-
terized, which helps minimize the quantization error.

In our study, we consider symmetric INT8 post-training
static and dynamic quantization. In this scheme, the quanti-
zation function

Q(X) = ⌊X
s
⌉, (1)

scales the entries of the input tensor X element-wise, and
then rounds each to the nearest integer. The scaling factor s
is calculated, based on the maximum absolute value in the
input tensor X , as

s =
max(abs(X))

(qmax − qmin)/2
, (2)

where qmin and qmax respectively denote the lower bound
and the upper bound of the data type. (For example, in the
case of INT8 and two’s complement representation, these
respectively correspond to -128 and +127). The inverse op-
eration to quantization is dequantization, which calculates
the approximate value in the continuous format as

Q′(Q(X), s) = Q(X) · s. (3)

Considering only symmetric quantization, we do not in-
clude zero point in (1). While we can calculate the scaling
factor s for parametric layers, for intermediate activations
we need to either statically estimate that parameter based
on the calibration set or, alternatively, choose the value of
s dynamically during inference. The higher flexibility of
dynamic quantization introduces an overhead to calculate
scaling factors based on the data range of the inputs. More-
over, we can consider different granularities for computing
the scaling factor. Given a multi-dimensional tensor, we can

3650

apply a scalar quantization scale, which is the most storage-
efficient. In this case for the whole tensor, we store an ad-
ditional four bytes for the FP32 scale. In comparison, de-
pending on the model’s sensitivity to quantization, we can
compute per-channel scaling factors. For example. for an
m × n matrix A, if we consider quantization per row, we
add m FP32 values to dequantize the matrix.

3.2. Operations

3.2.1 Linear

The linear layer is the fundamental component in the ViT
architecture. This type of module performs a matrix mul-
tiplication involving the learned weights W and the input
activation:

C = C(X,WT) = X ·WT , (4)

where X is the input matrix, of size m × n, and W is the
weight matrix, of size k × n. The individual entries of the
m×k result matrix C in (4) are thus given by a linear com-
bination between the entries in the rows of X and WT :

cij =

n∑
p=1

xipwjp. (5)

In static quantization, we quantize both X and W but
also need to re-quantize the output to INT8:

QS = Q(C(Q(X), Q(WT))) (6)

so that, for the entries of the result,

qS
ij = s S

n∑
p=1

Q(xip)Q(wjp), (7)

where s S is a static re-quantization scaling factor that is
computed as a linear combination of the scaling factors for
X , W and C [20]:

s S =
sX sW
sC

. (8)

Note that, in order to avoid overflow during the INT8 matrix
multiplication, we use an INT32 accumulator.

In dynamic quantization, the output is instead an FP16
or FP32 matrix:

C D = C(Q(X), Q(WT)), (9)

with its output entries given by

cD
ij = sD

n∑
p=1

Q(xip)Q(wjp), (10)

and the dynamic scaling factor

sD = sX sW . (11)

3.2.2 Attention

The attention mechanism is an indispensable element of the
transformer that performs a pivotal function in NLP and CV
tasks. It operates on three input tensors, namely query (Q),
key (K), and value (V), all of dimension n × d, where n
denotes the context length and d corresponds to the head
size. The process recurs over h heads and a batch of size b.

The attention module operates by multiplying the values
matrix V with a weighted matrix. That is calculated as a
function of the similarity between Q and K. Concretely,
the similarity is determined by multiplying the matrices Q
and K, and then scaling the result as follows:

S =
C(Q,KT)√

d
. (12)

The attention weights are then obtained by applying the
softmax function to the result:

P = softmax(S), (13)

and the resulting weights are used to adjust the values for
the attention output:

O = C(P, V). (14)

3.2.3 Mixed-precision Attention

Dao et al. introduced Flash Attention and Flash Attention-
2 [9, 10] with kernels designed to accelerate the forward
pass of the attention mechanism by exploiting the hardware
of data-parallel GPUs. Starting from these kernels, in this
work, we developed static and dynamic mixed-precision at-
tention in the Triton language, described next.

Similar to matrix multiplication, we have to calculate
scaling factors for input and output in static quantization.
To ensure the numerical stability of attention, we conduct
the initial matrix multiplication in INT8, and subsequently
de-quantize it to FP32:

S =
sQ sK√

d
C(Q(Q),Q(KT)), (15)

for calculating attention weights, using softmax in floating
point arithmetic:

P = softmax(S). (16)

For the second matrix multiplication, we also de-
quantize the values matrix V to calculate it in floating point
arithmetic. For static mixed precision, the output is of INT8
data type,

O S = Q(C(P,Q′(Q(V), sV))). (17)

Meanwhile, for dynamic mixed precision, the output is in
FP16,

O D = C(P,Q′(Q(V), sV)). (18)

3651

3.3. PyTorch Integration

QAttn is a kernel library that can efficiently deploy mixed-
precision ViT models. It implements statically and dynam-
ically quantized linear layers and mixed-precision attention
modules. It is designed to work with the PyTorch FX quan-
tization workflow (via added backend configuration) and
automatically captures and lowers the graph to supported
GPU kernels. QAttn supports conventional as well as new
FP types, such as FP32, FP16, and BF16, and executes Tri-
ton kernels in INT8 or INT8/FP16. Once the model is con-
verted, it behaves like a torch nn.Module and can be ap-
plied in the same places where the previous model was used.
Moreover, QAttn supports the experimental torchdynamo
export path and PyTorch 2.0 quantization workflow. The
modules and functions are lowered to default PyTorch op-
erations representation (ATen) and then replaced with sup-
ported kernels, while the rest is kept as native PyTorch op-
erations. In Algorithm 1, we present a simple example of
how to utilize QAttn for static quantization of the model.

4. Experimental Results
4.1. Experiment setup

We used PyTorch 2.2.1, Triton 2.2.0, TensorRT 8.6.1 and
TVM 0.13.0. The measurements were performed on an
NVIDIA A100 GPU with an 80-GB HBM2e RAM. We
utilized the torch.fx package for capturing and quantizing
the models’ graphs. While the torch.fx module might not
be able to capture the graph if there are control loops or
conditional statements, it is effective for ViT graphs. For
the Segment Anything Model (SAM) [22] image encoder,
we utilized the PyTorch 2.0 dynamo graph capture mecha-
nism. We measured operation performance using TFLOP/s
(tera floating-point operations per second). We use the same
number of arithmetic for all algorithms, corresponding to
those performed by the FP32 version, even though the quan-
tized version, of those arithmetic opeartions are performed
in integer arithmetic. We run the operation 1000 times with
100 warm-up steps with L2 cache flushed in between mea-
surements. For consistency throughout the following dis-
cussion, we will refer to both as TOP/s.

We identified distinct linear layers and attention shapes
across various models and assessed the raw perfor-
mance of these operations with varying batch size b =
{1; 32; 64; 128; 256; 512; 1, 024; 2, 048}. Specifically, we
compared the performance of PyTorch FP32 with TensorRT
INT8, our implementations in TVM (static INT8), and Tri-
ton for matrix multiplication, with static and dynamic INT8
quantization.

We evaluated the models’ performance using Ima-
geNet1k validation dataset [13] after quantization. The met-
ric reported is the top-1 accuracy over 1,000 labels averaged
over 5 runs. Moreover, we reported the throughput speedup

Algorithm 1 Example usage of QAttn static quantization
with the torch.compile quantization workflow.

import torch
from torch._export import capture_pre_autograd_graph
from torch.ao.quantization.quantize_pt2e import (

prepare_pt2e,
convert_pt2e,

)
import qattn
from qattn.pt2e.quantizer import (

QAttnQuantizer,
get_default_qattn_quantization_config,

)

initialize quantizer
quantizer = QAttnQuantizer()
quantizer.set_module_type(

torch.nn.Linear,
get_default_qattn_quantization_config(

per_channel=True,
is_dynamic=False,
input_per_channel=True,

),
)

initialize model and sample
model = ...
sample = ...
export and prepare the model
exported_model = capture_pre_autograd_graph(

model,
(sample,),

)
prepared_model = prepare_pt2e(

exported_model.cpu(),
quantizer,

).cuda()

calibrate for static quantization
...
converted_model = convert_pt2e(

prepared_model,
fold_quantize=True,

)
invoke lowering via torch compile
model = torch.compile(prepared_model, backend="qattn")
_ = model(sample)

of our quantized and mixed-precision kernels compared to
the native FP32 PyTorch kernel. We calibrated the models
for static quantization using 2,000 random samples from the
ImageNet1K training dataset. We experimented with ViT
models of different parameter sizes (s), patch sizes (p), and
input image sizes (i), denoted as ViT-s/p/i. Concretely, we
consider three different ViT sizes: small (ViT-S), base (ViT-
B), and large (ViT-L); patch sizes of 16, 32; and image size
of 224, 384. Our evaluation tests are named, e.g., as ViT-
L/16/224. The model weights and code were fetched from
the timm package [49].

Similarly, for instance segmentation, we utilized the
COCO2017 validation dataset [25]. We report the mean in-
tersection over union (mIOU) metric. We dynamically and
statically quantize linear layers in the SAM image encoder.
We evaluate ViT-B, ViT-L, and ViT-H image encoders of
SAM. For SAM quantization we apply per-channel quanti-

3652

zation both for activations and weights.

4.2. Matrix Multiplication

Figure 1 presents the representative linear layers of ViT-
B/16/224 and ViT-L/32/384. On an NVIDIA A100 GPU,
we observed that for a batch size equal to 1, the high-
est TOP/s rate was achieved by the INT8 TensorRT. How-
ever, for batch sizes greater than 1, our dynamically quan-
tized matrix multiplication kernel achieved better through-
put than FP32 native PyTorch kernel. Furthermore, when
comparing statically quantized linear kernels, those im-
plemented in Triton outperformed their TensorRT counter-
parts. For ViT-B/16/224, our implementation achieved 308
TOP/s, while TensorRT attained 184 TOP/s. For a batch
size greater than or equal to 256, our kernel delivered 460
TOP/s compared to 221 TOP/s for TensorRT. Similarly, for
ViT-L/32/384 with a batch size equal to 2048, we achieved
481 TOP/s compared to 266 TOP/s for TensorRT. For ViT-
B/16/224 with TensorRT INT8, we achieved 359 TOP/s
over all sizes compared to 190 TOP/s TensorRT, while for
ViT-L/32/384, we attained 224 TOP/s compared to 381
TOP/s on average for TensorRT and Triton, respectively.
The implementation of matrix multiplication in TVM using
the tensor expressions (te) application programming inter-
face (API) delivered 17 TOP/s.

4.3. Attention

We evaluated the performance of our attention kernels with-
out a causal mask against PyTorch’s memory efficient at-
tention FP16, Fused Attention Triton FP16, and Flash At-
tention 2 (v2.5.6). We fixed batch size to b = 512, head
dimension d = 64, variable sequence length, and number
of heads h = 12 or h = 16 present in ViT-B and ViT-L.
Unlike [9, 10], we do not shrink the batch size as a function
of sequence length.

The designers of the ViT architecture selected “odd num-
bers for the sequence length”, e.g., 197, 577, and 785. For
those values, we observed a drop in the kernels’ perfor-
mance, except for our statically mixed-precision attention
implementation when the sequence length is equal to 197.
In that case, we achieved twice the performance compared
to FlashAttention2. Moreover, we matched its performance
for the 577 sequence length and for 785, we outperformed
this kernel. We also improved the performance compared to
the reference Triton FP16 implementation by an average of
19± 4.02% for 16 heads.

4.4. Vision Transformers

As part of the experiments, we tested the numerical stability
of our quantized kernels on ViTs using the ImageNet1K val-
idation dataset. In Table 2, we present throughput speedup
over FP32 models with our static linear layer and mixed-
precision attention. We observed speedups over 3x for ViT-

Table 2. Throughout speedup (FP32 vs ours static) of ViT models
measured over ImageNet1K validation dataset.

Model Batch Size Speedup (x)

ViT-S/16/224 2048 3.4
ViT-S/16/384 1024 3.55
ViT-S/32/224 2048 3.32
ViT-S/32/384 1024 2.9
ViT-B/16/224 2048 5.88
ViT-B/16/384 1024 5.91
ViT-B/32/224 2048 5.08
ViT-B/32/384 1024 5.22
ViT-L/16/224 2048 7.34
ViT-L/32/384 1024 6.94

S and up to 7x for ViT-L. Our findings showed that the mod-
els benefit from dynamic quantization for linear layers and
mixed-precision attention, with most models experiencing
minimal accuracy degradation; see Table 3. As expected,
we observed a low variance of the dynamic quantization
compared to the static variant due to the exact scaling fac-
tor calculated for each input. The quantization error accu-
mulated due to rounding and, small ViT models are most
vulnerable to static quantization. Nonetheless, with more
complex quantization methods, such as PTQ4ViT, we could
achieve accuracy on par with FP32. Additionally, models
such as ViT-L had lost up to 1% of top-1 accuracy while
reducing weight size by 75%.

4.5. SAM

We observed no performance degradation when applying
static and dynamic quantization for SAM’s base and large
image encoders. The mIOU slightly increased while pro-
cessing over 5.15x and 5.94x more images per second; see
Tables 4 and 5. Our dynamic kernels achieved increased
speedups by 1.8x and 2.3x compared to PyTorch operations
for the base and large variants. Unfortunately, the static im-
plementation has achieved lower throughput for base and
large variants. However, it should be noted that the inputs
and outputs of kernels had to be similarly quantized and de-
quantized as in the dynamic quantization scenario. Never-
theless, we achieved up to 6.50 more images per second pro-
cessed for the huge model compared to the baseline floating
point model.

5. Discussion

Developing efficient kernels for inference requires expert
hardware-specific knowledge. Consequently, adopting a
compiler stack designed for deep learning, such as TVM
or Triton, is appealing because it lowers the threshold to
extract high performance from the target hardware. Nev-

3653

Figure 1. Matrix multiply with dimensions m, n, and k over various batch sizes. Reference Pytorch runs in FP32 and TensorRT in INT8.
Our dynamic version accepts input FP16 with weights in INT8; our static implementation runs in INT8.

Figure 2. Performance of various attention kernels: torch scaled dot product attention, FP16 triton reference implementation, dynamic
mixed-precision attention, static quantization mixed-precision attention, and FlashAttention2. The batch size was fixed to 512, the number
of heads to 12 or 16, and the head dim to 64. The sequence length varies from 197 to 8k.

ertheless, for user adoption, the stack should have concise
documentation, feature a simple API, and support special-
ized cores like Tensor Core. Unfortunately, we couldn’t
leverage this type of computational resource with the TVM
API, which explains why the performance in our experi-
ments with this framework flattens at 17 TOP/s.

The advantage of Triton is direct integration with deep
learning frameworks that enables researchers and develop-
ers to iterate and integrate custom CUDA kernels into their
codebase quickly. In the near future, Triton is expected to
support more target hardware, such as AMD ROCm GPUs
and Intel XPU, making the custom kernels portable. In
the experiments, our kernels implemented in Triton outper-

formed TensorRT closed-source INT8 matrix multiplication
achieving up to 481 TFLOP/s compared to 266 TFLOP/s for
ViT-L/32/384 with batch size equal to 2048. Moreover, for
the 16 heads with a batch size of 512, we could demonstrate
that mixed-precision attention could improve the Triton ref-
erence implementation and match the performance of the
custom FlashAttention2 CUDA kernel.

We demonstrated that the INT8 kernels implemented
in Triton are a viable alternative to CPU PyTorch and
TensorRT. Moreover, extending the PyTorch quantization
workflow with QAttn allows researchers to develop new
kernels and quantization algorithms accelerated by GPUs
for ViTs.

3654

Table 3. Top-1 accuracy on ImageNet1K validation dataset comparison between baselines and models with our kernels. We compare INT8
only linear with the option to add mixed-precision attention both in static and dynamic quantization (INT8-D) scenarios. Our runs are
averaged over five repetitions. The results of PTQ4ViT and Zhang et al. are as reported by the authors. In bold, we mark the best static
quantization result. With ((+)), we also include mixed-precision attention.

Model FP32 INT8 INT8+ INT8-D INT8-D+ PTQ4ViT Zhang et al.

ViT-S/16/224 81.38 70.96± 0.48 69.60± 0.92 78.94± 0.08 76.68± 0.02 81.00 -
ViT-S/16/384 83.80 74.53± 0.47 75.46 ± 1.79 81.51± 0.00 80.42± 0.00 - -
ViT-S/32/224 75.99 61.40± 0.64 60.33± 1.85 73.85± 0.03 71.12± 0.07 75.58 -
ViT-S/32/384 80.48 65.65± 0.86 67.07 ± 0.98 78.49± 0.01 74.08± 0.00 - -
ViT-B/16/224 85.10 82.01± 0.53 82.09± 0.31 83.50± 0.00 83.34± 0.02 84.25 81.81
ViT-B/16/384 85.99 79.42 ± 6.59 82.53± 0.62 84.10± 0.02 84.02± 0.00 85.82 -
ViT-B/32/224 80.73 70.21 ± 1.79 69.47± 1.32 77.78± 0.00 76.66± 0.00 - -
ViT-B/32/384 83.35 81.17 ± 0.15 80.83± 0.12 82.33± 0.00 80.33± 0.00 - -
ViT-L/16/224 85.84 84.26± 0.21 84.13 ± 0.47 85.12± 0.01 85.08± 0.03 - 84.84
ViT-L/32/384 81.10 81.00 ± 0.00 80.97 ± 0.12 81.38± 0.00 81.03± 0.00 - -

Table 4. mIOU (%) performance on COCO2017 validation
dataset. With ((*)), we denote the reproduced results of Segment
Anything Fast dynamic quantization (without torch.compile) [43].
With INT8 and INT8-D, we represent only static and dynamic
quantized linear layers.

Data type SAM-B SAM-L SAM-H
FP32 53.64 56.18 58.09
INT8-D∗ 53.6 56.62 58.21
INT8-D 53.77 56.3 57.95
INT8 53.91 57.08 55.83

Table 5. Images per second processed by SAM models measured
over COCO2017 validation dataset with batch size equal to 32.
SAM with FP32 is the baseline implementation [22] with batch
size equal to 1. We reproduced results of FP32 and INT8-D∗.

Data Type SAM-B SAM-L SAM-H

FP32 11.46 4.62 2.66
INT8-D∗ 32.59 11.95 6.87
INT8-D 58.99 27.47 16.09
INT8 47.78 25.92 17.31

We observed speedup of up to 7.34 in inference through-
put versus FP32 for ViT-L and up to 6.5x more processed
images per second for SAM-H, even after accounting for
quantization and dequantization overhead. However, we
believe that modifying the architecture of the ViT family
to use tensor shapes that are integer multiples of 32 would
improve performance even further.

6. Limitations and Future Work
This study only focuses on the ViT architecture as the base
architecture of the vision transformers family. Nonetheless,

the kernels described in this paper carry over to other trans-
former models, such as DeiT and Deit3. Introducing just
two kernels adds an overhead of quantization and dequan-
tization between activations and normalization layers. This
issue needs to be addressed in future work. Furthermore,
fusing QAttn with an inductor compiler to generate efficient
kernels for general operations and CUDA graphs could im-
prove the overall speed of torchdynamo-captured models.

7. Conclusions

We have shown that the implementation of INT8 kernels in
Triton can be competitive with TensoRT. In addition, the
mixed-precision attention can match the performance of the
highly optimized CUDA FlashAttention2 implementation.
We believe that our open-source inference framework di-
rectly integrated with PyTorch will enable researchers to in-
novate, prototype, and validate their ideas for efficient infer-
ence more quickly, for example, with sub-byte types such as
INT4. In our setup, the top-1 performance of the ViT-B and
ViT-L models was not significantly degraded by applying
quantization to the INT8 linear layer and mixed-precision
attention on the ImageNet1K classification task. In addi-
tion, we demonstrated that the per-channel quantization of
the SAM image encoder did not affect the performance of
the models, which achieved up to 6.5x and 2.5x times higher
throughput, respectively, than the FP32 and INT8 PyTorch
implementations.

Acknowledgments. The authors gratefully acknowledge
funding from European Union’s Horizon 2020 Research
and Innovation Programme under the Marie Skłodowska
Curie grant agreement No. 956090 (APROPOS: Ap-
proximate Computing for Power and Energy Optimisation,
https://www.apropos-itn.eu/).

3655

References
[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow:
Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467, 2016. 3

[2] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein,
Animesh Jain, Michael Voznesensky, Bin Bao, Peter Bell,
David Berard, Evgeni Burovski, et al. Pytorch 2: Faster
machine learning through dynamic python bytecode trans-
formation and graph compilation. 2024. 2

[3] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Alt-
man, Simran Arora, Sydney von Arx, Michael S Bernstein,
Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al.
On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258, 2021. 1

[4] Yelysei Bondarenko, Markus Nagel, and Tijmen
Blankevoort. Quantizable transformers: Removing
outliers by helping attention heads do nothing. arXiv
preprint arXiv:2306.12929, 2023. 1

[5] James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas,
Skye Wanderman-Milne, and Qiao Zhang. JAX: com-
posable transformations of Python+NumPy programs.
http://github.com/google/jax, 2018. 2

[6] Neil Burgess, Jelena Milanovic, Nigel Stephens, Konstanti-
nos Monachopoulos, and David Mansell. Bfloat16 process-
ing for neural networks. In 2019 IEEE 26th Symposium on
Computer Arithmetic (ARITH), pages 88–91. IEEE, 2019. 1

[7] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng,
Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang,
Yuwei Hu, Luis Ceze, et al. {TVM}: An automated {End-
to-End} optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 18), pages 578–594, 2018. 2

[8] William Dally. High-performance hardware for machine
learning. Nips Tutorial, 2:3, 2015. 3

[9] Tri Dao. Flashattention-2: Faster attention with bet-
ter parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, 2023. 4, 6

[10] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christo-
pher Ré. Flashattention: Fast and memory-efficient exact at-
tention with io-awareness. Advances in Neural Information
Processing Systems, 35:16344–16359, 2022. 4, 6

[11] Timothée Darcet, Maxime Oquab, Julien Mairal, and Pi-
otr Bojanowski. Vision transformers need registers. arXiv
preprint arXiv:2309.16588, 2023. 1

[12] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr
Padlewski, Jonathan Heek, Justin Gilmer, Andreas Peter
Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdul-
mohsin, et al. Scaling vision transformers to 22 billion pa-
rameters. In International Conference on Machine Learning,
pages 7480–7512. PMLR, 2023. 1

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 2, 5

[14] Tim Dettmers and Luke Zettlemoyer. The case for 4-bit pre-
cision: k-bit inference scaling laws. In International Confer-
ence on Machine Learning, pages 7750–7774. PMLR, 2023.
3

[15] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. Llm. int8 (): 8-bit matrix multiplication for
transformers at scale. arXiv preprint arXiv:2208.07339,
2022. 3

[16] Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettle-
moyer. 8-bit optimizers via block-wise quantization. 9th In-
ternational Conference on Learning Representations, ICLR,
2022. 3

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1

[18] Georgi Gerganov. ggml. https://github.com/
ggerganov/ggml. 2

[19] Awni Hannun, Jagrit Digani, Angelos Katharopoulos, and
Ronan Collobert. MLX: Efficient and flexible machine learn-
ing on apple silicon. https://github.com/ml-
explore, 2023. 2

[20] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry
Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2704–2713, 2018. 1, 4

[21] Daya Khudia, Jianyu Huang, Protonu Basu, Summer
Deng, Haixin Liu, Jongsoo Park, and Mikhail Smelyanskiy.
Fbgemm: Enabling high-performance low-precision deep
learning inference. arXiv preprint arXiv:2101.05615, 2021.
3

[22] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 4015–4026, 2023. 2, 5,
8

[23] Chris Lattner and Vikram Adve. LLVM: A compilation
framework for lifelong program analysis & transformation.
In International symposium on code generation and opti-
mization, 2004. CGO 2004., pages 75–86. IEEE, 2004. 2

[24] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Co-
hen, Andy Davis, Jacques Pienaar, River Riddle, Tatiana Sh-
peisman, Nicolas Vasilache, and Oleksandr Zinenko. MLIR:
Scaling compiler infrastructure for domain specific computa-
tion. In 2021 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pages 2–14. IEEE,
2021. 2

[25] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In

3656

Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer, 2014. 2, 5

[26] Yang Lin, Tianyu Zhang, Peiqin Sun, Zheng Li, and
Shuchang Zhou. Fq-vit: Post-training quantization
for fully quantized vision transformer. arXiv preprint
arXiv:2111.13824, 2021. 3

[27] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 10012–10022, 2021. 1

[28] Paulius Micikevicius, Dusan Stosic, Neil Burgess, Mar-
ius Cornea, Pradeep Dubey, Richard Grisenthwaite, Sang-
won Ha, Alexander Heinecke, Patrick Judd, John Kamalu,
et al. FP8 formats for deep learning. arXiv preprint
arXiv:2209.05433, 2022. 1

[29] Szymon Migacz. 8-bit inference with tensorrt. In GPU tech-
nology conference, page 5, 2017. 3

[30] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yely-
sei Bondarenko, Mart Van Baalen, and Tijmen Blankevoort.
A white paper on neural network quantization. arXiv
preprint arXiv:2106.08295, 2021. 1

[31] John Nickolls, Ian Buck, Michael Garland, and Kevin
Skadron. Scalable parallel programming with cuda: Is cuda
the parallel programming model that application developers
have been waiting for? Queue, 6(2):40–53, 2008. 1

[32] NVIDIA. FasterTransformer. https://github.com/
NVIDIA/FasterTransformer, . 3

[33] NVIDIA. NVIDIA A100 GPUs power the modern data
center. https://www.nvidia.com/en-us/data-
center/a100/, . 3

[34] NVIDIA. TensorRT-LLM. https://github.com/
NVIDIA/TensorRT-LLM, . 3

[35] NVIDIA. TensorRT. https://github.com/NVIDIA/
TensorRT, . 3

[36] NVIDIA. Torch-TensorRT. https://github.com/
pytorch/TensorRT, . 3

[37] ONNX. ONNX Runtime. https://github.com/
microsoft/onnxruntime, 2018. 3

[38] OpenAI. GPT-4 technical report. arXiv preprint
arXiv:2303.08774, 2023. 1

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
1, 2, 3

[40] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 1

[41] James Reed, Zachary DeVito, Horace He, Ansley Ussery,
and Jason Ansel. Torch. fx: Practical program capture and
transformation for deep learning in python. Proceedings of
Machine Learning and Systems, 4:638–651, 2022. 2

[42] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie
Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné,
Alexandra Sasha Luccioni, François Yvon, Matthias Gallé,
et al. Bloom: A 176b-parameter open-access multilingual
language model. arXiv preprint arXiv:2211.05100, 2022. 1

[43] Pytorch Team. pytorch-labs/segment-anything-fast.
https://github.com/pytorch-labs/segment-
anything-fast, 2023. 8

[44] Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Tri-
ton: an intermediate language and compiler for tiled neu-
ral network computations. In Proceedings of the 3rd ACM
SIGPLAN International Workshop on Machine Learning and
Programming Languages, pages 10–19, 2019. 2

[45] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023. 1

[46] Mart van Baalen, Andrey Kuzmin, Suparna S Nair, Yuwei
Ren, Eric Mahurin, Chirag Patel, Sundar Subramanian,
Sanghyuk Lee, Markus Nagel, Joseph Soriaga, et al. FP8 ver-
sus INT8 for efficient deep learning inference. arXiv preprint
arXiv:2303.17951, 2023. 1, 3

[47] Han Vanholder. Efficient inference with tensorrt. In GPU
Technology Conference, 2016. 2

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 1

[49] Ross Wightman. Pytorch image models. https:
//github.com/rwightman/pytorch- image-
models, 2019. 5

[50] Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari
Morcos, Ali Farhadi, and Ludwig Schmidt. Stable and low-
precision training for large-scale vision-language models.
arXiv preprint arXiv:2304.13013, 2023. 3

[51] Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu, and
Guangyu Sun. Ptq4vit: Post-training quantization for vision
transformers with twin uniform quantization. In European
Conference on Computer Vision, pages 191–207. Springer,
2022. 3

[52] Zining Zhang, Bingsheng He, and Zhenjie Zhang. Practical
edge kernels for integer-only vision transformers under post-
training quantization. Proceedings of Machine Learning and
Systems, 5, 2023. 3

3657

