PersonaBooth: Personalized Text-to-Motion Generation

Boeun Kim, Hea In Jeong, JungHoon Sung, Yihua Cheng, Jeongmin Lee, Ju Yong Chang, Sang-Il Choi, Younggeun Choi, Saim Shin, Jungho Kim, Hyung Jin Chang; Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR), 2025, pp. 22756-22765

Abstract


This paper introduces Motion Personalization, a new task that generates personalized motions aligned with text descriptions using several basic motions containing Persona. To support this novel task, we introduce a new large-scale motion dataset called PerMo (PersonaMotion), which captures the unique personas of multiple actors. We also propose a multi-modal finetuning method of a pretrained motion diffusion model called PersonaBooth. PersonaBooth addresses two main challenges: i) A significant distribution gap between the persona-focused PerMo dataset and the pretraining datasets, which lack persona-specific data, and ii) the difficulty of capturing a consistent persona from the motions vary in content (action type). To tackle the dataset distribution gap, we introduce a persona token to accept new persona features and perform multi-modal adaptation for both text and visuals during finetuning. To capture a consistent persona, we incorporate a contrastive learning technique to enhance intra-cohesion among samples with the same persona. Furthermore, we introduce a context-aware fusion mechanism to maximize the integration of persona cues from multiple input motions. PersonaBooth outperforms state-of-the-art motion style transfer methods, establishing a new benchmark for motion personalization.

Related Material


[pdf] [supp] [arXiv]
[bibtex]
@InProceedings{Kim_2025_CVPR, author = {Kim, Boeun and Jeong, Hea In and Sung, JungHoon and Cheng, Yihua and Lee, Jeongmin and Chang, Ju Yong and Choi, Sang-Il and Choi, Younggeun and Shin, Saim and Kim, Jungho and Chang, Hyung Jin}, title = {PersonaBooth: Personalized Text-to-Motion Generation}, booktitle = {Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR)}, month = {June}, year = {2025}, pages = {22756-22765} }