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Abstract

We develop an approach to efficiently adapt transformer
layers, driven by an objective of optimization stability and
broad applicability. Unlike existing methods which adopt
either simple heuristics or inefficient discrete optimization
methods for token sampling, we craft a lightweight soft to-
ken merging system that maintains end-to-end differentia-
bility while maintaining good task performance. To com-
pensate for the potential information loss, we design a novel
token inflation module to maximize functionality preser-
vation across different transformer blocks. Experimen-
tal results across vision-only, language-only, and vision-
language tasks show that our method achieves compara-
ble accuracies while saving considerable computation costs
for both training and inference. We demonstrate that these
gains translate into real wall-clock speedups.

1. Introduction

Large-scale transformer, dramatically scaling up network
size into the billions of parameter regime, has recently
revolutionized natural language processing (NLP) [6, 14,
35, 43, 50], computer vision (CV) [15, 24, 41] and multi-
modal applications [10, 11, 25, 34]. However, the size of
these models imposes prohibitive computation and memory
consumption for both pretraining and downstream finetun-
ing, hence motivates techniques that offer cheaper alterna-
tives [4, 18, 26, 29] to full-scale training and inference pro-
cedure. Exemplifying this situation, the desire to minimize
compute and memory requirements has led to the devel-
opment of token sparsification techniques, allowing large-
scale transformer layers to skip computations while main-
taining comparable task performance through token prun-
ing [20, 28, 46, 47, 49] or merging [3, 7, 31, 33, 37].

Our approach incorporates these ideas, but extends the
scope of applicability to various transformer-based architec-
tures in both CV, NLP and multimodal tasks, within the con-
text of pre-training, fully finetuning and parameter-efficient
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Figure 1. Transformer adaption with soft token merging strategies.
Different from (a) which relies on discrete token selection strat-
egy, our soft merging scheme (b) aggregates the tokens efficiently
while maintaining end-to-end differentiability. Consequently, ours
yields not only (c) better fitting power during training but also (d)
more robust generalization capability.

adaptation. Rather than making a discrete decision as to
which token to bypass transformer layers, we propose the
idea of soft token merging. Our contribution is to do so in a
manner that tokens are merged while maintaining the end-
to-end differentiability, saving compute by leveraging in-
termediate slim tokens processed by the transformer blocks
without any architectural modification.

As a common practice, token reduction yields a
quadratic overall efficiency improvement w.r.t token length,
than training a transformer with full tokens. The general
design of transformer layers suggests possible compatibil-
ity between the tokenized representations and architectural
configuration, i.e. trainable weight parameters are invariant
with the token length. This facilitates the desire to main-
tain sparsified tokens and unchanged transformer architec-
tures. Competing recent efforts, draw inspiration from the
observation that a subset of tokens may suffice the dis-
criminative or generation tasks, In particular, token drop-
ping [20, 46, 49] splits the computation from an interme-
diate layer and then aggregates the full-length token in the
top layer to save computation. DyViT [36] adopts an at-
tention masking strategy and auxiliary discrete optimiza-
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tion strategy (e.g. gumbel softmax tricks [23]) to differen-
tiably prune tokens progressively. Kong et al. [28], Xu et al.
[47] follows a similar strategy, adopting the masking strat-
egy during training, which may not yield practical acceler-
ation during training. The above discrete selection strategy,
shown in Figure 1a is a common paradigm for most exist-
ing methods. Furthermore, these progressive token pruning
methods are designed based on the nature of redundancy of
visual tokens in ViT architectures, which may not directly
apply to general transformer blocks for generation tasks.
(e.g. machine translation).

In this paper, we develop a token merging framework
around the principles of efficient optimization, offering end-
to-end differentiability and maximum information preserva-
tion. Figure 1b illustrates key differences with prior work.
Our core contributions are:
• Efficient Soft Token Merging: We propose a merging

scheme accounting for the tokens aggregation based on
the attentive information provided by themselves. This
auxiliary system is computationally invariant to token
length and can quickly adapt to long sequence tasks.

• Inflation with Information Preservation: The full to-
ken length is recovered through an inflation module,
to preserve the information across different transformer
blocks without affecting efficiency.

• Better Performance and Broad Applicability: Our
method not only saves the compute but also yields ex-
cellent generalization accuracy, with the flexibility in
choosing different trade-offs between efficiency and ac-
curacy. Furthermore, adopting a merging scheme instead
of masking strategy provides acceleration in terms of
wall-clock training time. We demonstrate results on im-
age classification, machine translation and visual ques-
tion answering tasks, across a diverse set of transformer
architectures.

2. Related Work
Token Pruning Given the property of transformers in
processing arbitrary token length, several token pruning
methods [28, 30, 36, 46, 47] have been proposed to pro-
gressively reducing the number of tokens for efficient infer-
ence. For example, DyViT [36] proposes a MLP predictor
to dynamically sample tokens, which is trained with contin-
uous relaxation [23] and knowledge distillation [19]. Idle-
ViT [46] selects a subset of the image tokens in computa-
tions while bypassing the rest of tokens. These approaches
are dynamic which does not directly support batching for
efficient implementation. As such, a masking scheme is
adopted which impairs training efficiency. However, our
unique design that facilitates hardware-friendly implemen-
tation and broad application distinguishes our approach
from these works. More importantly, our approach demon-
strates an elegant optimization scheme with end-to-end dif-

ferentiability, merely trained with task loss.

Token Merging Some other works [3, 7, 31, 33, 37] in-
stead focus on merging tokens for efficient transformers.
TokenLearner [37] adopts an MLP to mine important to-
kens in visual data hence reducing the number of tokens.
ToMe [3] reduces the number of tokens in a transformer
gradually by partitioning and merging tokens in each block.
PuMer [7] combines token pruning and merging works into
a token re-duction framework suitable for Vision-Language
models. Token pooling approaches [31, 33] average the
encoded representations for efficient self-attention compu-
tation. Although token merging methods and our algorithm
share the same spirit of generating efficient transformers
through merging, ours gains applicability and performance
with the dedicated design choice and optimization strategy.

Parameter-Efficient Fine-Tuning Parameter-Efficient
Fine-Tuning (PEFT) [9, 21, 22, 39, 42, 48] adds new
parameters to frozen large pre-trained LLM, enabling
efficient tuning on a new training dataset. LoRA [22] is
an improved PEFT method in which two matrices with
lower rank are fine-tuned, approximating original matrices.
This fine-tuned LoRA adapter is then used for accurate
inference. Our approach not only supports fully fine-tuning
but also has the flexibility in serving as an add-on to LoRA
for a more paratermeter-efficient tuning scheme.

3. Method

Figure 2 illustrates the overall architecture of our system,
which adapts the general transformer layer with input-
dependent soft token merging and inflation with weighted
replication. Given full-length tokens, our goal is to find the
best token merging rule for a pre-defined transformer-based
architecture, such that a smaller number of tokens is used,
without incurring a decrease in task accuracy. Treating the
task of finding this rule as a search problem is intractable
due to the nature of binary selection optimization. Learn-
ing a mask over the tokens also presents problems, namely
the difficulty of converting this mask into binary decisions,
which would require inefficient auxiliary optimization dur-
ing training. We therefore leverage self-attentive methods
to derive the soft token merging schemes that encourage
partial token usage with minimum loss in accuracy. To-
wards this end, we introduce the soft token merging system
(Sec. 3.1) and token inflation module (Sec. 3.1), learning
to dynamically reconfigure the token processing paths in a
self-conditioned manner, which is compatible with different
kinds of tuning approaches (Sec. 3.3).
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Figure 2. System overview. The proposed framework consists of two components (a): input-attentive soft token merging and (b): token
inflation with replication. The input-attentive module is designed to build up data-dependent score matrices from input tokens of each
transformer layer, serving as the importance factors for merging individual tokens through weighted sum. Merged tokens are then fed
through (pretrained) transformer layer (multi-head attention + feed forward networks) with reduced computational complexity. The pro-
cessed tokens are then inflated to original length through replication and rescaling for information preservation across different transformer
blocks. All modules are end-to-end trainable, which are optimized by the task loss.

3.1. Soft Token Merging

Input Attentive Module We introduce an end-to-end
trainable module to score the encoded representations,
which only passes a reduced number of tokens to the trans-
former block according to the merging window size p (p =
2 as a motivating example in Figure 8a). Given an input
of p tokens X = {x1,x2, ...,xp} ∈ Rp×d, we first nor-
malize and project it with trainable transformation matrices
WQ,WK ∈ Rd×d′

:

Q = XWQ,K = XWK (1)

where Q,K ∈ Rp×d′
and d′ is set as d/2 in our implemen-

tation. We calculate the score matrix s from informative q
and k as

S = softmax(
QKT

√
d′

) ∈ Rp×p (2)

Since Q and K encode the context information of tokens,
S is input-dependent, which is a simple way to derive the
importance factor for each individual token. Note that dif-
ferent from Rao et al. [36] which uses an MLP module
to predict the scores, the additional trainable parameters
WQ,WK of our input attentive module are invariant to to-
ken lengths. Such a design is parameter efficient especially
when sequence length scales up, e.g. for long texts or very
high-resolution images.

Token-wise Weighted Sum Given the score matrix S in-
dicating the importance factor for each token, one may
directly view it as the probability for sparse token sam-
pling. However, this makes the problem computation-
ally intractable due to the combinatorial nature of binary
states. To make the token sampling space continuous and
the optimization feasible, DyViT [36] borrow the concept
of learning by continuation [44, 45] and adopt the Gumbel-
Softmax [23] trick. This still leads to inefficient and unsta-
ble optimization, where an additional fine-tuning stage in-

volving knowledge distillation is designed to bridge the per-
formance gap[36]. To address this issue, we simply merge
the tokens through learned weighted sum to maintain end-
to-end differentiability, as depicted in Figure 8b. We calcu-
late the score for each candidate token as:

S = [s1, s2, ..., sp] =
1

p

p∑
i=1

Si,j (3)

i, j denotes the index along the first (token) axis of Q and
K, respectively. We then obtain the merged token as:

x′ =
1

p

p∑
j=1

sjxj (4)

x′ is fed into the transformer block to achieve quadratic
computational efficiency in terms of both time and mem-
ory:

y = FFN(MHA(x′)) (5)

where FFN and MHA denote feed-forward networks and
multi-head attention in a transformer block, respectively.

3.2. Inflation with Weighted Replication

Our goal is to efficiently adapt transformer architecture for
various tasks. For a discriminative task (e.g. ViT for image
classification) where only a single token is used in cross-
entropy loss, tokens can be eliminated at certain blocks
and never get sampled. However for generation tasks (e.g.
encoder-decoder architecture for machine translation), it is
crucial to maintain the token length during the interaction
with the cross-attention layer of the decoder. To achieve
general applicability, we propose a simple yet effective in-
flation scheme with weighted token replication. With com-
putational cost savings already obtained, it’s free to first
clone the replicate y to y′ with the original length. We then
re-use the soft merging scores S with gradient detached to
construct the inflated tokens ŷ:

ŷ = X + y′ ⊙ detached(S) (6)
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where ⊙ is the Hadamard product and x is used in skip
connection for maximum information preservation. Note
that in practice detaching the gradients of S is crucial for
the optimization stability, we provide detailed justification
in the experimental section. Alg. 1 summarizes our soft
token merging system.

Algorithm 1 : Soft Token Merging

Input: Full-length tokens x.
Output: Trained model θ
Initialize: Model weights θ, depth L.
for l = 1 to L do

Merge X into x′ using Eq. 1- 4.
Process merged x′ to y using Eq. 5.
Inflate y′ to ŷ using Eq. 6.
Assign X = ŷ for next layer.

end for
Back-propagate with task loss and update θ.

3.3. Optimization

All the proposed modules can be trained in an end-to-end
manner with only a task loss function. We provide three
different tuning modes to accommodate various transformer
applications: (1) Training the model from randomly initial-
ized weights, (2) Given a pre-trained transformer model, we
inject our token merging system without any architectural
change due to the token length invariant property, and (3)
One also has the flexibility to incorporate LoRA for more
parameter-efficient tuning.

4. Experiments

We evaluate our approach on image-only, language-only
and vision-language tasks with variants of transformer
architectures. Specifically, we conduct both pretraining
and evaluation on ImageNet-1K [13] for image classifica-
tion, finetuning on wmt t2t ende v003 from seqio 1 for
machine translation, and finetuning on VQAv2 [17] and
STVQA [2] for visual question answering.

Implementation Details For ImageNet-1K image classi-
fication, we validate our approach on the ViT-S/16 vari-
ant [15] and follows the settings [1] which yields signifi-
cantly better performance: We use global average-pooling
(GAP) instead of a class token. We adopt the learned posi-
tion embeddings instead of fixed 2D sin-cos ones. We also
introduce RandAugment [12] (level 10) and Mixup [52]
(probability 0.2). We implement the baseline model in
Jax [5] and train it with Adam [27], an initial learning rate of

1https://github.com/google/seqio

0.001, weight decay of 0.0001 for 300 epochs on TPUv3-
16 node. We choose to merge every two tokens and in-
ject the token merging system into 4-th layer to achieve a
favorably good trade-off between accuracy and efficiency.
To compare with different dynamic token pruning meth-
ods implemented in Pytorch [32], we also follow the setting
in [36, 46] and select the DeiT-S (12 Layers) [41] and LV-
ViT-S (16 layers) [24] as the backbones. We finetune both
models for 30 epochs on 2 NVIDIA V100 GPUs.

For machine translation, we use the T5X codebase2

and adopt the pre-trained small and base models on
C4 [35], denoted as t5 small and t5 base respectively.
t5 small and t5 base are both encoder-decoder archi-
tectures with 8 and 12 attention blocks. We finetune each
model on wmt t2t ende v003 to perform the down-
stream machine translation tasks. Batch size is 1500 and
we use 4000 warm up iterations. For each model, we use a
maximum sequence length of 256 and a batch size of 128
sequences. We train with Adafactor [38] for 20k iterations,
a base learning rate of 0.001 and warmup steps of 1,000 on
TPUv3-16 node.

For VQA tasks, we train the recently proposed PaLI-
5B model [10] on VQA tasks under both fully fine-tuning
and LoRA tuning settings. Different from ViLT [25] which
jointly pass the linear projected image patches and text
tokens to a multimodal transformer architecture, PaLI-5B
first encodes the image into visual tokens with 2B SigLIP
ViT (contrastively pretrained parameters) [51] and passes
the visual tokens together with text query tokens to a 3B
encoder-decoder UL2 transformer [40] that generates a text
output. The image resolution is 812 × 812 with a patch

Image ViT-G/14

Text Tokenizer

UL2
Transformer
Encoder

UL2
Transformer
Decoder

Generated
Text

Figure 3. Overview of PaLI-5B.

size of 14 × 14, resulting in 3364 visual tokens to demon-
strate the efficiency and effectiveness of our token merging
approach. We apply our token merging on visual tokens
output from the pre-trained ViT and set p as 2 for all vari-
ants. For both fine-tuning settings, we use the batch size of
128 and train with Adafactor for 500k iterations on TPUv3-
16 node. The dropout rate is set as 0.1. For fully fine-
tuning, the initial learning is 1e−4 while for LoRA with
rank of 16, it’s 3e−5. We also evaluate our approach in a
lightweight vision-language model ViLT (0.11B, 12 Lay-

2https://github.com/google-research/t5x
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ers) [25]. We implement our method in Pytorch, follow the
setting in PuMer [7] to compare with DyViT [36], ToMe [3]
and PuMer [7]. For a fair comparison, we adapt different
configurations of merging position l to generate our model
with similar FLOPs with all competitors and evaluate the
accuracy/throughput trade-off on a single NVIDIA 1080Ti
GPU.

Table 1. Comparison with DyViT* on ImageNet for ViT-S/16
training from scratch over 5 random seeds.

Method Top-1 Acc(%) Params(M) FLOPs(G)

Original 80.1±0.24 23.8 4.6
DyViT* 76.4±0.31 30.9 6.1
Ours 79.3±0.18 24.0 2.9

Table 2. Comparisons on ImageNet for fine-tuning DeiT-S. For
each competing algorithm, the table reports Top-1 accuracy (%),
FLOPs and inference throughput (imgs/s) from respective papers.
We run our method over 5 random seeds.

Method Top-1 Acc(%) FLOPs(G) Infer Tput.(imgs/s)

Original 79.8(-0.0) 4.6 2477
IdleViT 79.0(-0.8) 2.4 4072
DyViT 77.5(-2.3) 2.2 5147
EViT 78.5(-1.3) 2.3 3383
Evo-ViT 77.7(-2.1) 2.4 3173
ATS 78.2(-1.6) 2.3 2352
Ours 79.3±0.1 (-0.5) 2.3 4566

4.1. Results on ImageNet-1K Classification

ViT-S/16 Table 1 shows results in terms of test accuracy,
trainable parameters, and training cost calculated based on
overall FLOPs. We compare with a variant of DyViT [36],
which is trained from scratch for 300 epochs. Note that
additional trainable parameters of MLP prediction module
and computational training overhead of masking implemen-
tation are counted. Ours achieves better test accuracy than
DyViT, which suggests our soft merging method benefits
the optimization process and yields better generalization
performance than gumbel-softmax for sampling. More-
over, our input attentive module is lightweight and token
length-invariant, which only introduces negligible parame-
ters (0.2M) while the MLP prediction module in DyViT is
7.1M. The masking scheme in DyViT does not eliminate
tokens during training, which yields more computational
costs than training a ViT-S/16 with full-length tokens.

DeiT-S We also compare our approach with ATS [16],
Evo-ViT [47], EViT [30], DyViT [36] and IdleViT [46]

on DeiT-S fine-tuning. We set the token-kept ratio k ∈
[0.8, 0.7, 0.6, 0.5] to generate different model configura-
tions as in the respective papers. For our approach, we in-
ject soft merging into l ∈ [7, 6, 5, 4]-th transformer block
to obtain similar FLOPs as the above competitors. Results
in Table 2 show that ours (l = 4) achieves not only better
test accuracy but also faster inference throughput than those
competitors (k = 0.5). This suggests that even without aux-
iliary knowledge distillation loss, our soft token merging
provides more generalization capability during optimization
than merely dropping the tokens. Figure 4 shows that ours
yields the best accuracy and efficiency trade-offs across all
configurations. Our method (l = 4) achieves better perfor-
mance than the original DeiT-S while saving 24% FLOPs,
suggesting that token merging might have an additional reg-
ularizing effect during fine-tuning. We also report more
comparisons in terms of accuracy and throughput in Ap-
pendix across different model configurations.

LV-ViT-S For LV-ViT-S fine-tuning, we compare our
method with DyViT and IdleViT. Figure 5 shows a simi-
lar trend that ours bests accuracy-FLOPs trade-off. Results
in Table 3 show that ours (l = 4) achieves better test accu-
racy and faster inference throughput than those competitors
(k = 0.5) simultaneously. Appendix details the numbers
under different model configurations.

Table 3. Comparisons on ImageNet for fine-tuning LV-ViT-S. For
competing methods, we set the token kept ratio as 0.5 while for
our approach the merging position l are set as 4.

Method Top-1 Acc(%) FLOPs(G) Infer Tput.(imgs/s)

IdleViT 82.6 3.6 1131
DyViT 82.0 3.7 1321
Ours 82.8 3.5 1378

4.2. Results on Machine Translation

We validate our approach on WMT machine translation
task. Applying ViT token competitors to the encoder-
decoder transformer architecture is nontrivial due to their
domain-specific design of discrete optimization. As such,
we only design variants of our method for self-comparison.
As shown in Table 4, our method generalizes well to
the encoder-decoder transformers T5-small and T5-base.
We also validate that inflating tokens drastically improves
BLEU at a reasonable cost during training and inference.
This suggests that information preservation is a necessity
for language generation when encoded representations in-
teract with the target tokens in cross-attention layers.
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Figure 4. ImageNet-1K Top-1 accuracy-FLOPs trade-off compar-
ison on DeiT-S fine-tuning. Ours consistently perform better than
all ViT token pruning competitors.

Figure 5. ImageNet-1K Top-1 accuracy-FLOPs trade-off compar-
ison on LV-ViT-S fine-tuning. Ours consistently perform better
than all competitors.

4.3. Results on Visual Question Answering

We demonstrate the applicability of our approach to the
multimodal application, visual question answering (VQA).
We choose the backbone architecture of PaLI-5B, and fine-
tune on VQAv2 and STVQA datasets. Since the resolution
of the input image is 812 × 812, PaLI-5B takes the visual
tokens scaling up to 3, 364. We merge the encoded tokens
from a frozen pre-trained ViT without inflation since we
only need the high-level visual concepts in this language

Table 4. Results of t5-small and t5-base on WMT machine trans-
lation task. The table reports BLEU score (%), training, and in-
ference FLOPs (G) for both variants of our approach w/wo token
inflation.

Method BLEU (%) Train/Infer FLOPs(G)

T5-small 22.9±0.27 134.9 / 3.3
Ours-w-inflat 21.6±0.21 121.9 / 3.1
Ours-wo-inflat 19.1±0.12 115.0 / 3.0

T5-base 24.3±0.29 417.1 / 51.7
Ours-w-inflat 23.6±0.22 355.4 / 49.4
Ours-wo-inflat 21.2±0.19 331.6 / 46.9

Table 5. Results of PaLI-5B fully fine-tuning and LoRA on
VQAv2 and STVQA. We report accuracy (%), training (se-
quences/s), and inference (tokens/s) throughputs.

Method Accuracy (%) ↑ Train/Infer Tput. ↑
Dataset: VQAv2

Full-ft. 81.7±0.20 72.0 / 154.7
Ours-Full-ft 81.4±0.17 108.5 / 180.3
LoRA 79.9±0.21 74.0 / 154.6
Ours-LoRA 79.9±0.18 115.4 / 179.1

Dataset: STVQA

Full-ft. 77.5±0.28 67.3 / 128.5
Ours-Full-ft 76.6±0.21 99.3 / 144.7
LoRA 77.8±0.18 69.3 / 128.5
Ours-LoRA 77.3±0.16 105.3 / 144.1

generation task. The results in Table 5 show that in the con-
text of fully fine-tuning, our approach achieves compara-
ble accuracies while maintaining a wall-clock acceleration.
LoRA, as a parameter-efficient tuning approach, accelerates
the training a bit without improving the inference speed. In-
corporating LoRA, ours not only drastically saves training
costs but also speeds up inference while maintaining com-
parable accuracies.

We also evaluate our approach by training another VL
model ViLT. Following the settings in PuMer, we configure
all methods with similar speedup and compare the accuracy
over 3 runs. As shown in Table 6, our approach outperforms
these competitors, which demonstrates the effectiveness of
our design choices.

4.4. Analysis

Abalation Study We show the effects of turning off each
of our modifications to our full optimization process (1) Full
method described in Alg. 1. (2) wo-inflat.: we don’t apply
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Table 6. Results of ViLT on VQAv2. The table reports accuracy
(%), inference throughput acceleration (×) from respective papers.
We run our method over 3 random seeds.

Method Accuracy (%) ↑ Infer Tput. ↑
Original. 69.5 1×
DyViT 67.9 1.75×
ToMe 68.4 1.79×
PuMer 68.9 1.76×
Ours 69.1±0.1 1.76×

inflation to merged tokens. (3) wo-detach: we don’t detach
the gradients of the score matrix in Eq. 6. We conduct ex-
periments using both ViT-S/16 on ImageNet and T5-small
on WMT. As shown in Table 7, removing token inflation can
improve the performance of ViT-S/16 by providing a subset
of tokens encoded with high-abstraction visual concepts in
the discriminative task. Detaching gradients of the score
matrix is a necessity in stabilizing the optimization process
for both architectures. We also see that both inflation and
gradient detach are designed and woven to accomplish the
empirical leap in the language generation task. In Figure 6b
and 6c, red curve and yellow curve also demonstrate that
token inflation consistently improves BLEU score for both
t5-small and t5-base across different model FLOPs.

Comparison with Random Baseline In Figure 6a, for
ViT-S/16 on ImageNet-1K, we compare models obtained
by (1) uniform pruning: a naive predefined pruning method
that prunes the same percentage of dimension d in each
layer, (2) ours: variants of our method by setting differ-
ent merging positions l, and our method outperforms uni-
form pruning, demonstrating that token merging maintains
higher generalization capacity than architectural pruning. In
addition to the uniform pruning baseline, we also compare
with a random merging baseline to further separate the con-
tribution of the intrinsic property of token sparsification and
soft merging method. Specifically, this random baseline re-
places the procedure for merging entries of S in Eq. 4. In-
stead of using merging scores derived from the learned S,
it samples randomly from a uniform distribution and then
normalizes the sum to 1. As shown in Figure 6 (random
merging), ours consistently performs much better than this
random baseline. These results, as well as the more so-
phisticated baselines in uniform pruning, demonstrate the
effectiveness of our approach.

Investigation on Merging/Inflation Position Different
from dynamic token pruning approaches which set token-
kept ratios k for different model configurations, our ap-
proach realizes the flexibility by injecting merging and in-

Table 7. Ablation study on inflation and gradient detach compo-
nents on ImageNet-1K and WMT.

Variant ViT-S/16 (%) ↑ T5-small (%) ↑
Full 78.4±0.15 (+0.0) 22.9±0.27 (+0.0)
wo-inflat. 79.3±0.18 (+0.9) 21.6±0.21 (-1.3)
wo-detach 75.3±0.10 (-3.1) 13.2±0.10 (-9.7)

Table 8. Ours still yields reasonable performance for both vision
and language tasks with merging window size p enlarged to 4.

ViT-S/16 T5-small

Method Train Test Train BLEU
FLOPs(G) ↓Acc.(%) ↑FLOPs(G) ↓ (%) ↑

Original 4.6 80.1±0.24 134.9 22.9

Rand. (p = 2) 2.8 77.1±0.24 120.2 18.1
Rand. (p = 4) 1.9 76.0±0.28 115.4 15.7

Ours (p = 2) 2.9 79.3±0.18 121.9 21.6
Ours (p = 4) 2.0 78.1±0.12 117.0 19.3

Table 9. Comparison with trainable token pooling. Ours has best
performance consistently.

ViT-S/16

Method Train Test
FLOPs(G) ↓ Acc (%) ↑

Original 4.6 80.1±0.24

Trainable Pooling (l = 4) 2.9 78.0±0.16
Ours (l = 4) 2.9 79.3±0.18

Trainable Pooling (l = 6) 3.2 78.8±0.14
Ours (l = 6) 3.3 79.7±0.14

flation modules at different layer positions l, depicted as
merging position l in Figure 7. The merging position l ef-
fectively adapts the portion of transformer blocks that take
reduced tokens, hence realizing different efficiency and ac-
curacy trade-offs.

Figure 6 investigates the performance-FLOPs trade-off
curves of different variants by alternating l. Our approach
not only bests accuracy among all baselines, but also ap-
pears to be more robust over different FLOPs.

Investigation on Merging Window Size The design of
merging window size p gains the flexibility to explore more
trade-offs between training budgets and test performance.
As shown in Figure 8, we illustrate the merging score matri-
ces with different window size. Our approach has the flexi-
bility to aggregate p local tokens into one with self-attentive
importance scores, which is beneficial in maintaining rea-
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(a) ViT-S/16 (b) T5-small (c) T5-base

Figure 6. Performance/FLOPs trade-offs for different variants of ViT-S/16, T5-small, and T5-base architectures. We report the results of
all variants over 5 random seeds.

Transformer Block l-th
Transformer Block

Our Merging System

...... ......

Figure 7. Illustration of applying merging system to position l.

sonable task performance even with a large p.

(a) Merge p = 2 tokens to 1 (b) Merge p = 4 tokens to 1

Figure 8. Illustration of different merging window sizes.

Table 8 show the results for ours and random baselines,
each generates trade-offs between train costs and test accu-
racy by alternating the window sizes (p ∈ {2, 4}). Ours
consistently outperforms random baselines. Even with a
large window size p = 4, ours still yields reasonable ac-
curacy, demonstrating that the regularization effect of ours
benefits generalization performance.

Connection with Trainable Pooling [33] proposes an
attention sparsification approach by learning to select the

most informative token representations, focusing on long
document summarization task, denoted as trainable pool-
ing. Both introduce elegant optimization schemes with end-
to-end differentiability, guided by merely task losses. How-
ever, ours explicitly learns self-attentive scores for token re-
duction without any modification to the pre-defined trans-
former layers (attention mechanism, architectural configu-
ration). We generalize [33] to ViT-S/16 on ImageNet-1K
classification by adopting cross-attention for trainable vi-
sual token pooling at l ∈ {4, 6}. As shown in Table 9,
ours consistently yields better performance. We also in-
vestigated the max and mean pooling performance of ViT-
S/16 on ImageNet-1K classification. Under similar com-
putational costs (l = 4, FLOPs of 2.9G), mean pooling
achieves 77.4% and max pooling achieves 77.0%, while
ours achieves 79.3%. This demonstrates our design outper-
forms non-learning pooling baselines.

5. Conclusion
We tackle a set of optimization challenges in token merging
and invent a corresponding set of techniques, including soft
token merging, inflation with information preservation, and
parameter-efficient tuning to address these challenges. Each
of these techniques can be viewed as ‘add-ons’ to an orig-
inal part for training transformers into a corresponding one
that accounts for accuracy-efficiency trade-offs. There is a
detailed analysis of these add-ons and a guiding principle
governing the formulation of each computational module.
Together, they accelerate training and inference without im-
pairing model accuracy – a result that uniquely separates
our approach from competitors. In light of the success of
our current strategy, it is interesting to subject the proposed
merging system to extremely long text or video sequence
tasks as a future investigation. For example, incorporating
our approach with Chen et al. [8] to fine-tune a pre-trained
LLM with an interpolated longer context window to im-
prove efficiency while maintaining the extreme exploration
capability.
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