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A. Method

This section shows how to express the CL objective (Eq. 1)
in terms of the amount of forgetting. To start off, for task
T , we denote the optimal parameters found on the previous
task as θ∗T−1. Then, we define the forgetting for some pa-
rameter on some example to be positive if the loss on that
example has increased: F(x; θ) = L(x; θ) − L(x; θ∗T−1).
Starting from our objective in Eq. 1, we write:
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Finally, we note that when minimizing the forgetting
F(x; θ) = L(x; θ) − L(x; θ∗T−1), only only needs to com-
pute and minimize the loss on the new task L(x; θ), since
L(x; θ∗T−1) is a fixed value. Therefore, we can optimize
F without introducing extra computational demands to our
training process.

*Work done during internship at MIT-IBM Watson AI Lab.

B. On Regularization Losses
In our approach, we prioritize computational efficiency and
focus on methods that do not incur additional computational
costs. This decision is informed by the findings of Ghu-
naim et al. [4], who demonstrate that both simple and ad-
vanced regularization-based continual learning techniques
struggle to perform effectively under computational budget
constraints. Moreover, their research suggests that simple
experience replay is a more effective strategy in such sce-
narios. Thus, when extending such computational consid-
erations to the setting of extended continual pre-training,
we focus on outperforming iid experience replay without
introducing any additional computational costs. Further-
more, we consider gains of our approach to be orthogonal
to the realms of non-replay regularization-based continual
learning methods, and thus our method could potentially be
integrated with these regularization techniques to enhance
overall performance, offering a synergistic effect.

C. Expanded Implementation Details
We use A100 GPUs to generate all results. The hyper-
parameters for our experiments were meticulously chosen
based on a series of small task experiments in which we
use only used half of the number of tasks. We update our
model on 10, 000 new data examples per task. In the interest
of computational resources for the larger Llama model, we
approximate the training of all the model parameters with
LoRA finetuning [5] in the language modeling experiments.
In our experience, conclusions attained for LoRA finetun-
ing reflect the same in full model training. We use a learn-
ing rate of 2e− 5 for full model fine-tuning and 2e− 4 for
LoRA-based fine-tuning. For LoRA-based fine-tuning, we
use a rank of 8 for the Llama model experiments. For our
proposed adaptive memory replay bandit scheme, we found
that a temperature of t = 0.1 and forgetting mean update
ratio of β = 0.01 performed best. We compose our replay
batches for both iid replay and our adaptive memory replay
with a 1:1 ratio of replay data to new task training data. We
conducted evaluations on a hold-out test dataset comprising
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500 samples per dataset. We used a batch size of 128 and
16 for the Masked Autoencoder and Llama models, respec-
tively, which was chosen based on GPU memory. For the
Llama experiments, we leveraged low-precision training.

D. Expanded Benchmark Details

In our main text, we evaluated the Masked Autoencoder
model for three vision datasets. The first dataset is the Do-
mainNet [7] dataset, containing 6 different domains of com-
mon objects. The next is the Medical MNIST dataset [11],
from which we sampled 5 standardized biomedical image
datasets containing the highest number of samples. Finally,
we use 4 attribute splits from the Synthetic Visual Concepts
(SyViC) dataset [3].

For the Llama model, we benchmarked on a 5-dataset
sequence using datasets from Huggingface [10]. The
datasets involved in this sequence were banking77 [2], wiki-
cat-sum/animal [8], bigbio/hallmarks-of-cancer [1], big-
patent [9], and wikitext [6].
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