
HaLViT: Half of the Weights are Enough

Onur Can Koyun Behçet Uğur Töreyin
Informatics Institute

Signal Processing for Computational Intelligence Research Group (SP4CING)
Dept. of Artificial Intelligence and Data Engineering

İstanbul Technical University, İstanbul, Türkiye
{okoyun, toreyin}@itu.edu.tr

Abstract

Deep learning architectures like Transformers and Con-
volutional Neural Networks (CNNs) have led to ground-
breaking advances across numerous fields. However, their
extensive need for parameters poses challenges for imple-
mentation in environments with limited resources. In our re-
search, we propose a strategy that focuses on the utilization
of the column and row spaces of weight matrices, signif-
icantly reducing the number of required model parameters
without substantially affecting performance. This technique
is applied to both Bottleneck and Attention layers, achieving
a notable reduction in parameters with minimal impact on
model efficacy. Our proposed model, HaLViT, exemplifies
a parameter-efficient Vision Transformer. Through rigorous
experiments on the ImageNet dataset and COCO dataset,
HaLViT’s performance validates the effectiveness of our
method, offering results comparable to those of conven-
tional models.

1. Introduction

Deep learning models, particularly Transformers and Con-
volutional Neural Networks (CNNs), have emerged as pow-
erful tools in the field of artificial intelligence, catalyzing
advancements in various domains such as computer vision,
natural language processing, and speech recognition [24,
38]. However, these models often require a significant
number of parameters, leading to challenges in deploying
them in resource-constrained environments [2, 35].

CNNs, since their resurgence with AlexNet in 2012,
have been the cornerstone of computer vision tasks, offering
state-of-the-art performance in areas like image classifica-
tion, object detection, and more [16, 24]. The evolution of
CNN architectures, from AlexNet to more complex designs
like ResNet and EfficientNet, has consistently sought to bal-
ance performance with computational efficiency [16, 35].

On the other hand, Transformers, introduced by Vaswani
et al. [38], have revolutionized the field of natural language
processing and more recently have made significant inroads
into computer vision [9]. The Transformer’s attention
mechanism allows models to weigh the importance of
different parts of the input data, a feature that has proven
highly effective in various tasks. However, this capability
comes at the cost of increased model complexity and a
higher number of parameters. The evolution of Vision
Transformers (ViTs) has led to a diverse range of models
that further expand their applicability in computer vision.
Notable among these is the original Vision Transformer
(ViT), which applies the Transformer architecture directly
to image patches for classification [9]. Following ViT,
the Swin Transformer introduces a hierarchical structure
using shifted windows, enhancing performance in tasks like
object detection and semantic segmentation [29].

The DETR model integrates Transformers for end-to-
end object detection, showcasing the flexibility of Trans-
former models in adapting to different tasks [3]. Addi-
tionally, models like DeiT and DINO have contributed to
the field by focusing on data-efficient training and self-
supervised learning, respectively [4, 36]. Other significant
contributions include Deformable DETR for more flexible
object detection [52], CCT for compactness in Transformer
models [15], and NesT which proposes a nested hierarchical
approach [50].

Moreover, models like PVT have been developed to pro-
vide dense predictions without relying on convolutions, in-
dicating the potential of Transformers to replace traditional
CNNs in certain applications [40]. The T2T-ViT model
takes a unique approach by converting tokens to tokens,
which is a novel way of training Vision Transformers from
scratch [47]. Additionally, the introduction of convolutions
to Vision Transformers in the CvT model demonstrates the
ongoing integration and evolution of Transformer and CNN
architectures [43].

The challenge of deploying these large models in

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3669

resource-limited settings, such as mobile devices or edge
computing platforms, has spurred research into parameter-
efficient architectures [19, 33]. Techniques like network
pruning, quantization, and knowledge distillation have been
explored to reduce the size and computational requirements
of these models without significantly compromising their
performance [14, 22, 32].

In this work, we introduce an innovative method aimed
at enhancing parameter efficiency within deep learning
architectures, with a particular emphasis on Transformers
and Convolutional Neural Networks (CNNs). Leveraging
the column and row spaces of weight matrices, we propose
the HaLViT, a novel architecture that significantly reduces
the parameter count of Vision Transformers (ViTs) by
half. This reduction is meticulously designed to maintain
performance fidelity, a claim substantiated through rigorous
evaluation on the ImageNet-1k dataset. Further empirical
investigations extend to the realm of transfer learning on
smaller datasets, alongside object detection tasks utilizing
the COCO dataset in conjunction with the Mask-RCNN
framework. The primary contribution of our approach lies
in its ability to offer a parameter-efficient solution for deep
learning models, particularly beneficial in environments
constrained by limited memory resources. The broader
implications of our research transcend academic curiosity,
providing a viable pathway for the deployment of arti-
ficial intelligence models in practical applications where
resources are scarce.

2. Related Work

2.1. Efficient Deep Learning Models

Efficient deep learning models aim to reduce computational
complexity, memory requirements, and energy consump-
tion, making them suitable for deployment in resource-
constrained environments. The principal strategies include
network pruning, knowledge distillation, and low-rank fac-
torization of weight matrices.

Network Pruning: Building on the foundational work by
Han et al. [14], which demonstrated a significant reduction
in neural network parameters with minimal accuracy loss,
several studies have furthered the field of neural network
efficiency and compression. The ”deep compression” tech-
nique introduced by Han et al. [14], combines pruning,
quantization, and Huffman coding to reduce neural network
storage requirements effectively. This method involves
pruning redundant connections, quantizing weights, and
applying Huffman coding, substantially decreasing the stor-
age and computational needs without sacrificing accuracy.
Subsequent research has further refined these techniques.
Magnitude-based weight pruning methods [27] have proven
effective in compressing networks, and complementary
strategies like quantization and low-rank matrix factoriza-

tion [27] have been used alongside pruning for maximal
compression. Knowledge Distillation: Knowledge distil-
lation, first introduced by Hinton et al. [18], is a method
for training compact and efficient models while maintaining
performance comparable to larger, more computationally
demanding models. This process involves transferring
knowledge from a large, complex ‘teacher’ model to a
smaller, more efficient ‘student’ model. The student model
is trained not only to accurately predict labels but also
to emulate the label distribution produced by the teacher
model. This approach allows the student model to achieve
performance similar to the teacher model while being more
suitable for real-time applications and devices with limited
computing power.

Low-Rank Factorization: This method decomposes
weight matrices into lower rank approximations, reducing
the number of parameters. Jaderberg et al. (2014) effec-
tively applied this to CNNs for speed improvements [21].

2.2. Transformers

Transformers, initially introduced by Vaswani et al. (2017)
for natural language processing tasks, have been adapted
for various applications including image recognition [38].
The self-attention mechanism allows them to model long-
range dependencies efficiently. However, Transformers are
often parameter-intensive, which can be a drawback for
deployment in memory-constrained environments.

Efficient Transformers: A major challenge with Trans-
formers is their high computational and memory costs,
particularly in scenarios with long sequences or large inputs
[28]. This has catalyzed a wave of research dedicated to
enhancing the efficiency of Transformers. For instance,
numerous variants such as Reformer, Linformer [39], and
Performer have been proposed, targeting improvements in
computational and memory efficiency.

A key innovation in efficient Transformer design is the
development of models that address the quadratic complex-
ity of self-attention, a central feature of the Transformer ar-
chitecture. By focusing on both memory and computational
efficiency, these models are more suitable for applications
with constrained computational resources [28]. In the con-
text of natural language processing, the Primer model repre-
sents a significant advancement, achieving higher efficiency
in auto-regressive language modeling through architectural
changes such as squaring ReLU activations and adding
depthwise convolution layers [34].

The application of efficient Transformers extends be-
yond language tasks to fields such as computer vision. The
SegFormer [44], for instance, integrates a novel Trans-
former encoder with a lightweight MLP decoder for seman-
tic segmentation, demonstrating significant improvements
in model size, runtime, and accuracy on standard datasets
like ADE20K[51] and Cityscapes [7]. This approach not

3670

Bottleneck LayerTraditional Efficient

1x1 Convolution

1x1 Convolution

Conv, BN, Act

W2x

W1x

Conv, BN, Act

WTx

Wx

Conv, BN, Act
Multi-Head
Attention

Add&Norm

Add&Norm

Feed
Forward

Add&Norm

Add&Norm

WT(f (Wx)

Wqx Wkvx WT
kvx

WT
qx

MHSA

Add&Norm

Add&Norm

Wff2(f (Wff1x)

Wqx Wkx Wvx

Wprojx

MHSA

Transformer LayerTraditional Efficient

Figure 1. An overview of proposed method in Transformer and Bottleneck layers. Our method employs a single weight matrix, W, across
the Multi-Head Self-Attention (MHSA), feed-forward, and bottleneck layers, resulting in parameter-efficient configurations compared to
conventional methods.

only consolidates the Transformer’s robustness and accu-
racy but also ensures efficiency, a critical aspect for real-
world deployment.

2.3. Convolutional Neural Networks (CNNs)

Convolutional Neural Networks are predominantly used
in image processing and computer vision tasks. Their
layered structure allows for effective feature extraction
and pattern recognition in images. LeCun et al. (1998)
were pioneers in demonstrating the effectiveness of CNNs
in digit recognition [25]. CNNs have experienced con-
siderable development from their early days, marked by
substantial advancements in different areas. Architectural
innovations have been pivotal, with the creation of AlexNet
[24], MobileNet [19], ResNet [16], EfficientNet [35], and
GhostNet [12], each representing significant breakthroughs
in network design and operational efficiency.

Parameter Efficiency in CNNs: The recent advancements
in Convolutional Neural Networks (CNNs), particularly
in terms of parameter efficiency, have been significantly
influenced by developments in depthwise separable convo-
lutions. This approach, exemplified in MobileNets [19],
substantially reduces the number of parameters while main-
taining competitive performance.

Extending this notion, EfficientNet [35] represents a
groundbreaking stride in CNN design. It employs a
compound scaling method that uniformly scales network
dimensions (depth, width, and resolution) using a fixed
coefficient, leading to considerable gains in efficiency and
performance. EfficientNet models, especially EfficientNet-
B7, have achieved state-of-the-art results on benchmarks
like ImageNet, CIFAR-100, and Flowers, surpassing pre-
vious models in accuracy while being significantly smaller
and faster. The EfficientNet architecture, starting from the
baseline model EfficientNet-B0, leverages a multi-objective
neural architecture search optimizing both accuracy and

computational cost (FLOPS), leading to a network with
fewer parameters and higher efficiency [35]. This methodi-
cal scaling and optimization yield models that are not only
compact but also computationally less demanding, allowing
for higher performance with reduced resource usage.

3. Method
In this paper, our goal is to demonstrate that leveraging
the row space and column space of weight matrix W can
yield comparable performance with conventional approach.
By conducting a series of experiments and analyses, we
intend to showcase how these vector spaces contribute to the
parameter efficiency of deep learning models. Using this
strategy, we introduce HaLViT a parameter-efficient variant
of the Vision Transformer.

Let W be an m × n matrix in a deep neural network
layer, and x be a feature vector. The operation of W on
x results in a linear combination of W’s columns, where
the components of x serve as the coefficients. This can
also be interpreted as projecting x into the row space of
W. Therefore, the output y = Wx inevitably resides in
the column space of W. However, the presence of nonlinear
activation functions in deep neural networks alters this char-
acteristic. With the application of a nonlinear function F(·),
the resulting y = F(Wx) no longer confines itself to the
column space of W. This change occurs as the nonlinear
transformation of Wx shifts its dimensional orientation,
moving it beyond the scope of W’s column space. In that
case, WTy does not reside in the row space of matrix W,
implying that both the row and column spaces of matrix W
can be independently utilized in each layer to reduce the
number of parameters.

If one considers the matrix as a linear transformation
from Rn to Rm y = Wx, then the column space of the
matrix W equals the image of this linear transformation,
similarly a linear transformation from Rm to Rn WTy,

3671

then the row space of the matrix W equals the image
of this transformation. Introducing nonlinearity between
these projections results in a nonlinear transformation akin
to that found in traditional deep neural network layers:
WTF(Wx).

In our approach, we have applied this concept to Trans-
former encoder layers in Vision Transformers (ViTs) and
bottleneck layers in Residual Networks (ResNets), with a
focus on reducing parameter count. Particularly, within
the Transformer encoder layers of ViTs, our approach
effectively reduces the parameter count by half.

3.1. Transformer Encoder Layer

Multi-Head Attention. The standard implementation of
Multi-Head Attention (MHA) in Transformer models relies
on separate weight matrices Wq, Wk, and Wv to project
the input feature vector x into queries (Q), keys (K),
and values (V) spaces respectively. Additionally, after
computing the attention scores and aggregating the values,
a final linear projection is applied using a separate weight
matrix Wproj. This conventional approach, while effec-
tive, requires a substantial number of parameters, especially
as the size of the model scales.

In an effort to enhance parameter efficiency without
compromising the model’s ability to learn complex repre-
sentations, we propose an innovative approach that lever-
ages the row and column spaces of new weight matrices
Wq,W

T
q and Wkv,W

T
kv. Specifically, we project the

input feature vector x into the query, key, and value spaces
using a shared matrix for keys and values (Wkv) and
a separate matrix for queries (Wq). This significantly
reduces the number of parameters. The Multi-Head Atten-
tion operation and subsequent linear projection under this
proposed framework can be expressed as follows:

x̂ = MHA(Q,K,V) = MHA(Wqx,Wkvx,W
T
kvx),

(1)
where Wqx generates the queries, and both keys and
values are derived from Wkvx and its transpose WT

kvx,
respectively. Following the computation of attention scores
and the aggregation of value vectors, the resulting vector x̂
undergoes a linear projection via:

Proj(x̂,WT
q) = WT

q x̂, (2)

where WT
q is used for the final projection, further empha-

sizing the utilization of both row and column spaces of the
weight matrices.

This method essentially halves the number of parameters
in the Multi-Head Attention (MHA) layer by utilizing a
shared weight matrix for both keys and values and lever-
aging its transpose. This reduction is achieved without
significantly compromising the model’s performance, as

preliminary results indicate. The underlying intuition is that
the column and row spaces of Wkv and Wq can capture
sufficient information for effective key-value pairing and
query projection, respectively. Furthermore, this approach
introduces an interesting avenue for exploring the dual roles
of weight matrices in Transformer architectures, potentially
leading to more parameter-efficient models without sacri-
ficing their expressive power.

Feed Forward Network. The Feed Forward Network
(FFN) within a Transformer layer traditionally consists of
a layer normalization step followed by two linear feed-
forward layers with an interposed nonlinear activation func-
tion. The structure of the FFN is crucial for adding non-
linearity and depth to the model’s capability to process
sequences. Typically, these feed-forward layers are char-
acterized by their weight matrices W1 and W2, and bias
vectors b1 and b2. Given a feature vector x and a nonlinear
activation function F(·), the conventional formulation of an
FFN’s operation can be represented as follows:

FFN(x) = W2F(W1x+ b1) + b2. (3)

This traditional approach, while effective, necessitates a
significant number of parameters due to the use of separate
weight matrices for each feed-forward layer. In an effort
to enhance the parameter efficiency of the FFN, instead of
utilizing two distinct weight matrices W1 and W2, our
approach leverages the column space and row space of a
single weight matrix W. This strategy substantially reduces
the total parameter count by half, without a significant
compromise in the network’s performance.

The redefined equation for the FFN, under this new
paradigm, is as follows:

FFN(x) = WTF(Wx+ b1) + b2. (4)

In this optimized formulation, W serves a dual purpose,
linear projection of the input vector x in combination with
the bias b1 and the nonlinear activation F , and subse-
quently in its transposed form WT to produce the final
output of the FFN, with the addition of the second bias b2.
This dual use of W and WT not only conserves parameters
but also maintains the depth and non-linearity essential
for the Transformer architecture’s success, presenting a
promising direction for future research into more efficient
neural network designs. An overview of the method is given
in Figure 1.

3.2. Bottleneck Layer

Introduced in the paper ”Deep Residual Learning for Image
Recognition” by He et al., ResNet is one of the first architec-
tures to use bottleneck layers effectively. Architectures in
the literature, leverages bottleneck layers in different ways,

3672

but with a common goal: to increase network efficiency by
reducing the computational complexity while maintaining
or improving model performance.

Let G be a function consists of 3×3 convolution, normal-
ization and nonlinear activation function. The bottleneck
layer can be described as follows:

Bottleneck(x) = WT
1 G(W2x), (5)

where W1x and W2x represent 1 × 1 convolutions in
bottleneck layer. Utilizing column and row spaces of weight
matrix W , equation becomes;

Bottleneck(x) = WTG(Wx). (6)

Implementing our method in the Bottleneck layer re-
duces the number of parameters, albeit less effectively
compared to its application in the Transformer layer. Con-
sequently, we have adopted a strategy of weight sharing
in each stage in ResNets to further decrease the parameter
count, without adversely affecting performance. Let G1,
G2, ... ,Gn be functions consist of 3 × 3 convolution,
normalization and nonlinear activation function and n is the
number of bottleneck layers in a particular stage of residual
network. The bottleneck layers in this stage can be written
as:

Bottleneck(x1) = WTG1(Wx1) + x1, (7)

Bottleneck(x2) = WTG2(Wx2) + x2, (8)

Bottleneck(xn) = WTGn(Wxn) + xn. (9)

By sharing weights in same stages of the network, we
effectively reuse the same set of parameters for multiple
operations, thereby reducing the overall parameter footprint
of the model. This is particularly beneficial in deep learning
architectures like ResNets, where the depth of the network
can lead to a large number of parameters, potentially
causing issues like overfitting and increased computational
load.

Moreover, weight sharing in bottleneck layers does not
significantly compromise the learning capability of the
network. It allows the model to generalize better by learning
reusable patterns and features across different layers. This
aspect is crucial in maintaining the performance of the
network while reducing its complexity.

4. Experiment
In this section, we detail the experimental outcomes ob-
tained by applying our proposed method to the classifi-
cation, object detection and instance segmentation tasks.
Results is presented in Tables 3, 4 and 5.

4.1. Image Classification

We detail the experimental outcomes obtained by applying
our proposed method to the ImageNet-1k (IN1K) classifi-
cation task [8]. For the implementation, the mmpretrain
toolkit [6] was utilized for image classification. The
IN1K dataset [8] comprises approximately 1.28 million
training images and 50,000 validation images, distributed
across 1,000 classes. For a balanced comparison, both
Transformer-based and CNN-based models were trained us-
ing the training set, with the Top-1 accuracy being evaluated
on the validation set. We follow the training recipe used
by the DeiT [36] for HaLViT, and the same methodology
was employed in Torchvision [31] for training ResNet50.
Architecture and training details for HaLViT is given in
Tables 1 and 2.

Table 1. Comparison between HaLViT, ViT and DeiT

Model Layers Hidden Size MLP Size Heads Params
ViT-Base [5] 12 768 3072 12 86M
Deit-Base [36] 12 768 3072 12 86M
Deit-Small [36] 12 384 1536 6 22M
HaLViT-Tiny 12 384 1536 6 11M
HaLViT-Small 12 768 3072 12 43M

Table 2. Ingredients and hyper-parameters for HaLViT and ViT.

Method ViT HaLViT

Epochs 300 300
Batch Size 4096 1024
Optimizer AdamW AdamW
Learning Rate 0.003 0.0005 × batchsize
Learning Rate Decay cosine cosine
Weight Decay 0.3 0.05
Warmup Epochs 3.4 5
Label Smoothing % 0.1
Dropout 0.1 %

Stochastic Depth % 0.1
Repeated Augmentation % !

Gradient Clipping ! %

Rand Augment % 9 / 0.5
Mixup Probability % 0.8
Cutmix Probability % 1.0
Erasing Probability % 0.25

HaLViT. In evaluating the effectiveness of our proposed
HaLViT architecture, we conducted extensive experiments
on the ImageNet-1K (IN1K) validation set at a resolution
of 224 × 224 pixels. The comparative analysis included
various models, focusing on the balance between parameter
efficiency and top-1 accuracy.

3673

Models are trained for 300 epochs and 600 epochs.
The learning rate was scaled according to the batch size
using the formula: lrscaled = lr

512 × batchsize, following
the approach of Goyal et al. [11], but modifying the
base value to 512 instead of 256 as in DeiT. Results were
obtained using the AdamW optimizer, employing the same
learning rates as ViT [9] but with significantly reduced
weight decay: 0.05. For regularization, stochastic depth
[20] was employed, which is particularly beneficial for the
convergence of deep Transformers [10]. This technique
was first introduced in Vision Transformer training by
Wightman [42]. We also applied regularization methods
like Mixup [49] and Cutmix [48], which contributed to
improved performance.

Our HaLViT models, specifically HaLViT-T1 and
HaLViT-T2, trained for 300 and 600 epochs respectively,
demonstrated remarkable performance. With only 11.1M
parameters, HaLViT-T1 achieved a top-1 accuracy of
77.3%, while HaLViT-T2 further improved the accuracy to
78.8%, showcasing the benefits of extended training. These
results highlight our models’ capability to deliver com-
petitive performance with a substantially lower parameter
count compared to other models such as PVTv2-B1, which
achieved a top-1 accuracy of 78.7% with 14.0M parameters.

Moreover, the HaLViT-M variant, embodying our ap-
proach’s scalability to larger models, attained a top-1 accu-
racy of 81.3% with 43.0M parameters. Although HaLViT
employs the traditional ViT architecture, its performance
matches or even exceeds various established models, such
as PVT-M and ViT-Small/16. This demonstrates HaLViT’s
effectiveness in attaining high accuracy while utilizing
fewer computational resources.

ResNet50. In our experimental setup, we use a resolution
of 224 × 224 pixels for training images. The model op-
timization is conducted using Stochastic Gradient Descent
(SGD). We set the initial learning rate to 0.1. Additionally,
we apply a weight decay regularization factor of 1× 10−4.
To adjust the learning rate smoothly during training, we use
a cosine annealing schedule. This schedule is enhanced by
an initial linear warm-up phase that lasts for 5 epochs. The
warm-up phase plays a crucial role. It helps stabilize the
learning process at the beginning. This prevents the model
from converging prematurely to suboptimal minima.

Throughout the training regimen, we incorporate specific
image augmentation techniques to enhance the robustness
and generalizability of the model. These techniques include
center cropping, where images are first resized to 248×248
pixels before a central crop of 224×224 pixels is extracted.
Additionally, horizontal flip augmentations are applied to
further diversify the training dataset, thus enabling the
model to better generalize from the training data to unseen
images.

Table 3. Top-1 accuracy comparison in IN1K validation set on
224 × 224 resolution. HaLViT-T1 and HaLViT-M undergoes a
training of 300 epochs, while HaLViT-T2 extends its training to
600 epochs.

Method #Params (M) FLOPs (G) Top-1 Acc. (%)
DeiT-T/16 [36] 5.7 1.3 72.2
PVT-T [40] 13.2 1.9 75.1
PVTv2-B1 [41] 14.0 2.1 78.7
HaLViT-T1 (ours) 11.1 4.6 77.3
HaLViT-T2 (ours) 11.1 4.6 78.8
DeiT-S/16 [36] 22.1 4.6 79.9
T2T-ViTt-14 [47] 22.0 6.1 80.7
PVT-S [40] 24.5 3.8 79.8
TNT-S [13] 23.8 5.2 81.3
SWin-T [29] 29.0 4.5 81.3
CvT-13 [43] 20.0 4.5 81.6
Twins-SVT-S [5] 24.0 2.8 81.3
FocalAtt-Tiny [46] 28.9 4.9 82.2
PVTv2-B2 [41] 25.4 3.9 82.0
PVTv2-B2-li [41] 22.6 4.0 82.1
CvT-21 [43] 32.0 7.1 82.5
T2T-ViTt-19 [47] 39.0 9.8 81.4
PVT-M [40] 44.2 6.7 81.2
PVTv2-B3 [41] 45.2 6.9 83.2
SWin-S [29] 50.0 8.7 83.0
Twins-SVT-B [5] 56.0 8.3 83.2
ViT-Small/16 [5] 48.8 9.9 80.8
HaLViT-M (ours) 43.0 16.8 81.3
T2T-ViTt-24 [47] 64.0 15.0 82.2
PVT-L [40] 61.4 9.8 81.7
TNT-B [13] 66.0 14.1 82.8
SWin-B [29] 88.0 15.4 83.3
Twins-SVT-L [5] 99.2 14.8 83.7
FocalAtt-Small [46] 51.1 9.4 83.5
FocalAtt-Base [46] 89.8 16.4 83.8
PVTv2-B4 [41] 62.6 10.1 83.6
PVTv2-B5 [41] 82.0 11.8 83.8

Table 4. Comparison of ResNet architectures. In ResNet50∗ our
method is applied exclusively to stages 3 and 4.

Model Acc@1 Acc@5 Params (M) GFLOPS
ResNet18 69.7 89.0 11.7M 1.8
ResNet34 73.3 91.4 21.8M 3.66
ResNet50 76.1 92.8 25.6M 4.09
ResNet50∗ (Ours) 75.1 92.8 13.4 4.09

Results. Table 3 demonstrates that HaLViT, despite its
lower parameter count, achieves performance on par with
models such as PVTv2-B1 and DeiT-S/16. Notably,
HaLViT2 outperforms PVTv2-B1, even with a reduced
number of parameters. These results suggest that reducing
the parameter count by half does not significantly compro-
mise performance, thereby maintaining efficacy with fewer
parameters.

Table 4 indicates that the proposed method delivers
performance akin to existing benchmarks. Despite sharing

3674

bottleneck layers’ parameters in each stage, ResNet50∗’s
performance nearly matches that of the original ResNet50
and surpasses both ResNet34 and ResNet18. Intriguingly,
ResNet50∗ maintains a parameter count comparable to that
of ResNet18.

4.2. Object Detection and Instance Segmentation

Settings. We conduct our object detection experiments
using the challenging COCO benchmark. All models are
trained on the COCO train2017 dataset, which includes
118k images, and evaluations are carried out on the val2017
dataset, comprising 5k images. To assess the efficiency of
HalViT, we integrate it with a conventional detector: Mask
R-CNN [17]. We followed the same approach as in [26]
for plain backbones. Simple FPN [26] is employed as neck
before the Mask R-CNN head. To accommodate images of
varying sizes, we adapt the positional embeddings through
interpolation. Additionally, padding is applied to ensure
that the dimensions of the input images are multiples of
16. At the initiation of training, ImageNet pre-trained
weights are utilized to set up the backbone, while the
Xavier initialization method is applied to the layers newly
introduced. The training process for our models involves a
batch size of 8 across 4 A100 GPUs, leveraging AdamW
for optimization with an initial learning rate of 0.5× 10−4.
In line with established practices, models are trained using
a 2x training schedule, equivalent to 24 epochs. Training
images are resized to maintain a shorter side of 800 pixels
and longer side does not exceed 1333 pixels. During testing,
the input image’s shorter side is consistently set to 800
pixels.

Results. As seen in Table 5, we evaluated the perfor-
mance of our HaLViT models, HaLViT-T and HaLViT-M
against established architectures like ResNet and PVT on
the COCO val2017 dataset for object detection and instance
segmentation tasks using Mask R-CNN. HaLViT-T, with
only 30.8M parameters, demonstrates competitive results,
achieving an APb of 35.3 and an APm of 33.3, underscoring
its efficiency. Notably, HaLViT-M, with 63.0M parameters,
surpasses other models in its category, achieving superior
performance metrics (APb: 42.3, APm: 39.2), indicating
its effectiveness in precise detection and segmentation.
The results highlight HaLViT architectures as efficient and
effective alternatives for computer vision tasks, marked by
their reduced parameter count and competitive performance
metrics.

4.3. Transfer Learning

Settings. Despite HaLViT’s strong performance on Ima-
geNet, its generalization capability necessitates evaluation
via transfer learning on diverse datasets. Accordingly, we
conducted fine-tuning experiments with HaLViT on datasets

presented in Table 6. The results, compared against ViT
and DeiT architectures in Table 7, demonstrate HaLViT’s
comparability with Transformer models, corroborating our
earlier findings on its ImageNet performance.

4.4. Ablation Study

Settings. We conduct ablation studies in ImageNet
dataset.The experimental settings on ImageNet are the same
as the settings in Sec. 4.1.

Extreme Weight Sharing Across Layers. In our study,
we developed a 12-layer HaLViT architecture employing an
extreme parameter sharing strategy. This variant, identical
to HaLViT-M in structure, utilizes shared parameters across
all layers, excluding the query weights, resulting in a signif-
icantly reduced model size of only 9M parameters. Results
is shown in Table 8. As anticipated, there was a significant
decrease in accuracy, yet this outcome underscores that the
model can achieve convergence even under conditions of
extensive parameter sharing across layers.

Weight Sharing in ResNet Stages. In the ResNet ar-
chitecture, we implemented a weight sharing approach,
utilizing the same weight matrix W and WT across all
1 × 1 convolutions within each bottleneck layer at same
stages. Results can be seen in Table 9. Implementing
weight sharing in the initial stages 1 and 2 only minimally
decreases the parameter count while causing a reduction
in accuracy by about 0.9 points, indicating that parameter
sharing is less beneficial in the early stages.

5. Discussion
We present a novel approach to reduce deep learning model
parameters by leveraging the column and row spaces of
weight matrices. This approach, focused on Transformers
and CNNs, can significantly lower the parameter count
without markedly compromising model performance. Our
discussion explores the broader applicability and impli-
cations of this methodology in various architectures and
domains.

Applicability Across Architectures. The foundational
principle of HaLViT, utilizing weight matrix spaces for pa-
rameter efficiency, presents a versatile strategy extendable
beyond ViT and ResNet. Its application could revolutionize
parameter efficiency in other architectures as well. This
universality underscores the method’s potential as a cross-
architecture strategy for enhancing parameter efficiency.

Integration with Existing Techniques. Merging
HaLViT’s approach with pruning and quantization could
yield ultra-efficient models ideal for resource-constrained

3675

Table 5. Object detection and instance segmentation performance on COCO val2017 utilizing Mask R-CNN. APb and APm denote
bounding box AP and mask AP, respectively.

Backbone #Param (M) APb Apb50 APb
75 APm APm

50 APm
75

ResNet18 [16] 31.2 34.0 54.0 36.7 31.2 51.0 32.7
PVT-T [40] 32.9 36.7 59.2 39.3 35.1 56.7 37.3
HaLViT-T 30.8 35.3 58.6 38.5 33.3 55.2 36.2
ResNet101 [16] 63.2 40.4 61.1 44.2 36.4 57.7 38.8
ResNeXt101-32x4d [45] 62.8 41.9 62.5 45.9 37.5 59.4 40.2
PVT-M [40] 63.9 42.0 64.4 45.6 39.0 61.6 42.1
HaLViT-M 63.0 42.3 65.6 46.0 39.2 62.4 42.5

Table 6. Datasets utilized for different tasks.

Dataset Train size Test size #classes
ImageNet [8] 1,281,167 50,000 1000
iNaturalist 2018 [37] 437,513 24,426 8,142
iNaturalist 2019 [37] 265,240 3,003 1,010
Flowers-102 [30] 2,040 6,149 102
Stanford Cars [23] 8,144 8,041 196
CIFAR-100 [1] 50,000 10,000 100
CIFAR-10 [1] 50,000 10,000 10

Table 7. Comparison of Transformers-based models on different
transfer learning tasks with ImageNet pre-training and convolu-
tional architectures for reference.

Model ImageNet CIFAR-10 CIFAR-100 Flowers

ViT-B/32 [9, 36] 73.4 97.8 86.3 85.4
ViT-B/16 [9, 36] 77.9 98.1 87.1 89.5
ViT-L/32 [9, 36] 71.2 97.9 87.1 86.4
ViT-L/16 [9, 36] 76.5 97.9 86.4 89.7
DeiT-B [36] 81.8 99.1 90.8 98.4

HaLViT-T 78.8 98.7 90.3 96.5
HaLViT-M 81.3 99.2 91.0 98.3

Table 8. In HaLViT∗, parameter sharing is implemented across all
layers, with the exception of the query weights WQ. Moreover,
the described method is also applied in this configuration.

Model Acc@1 Acc@5 Params (M) GFLOPS
HaLViT-M 81.3 95.6 44.0 16.8
HaLViT-M∗ 67.6 87.5 9.0 16.8

Table 9. ResNet501 utilizes the proposed method across all its
stages, whereas ResNet502 applies the method to stages 3 and 4.

Model Acc@1 Acc@5 Params (M) GFLOPS
ResNet501 74.2 91.9 12.8 4.09
ResNet502 75.1 92.8 13.4 4.09

environments. This synergy would enable the deployment
of powerful deep learning models on mobile and edge

devices, highlighting the method’s adaptability to current
computational demands.

Enhancements in Federated Learning Proposed
method is particularly beneficial in federated learning
scenarios, where efficient model communication is
paramount. By reducing model size while preserving
accuracy, our method could significantly contribute to
the scalability and effectiveness of federated learning
frameworks.

6. Conclusion

This study presents a novel approach for enhancing pa-
rameter efficiency. By exploiting the row and column
spaces of the weight matrix W, we successfully reduced the
parameters of ViT and ResNet50 by half while maintaining
their performance on the ImageNet dataset. The findings
suggest that the strategic use of column and row spaces
leads to more effective utilization of weight matrices. This
method is versatile and can be implemented in any model
that employs Transformer layers and bottleneck layers,
significantly enhancing its applicability and potency.

7. Acknowledgments

This work was supported by the Scientific and Techno-
logical Research Council of Türkiye (TUBITAK) with
1515 Frontier R&D Laboratories Support Program for BTS
Advanced AI Hub: BTS Autonomous Networks and Data
Innovation Lab. Project 5239903, with grant number
121E378; partly by the Scientific Research Projects Coor-
dination Department (BAP), Istanbul Technical University,
under Projects ITU-BAP MGA-2024-45372 and HIZDEP;
and in part by the National Center for High Performance
Computing (UHEM) with grant numbers 1016682023 and
4016562023.

3676

References
[1] Krizhevsky Alex. Learning multiple layers of features from

tiny images. https://www. cs. toronto. edu/kriz/learning-
features-2009-TR. pdf, 2009. 8

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020. 1

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-
to-end object detection with transformers. In European
conference on computer vision, pages 213–229. Springer,
2020. 1

[4] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 9650–9660, 2021. 1

[5] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haib-
ing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen.
Twins: Revisiting the design of spatial attention in vision
transformers. Advances in Neural Information Processing
Systems, 34:9355–9366, 2021. 5, 6

[6] MMPreTrain Contributors. Openmmlab’s pre-training tool-
box and benchmark, 2023. 5

[7] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3213–3223, 2016. 2

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 5, 8

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1, 6, 8

[10] Angela Fan, Edouard Grave, and Armand Joulin. Reducing
transformer depth on demand with structured dropout. arXiv
preprint arXiv:1909.11556, 2019. 6

[11] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large mini-
batch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017. 6

[12] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing
Xu, and Chang Xu. Ghostnet: More features from cheap
operations. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 1580–1589,
2020. 3

[13] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu,
and Yunhe Wang. Transformer in transformer. Advances

in Neural Information Processing Systems, 34:15908–15919,
2021. 6

[14] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015. 2

[15] Ali Hassani, Steven Walton, Nikhil Shah, Abulikemu
Abuduweili, Jiachen Li, and Humphrey Shi. Escaping the
big data paradigm with compact transformers. arXiv preprint
arXiv:2104.05704, 2021. 1

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 3, 8

[17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 7

[18] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 2

[19] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 2, 3

[20] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q
Weinberger. Deep networks with stochastic depth. In
Computer Vision–ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11–14, 2016, Pro-
ceedings, Part IV 14, pages 646–661. Springer, 2016. 6

[21] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman.
Speeding up convolutional neural networks with low rank
expansions. arXiv preprint arXiv:1405.3866, 2014. 2

[22] Reyhan Kevser Keser, Aydin Ayanzadeh, Omid Abdol-
lahi Aghdam, Caglar Kilcioglu, Behcet Ugur Toreyin, and
Nazim Kemal Ure. Pursuhint: In search of informative hint
points based on layer clustering for knowledge distillation.
Expert Systems with Applications, 213:119040, 2023. 2

[23] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-
Fei. 3d object representations for fine-grained categorization.
In Proceedings of the IEEE international conference on
computer vision workshops, pages 554–561, 2013. 8

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25, 2012. 1, 3

[25] Yann LeCun, Bernhard Boser, John Denker, Donnie Hen-
derson, Richard Howard, Wayne Hubbard, and Lawrence
Jackel. Handwritten digit recognition with a back-
propagation network. Advances in neural information pro-
cessing systems, 2, 1989. 3

[26] Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He.
Exploring plain vision transformer backbones for object
detection. In European Conference on Computer Vision,
pages 280–296. Springer, 2022. 7

[27] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and
Xiaotong Zhang. Pruning and quantization for deep neural

3677

network acceleration: A survey. Neurocomputing, 461:370–
403, 2021. 2

[28] Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu.
A survey of transformers. AI Open, 2022. 2

[29] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 10012–10022, 2021. 1, 6

[30] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In
2008 Sixth Indian conference on computer vision, graphics
& image processing, pages 722–729. IEEE, 2008. 8

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. 5

[32] Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model
compression via distillation and quantization. arXiv preprint
arXiv:1802.05668, 2018. 2

[33] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 4510–4520, 2018. 2

[34] David R So, Wojciech Mańke, Hanxiao Liu, Zihang Dai,
Noam Shazeer, and Quoc V Le. Primer: Searching for
efficient transformers for language modeling. arXiv preprint
arXiv:2109.08668, 2021. 2

[35] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR,
2019. 1, 3

[36] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International conference on machine learning,
pages 10347–10357. PMLR, 2021. 1, 5, 6, 8

[37] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui,
Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and
Serge Belongie. The inaturalist species classification and
detection dataset. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8769–8778,
2018. 8

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 1, 2

[39] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and
Hao Ma. Linformer: Self-attention with linear complexity.
arXiv preprint arXiv:2006.04768, 2020. 2

[40] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.

Pyramid vision transformer: A versatile backbone for dense
prediction without convolutions. In Proceedings of the
IEEE/CVF international conference on computer vision,
pages 568–578, 2021. 1, 6, 8

[41] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pvt
v2: Improved baselines with pyramid vision transformer.
Computational Visual Media, 8(3):415–424, 2022. 6

[42] Ross Wightman et al. Pytorch image models, 2019. 6
[43] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu,

Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt: Introducing
convolutions to vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 22–31, 2021. 1, 6

[44] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and
efficient design for semantic segmentation with transformers.
Advances in Neural Information Processing Systems, 34:
12077–12090, 2021. 2

[45] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492–1500,
2017. 8

[46] Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai,
Bin Xiao, Lu Yuan, and Jianfeng Gao. Focal self-attention
for local-global interactions in vision transformers. arXiv
preprint arXiv:2107.00641, 2021. 6

[47] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,
Zi-Hang Jiang, Francis EH Tay, Jiashi Feng, and Shuicheng
Yan. Tokens-to-token vit: Training vision transformers from
scratch on imagenet. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 558–
567, 2021. 1, 6

[48] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 6023–6032, 2019. 6

[49] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. arXiv preprint arXiv:1710.09412, 2017. 6

[50] Zizhao Zhang, Han Zhang, Long Zhao, Ting Chen, Sercan Ö
Arik, and Tomas Pfister. Nested hierarchical transformer:
Towards accurate, data-efficient and interpretable visual un-
derstanding. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 3417–3425, 2022. 1

[51] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 633–641,
2017. 2

[52] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable
transformers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 1

3678

