-
[pdf]
[supp]
[arXiv]
[bibtex]@InProceedings{Kundu_2025_CVPR, author = {Kundu, Rohit and Xiong, Hao and Mohanty, Vishal and Balachandran, Athula and Roy-Chowdhury, Amit K.}, title = {Towards a Universal Synthetic Video Detector: From Face or Background Manipulations to Fully AI-Generated Content}, booktitle = {Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR)}, month = {June}, year = {2025}, pages = {28050-28060} }
Towards a Universal Synthetic Video Detector: From Face or Background Manipulations to Fully AI-Generated Content
Abstract
Existing DeepFake detection techniques primarily focus on facial manipulations, such as face-swapping or lip-syncing. However, advancements in text-to-video (T2V) and image-to-video (I2V) generative models now allow fully AI-generated synthetic content and seamless background alterations, challenging face-centric detection methods and demanding more versatile approaches.To address this, we introduce the Universal Network for Identifying Tampered and Engineered videos (UNITE) model, which, unlike traditional detectors, captures full-frame manipulations. UNITE extends detection capabilities to scenarios without faces, non-human subjects, and complex background modifications. It leverages a transformer-based architecture that processes domain-agnostic features extracted from videos via the SigLIP-So400M foundation model. Given limited datasets encompassing both facial/background alterations and T2V/I2V content, we integrate task-irrelevant data alongside standard DeepFake datasets in training. We further mitigate the model's tendency to over-focus on faces by incorporating an attention-diversity (AD) loss, which promotes diverse spatial attention across video frames. Combining AD loss with cross-entropy improves detection performance across varied contexts. Comparative evaluations demonstrate that UNITE outperforms state-of-the-art detectors on datasets (in cross-data settings) featuring face/background manipulations and fully synthetic T2V/I2V videos, showcasing its adaptability and generalizable detection capabilities.
Related Material