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Abstract

Feedback is essential for learning a new skill or improv-
ing one’s current skill-level. However, current methods for
skill-assessment from video only provide scores or com-
pare demonstrations, leaving the burden of knowing what
to do differently on the user. We introduce a novel method
to generate actionable feedback (AF) from video of a per-
son doing a physical activity, such as basketball or soccer.
Our method takes a video demonstration and its accom-
panying 3D body pose and generates (1) free-form expert
commentary describing what the person is doing well and
what they could improve, and (2) a visual expert demonstra-
tion that incorporates the required corrections. We show
how to leverage Ego-Exo4D’s [29] videos of skilled activ-
ity and expert commentary together with a strong language
model to create a weakly-supervised training dataset for
this task, and we devise a multimodal video-language model
to infer coaching feedback. Our method is able to rea-
son across multi-modal input combinations to output full-
spectrum, actionable coaching—expert commentary, expert
video retrieval, and expert pose generation—outperforming
strong vision-language models on both established metrics
and human preference studies.

1. Introduction
An abundance of instructional “how-to” videos on the in-
ternet enables skill-learning by observing expert demonstra-
tions. Instructional videos cover many skills one might want
to learn—cooking, DIY, sports, crafts, and hobbies. Recent
work leverages such videos to assist human [5, 6, 53] and
robot [56] skill learning. Acquiring skills from video is es-
pecially appealing for equitable learning: access to video is
generally less costly and more widely available than face-
to-face access to an expert coach.

Despite the myriad of videos and tutorials, people prefer
to learn in a feedback loop: getting to know their mistakes,
finding the improvements they need to do and correcting
those. For that reason, coaching-based iterative training is
more effective than self-learning [48]. A good coach has
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The player is taking big steps to control the ball, but lacks body
control, and needs to slow down to maintain a better control.

Expert commentary (output)

Expert demonstration (output)Learner demonstration (input)

Figure 1. An example of expert feedback. When a player is
dribbling the ball fast, they tend to lose control (top left). Our
proposed method provides an expert commentary to the learner
suggesting improvements (bottom). The method also provides an
expert demonstration that shows the desired correction, where the
player is maintaining smaller steps and body control (top right).

three components: finding mistakes, providing verbal cor-
rections and finally, showing visual demonstrations. For ex-
ample, suppose a person learning to dribble a soccer ball
takes big steps that decrease body control. The coach should
identify this mistake, provide verbal feedback, and show the
correct dribbling technique. See Figure 1.

At present, a person watching a how-to video has to
identify mistakes themselves and attempt to correct them.
Pinpointing the exact mistake is itself challenging for
beginners—particularly when learning physical skills, like
sports and dance, where subtle movements and positioning
of the body are critical to success.

What role could AI play in overcoming this gap? Cur-
rent work on proficiency understanding from video focuses
on scoring a demonstration [9, 28, 29, 78], thus address-
ing only one component of coaching. There is no method
that can provide actionable verbal and visual feedback on a
learner’s demonstration. Doing so is technically challeng-
ing since it requires the method to (a) understand the user’s
activity, (b) detect mistakes in the execution by comparing
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the user’s activity with correct examples and finally, (c) sug-
gest edits with respect to the better way of doing the activity.
In short, the output should be coach-like—specific action-
able feedback that will improve a learner’s proficiency.

We propose ExpertAF: a novel method to provide ex-
pert actionable feedback on a user’s physical activity. Ex-
pertAF’s actionable feedback has two forms: language-
based commentary and visual demonstration. The free-
form expert commentary output describes the mistake and
what should be corrected, e.g., “take smaller steps and slow
down to maintain control”, while the expert visual demon-
stration output shows the correct way of doing it.

Both components introduce unique technical challenges.
For the former, the task of generating free-form text feed-
back is distinct from standard image and video captioning,
as the model needs to identify the mistake and actions that
would correct it—rather than simply describe the observed
pose [16] or activity [32, 38, 57, 75, 81]. Similarly, for
the latter, the task of retrieving (or generating) a demon-
stration that corrects a specific mistake is distinct from
similarity-based retrieval [3, 40, 54, 77, 79] or open-ended
generation [12, 19]. We hypothesize—and experimentally
validate—that personalized, video-conditioned coaching is
more accurate than simply returning a global expert execu-
tion because there are many right ways of doing an activity,
e.g., penalty shots in soccer, and hence different ways to
fix what is wrong in a given execution. Overall, the model
must understand both what is being done and what action-
able tweaks would make it better.

We are the first to address video-based coaching with
actionable feedback. We develop the first model to gener-
ate free-form text feedback on a user’s activity (captured in
video and 3D pose sequences) as well as a video demon-
strating how to improve, by building on a recent vision-
language model [45]. There is currently no dataset for this
challenging task. Therefore, we augment Ego-Exo4D [29],
an existing dataset with video, commentary, and poses, and
show how to use a strong large language model to create a
weakly-supervised training set consisting of paired learner-
expert demonstrations, along with expert textual commen-
tary that relates the two. We also obtain a gold-standard
manually labeled test set for rigorous evaluation.

We validate ExpertAF on three diverse physical scenar-
ios: soccer, basketball, and rock climbing. Our results show
a significant improvement over strong baselines, establish-
ing the first method to provide actionable feedback, includ-
ing a novel technique for expert pose generation. Alongside
consistent gains in quantitative metrics against the ground
truth, we also show our model’s promise via direct hu-
man evaluation, where ExpertAF outperforms off-the-shelf
video models by as much as 3×.

2. Related work
Skill learning from videos. Instructional video datasets
like HowTo100M [53], COIN [70], and CrossTask [87]
enable procedural understanding through step recognition
[5, 42, 85], procedure planning [11, 13, 84], task-graph dis-
covery [5, 18, 29, 85], action anticipation [1, 21, 22, 26, 51],
and alignment detection [4, 30]. Capitalizing on their in-
structional nature, recent work learns robot policies from
these videos [50, 69], uses external knowledge-bases like
WikiHow to ground the steps of a procedural task [42, 52,
85], and explores new ways to navigate between multiple
demonstrations [6]. Despite their scale, how-to videos in
these datasets [53, 70, 87] are often created by domain ex-
perts and hence lack mistakes or suboptimal executions.
In contrast, Ego-Exo4D [29] contains multiple executions
of various common scenarios by people with varied skill
levels—from novice to late expert. Moreover, it contains
experts’ feedback on those actions. We show how to aug-
ment this data via large language models to support our new
idea for video-based coaching.

3D body pose for activity understanding. 3D body
pose is crucial for human activity understanding, captur-
ing a person’s stance and motion. Supported by valu-
able datasets like Humans3.6M [33] and NTU RGB-D
[46, 66], recent methods improve body pose understand-
ing [25, 34, 67, 72, 83, 86]. Beyond action classifica-
tion, pose is also crucial for markerless motion capture of
sports [8, 15] and interacting in augmented reality [24, 31].
While our ExpertAF leverages pose as an important signal
of human activity, unlike prior work we interface video,
pose, and free-form text to generate expert feedback and
an expert demonstration video. Our work is also differ-
ent from generating [20] or modifying [17] body pose from
text (e.g.,“raise your left arm”), as our task is to understand
a potentially incorrect pose and provide feedback. Under-
standing these minor differences between incorrect and cor-
rect poses offers unique challenges that are addressed by
our proposed learning scheme. Our work is orthogonal to
methods that improve pose estimation itself; any future im-
provements on that front would only benefit our approach.

Skill assessment and coaching. Prior work explores
skill assessment for a variety of tasks, particularly sports.
Most methods pose skill-assessment as a score-prediction
task, i.e., for skating [78], gymnastics [28], basketball
[9], or multiple sports [61]. Since absolute scoring can
be ambiguous and error-prone, recent work [71] explores
uncertainty-aware score distributions. Instead of explicitly
scoring a demonstration, other work determines which of
two basketball players are better [9], uses group-aware con-
trastive regression to learn the relative quality of demonstra-
tions [80], or generates a full ideal trajectory from the first
frame [10]. Fitness-AQA [63] and Action Quality [64] pro-
vide outputs like knees inward error, shallow squat error,
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or an arrow highlight for more localized feedback. There
is also research on skill assessment in non-sports domains,
like surgery [43, 76] and piano [62]. All the prior work
assumes a fixed taxonomy of errors, and the taxonomy is
designed separately for each activity. Furthermore, unlike
our work, none of the prior work provides feedback akin to
a personal coach—which requires not only telling what is
wrong, but also expressing how to correct the mistake.

3. Method
We introduce the problem statement in Sec. 3.1, the dataset
creation strategy in Sec. 3.2, the training design in Sec. 3.3,
and implementation details in Sec. 3.4.

3.1. Problem statement
Consider a dataset E = {(V, T, V̄)} where each Vi is a
video demonstration, and Ti is a free-form text commen-
tary critiquing the activity in the video, e.g., “take smaller
steps and slow down to maintain control.” V̄ is a related
video demonstration but without the error mentioned in T ,
e.g., the player takes smaller steps with better control. See
Fig. 1. Each demonstration V = {V, P, S} consists of three
parts: V is the RGB video, and P is the 3D pose sequence of
the participant with skill-level S in the video. The pose rep-
resentation P ∈ Rn×d×3 contains n frames of 3D positions
for d = 17 body joints, consistent with MS-COCO [41].
S is the participant’s skill-level for an activity, i.e., novice,
early expert, intermediate expert, or late expert, and will be
used later in creating the dataset. We assume there is one
active person doing a physical activity in any given video
who is the subject of ExpertAF.

The goal in this work is to provide feedback on a given
learner’s video containing a physical scenario. The feed-
back is an expert demonstration V̄ and an expert commen-
tary T , tailored to V . Formally, we want to learn a mapping
V → (V̄, T ). While it is possible to learn these map-
pings separately (i.e., V → V̄ and V → T ), the expert com-
mentary and demonstration are tightly related and provide
important contextual information for generating each other.
We therefore treat this as an autoregressive generation prob-
lem where during training, we use both V and T to generate
V̄ (or V and V̄ to generate T ), while during testing, we drop
the extra context information to generate V̄ and T directly.

Mathematically, consider F : (V, V̄, T ) → R as the
autoregressive function that jointly learns from the learner
demonstration V , the expert demonstration V̄ , and the ex-
pert commentary T . The output ∈ R is the loss that we
aim to minimize. We use the same unified F for the joint
training (detailed in Sec. 3.3) and inference, as follows. We
use F ′ when the autoregressive model F is used for output
token generation, i.e., text or pose tokens. F ′ can take in
any input used during training and generate the remaining
one—typical for autoregressive models [74].

Expert commentary generation. At inference time, to
generate an expert commentary T , we only have a learner
demonstration, thus we mask out the expert demonstration
and output the expert commentary:

T̂ = Ft(V) = F ′(V,∅) (1)

where Ft denotes using the model to generate commentary.
Expert demonstration generation. Next, we obtain the

expert demonstration in two forms—retrieving a correct ex-
ecution (video and pose) and generating a pose sequence.
These two output formats offer complementary information
to understand the actionable feedback. While a video exem-
plar is helpful for many learner mistakes, pose generation
is useful in the absence of a correct expert demonstration
in the retrieval set—allowing our model to generalize its
coaching beyond the set of discrete expert videos. We leave
expert video generation as a future work.

Denoting Fr and Fg as the expert demonstration re-
trieval and expert pose generation functions, respectively,
we have:

V̄ = Fr(V) = argmin
∀V′∈E

F(V,V ′, T̂ ) (2)

P = Fg(V) = F ′(V, T̂ ) (3)

where T̂ is the output from Eq. 1 above, and Fr and Fg

denote using the model to retrieve or generate the expert
demonstration, respectively.

In summary, the training step F uses tuples V, V̄, T in a
unified way, described in Sec. 3.3, whereas, at inference, all
the three functions Ft, Fr and Fg use only V .

3.2. Forming the expert feedback dataset
To learn the desired functions, we need to obtain pairs of
videos (V, V̄) where there is an error in the demonstration
in the first video that is corrected in the second video, along
with the expert commentary T about V . Ego-Exo4D [29]
offers a great starting point for our setup. It contains ego-
exo videos, extracted 3D pose sequences, and time-stamped
commentary by experts (e.g., professional soccer coaches)
on the demonstrations in the video. The experts watched the
entire video and stopped each time they saw something to
critique or compliment, offering free-form spoken commen-
tary. In total, this led to 117,812 sentences across 221 hours
of video, with most videos commentated by 2-5 unique ex-
perts [29]. See examples in Figure 2 (left) and details in
Sec. 3.4 and Supp.

We propose to automatically augment this data in
two ways to enable coaching. First, we seek (pseudo-
)annotations of whether a given commentary statement de-
scribes a needed improvement or applauds a correct execu-
tion. Second, we localize each piece of feedback on a body
region, e.g., incorrect hand stretch vs. wrong legs move-
ment. These distinctions are crucial to generate feedback
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So he's taking a big step in to
get that right foot next to the

ball, almost fully extending both
of his legs to get there... He's

kind of really not controlling his
body well, the faster he goes

and needs to then turn and go
a different direction. 

Here you can see he's running
with the ball in this picture.
What I like about it is the

distance the ball is in front of
his body is good. It's almost like
a natural, you can tell that he's
almost in a natural motion with

both of his legs running.

The player is taking big
steps to control the ball,
but lacks body control,

and needs to slow
down to maintain
control. (Legs)

The player is
demonstrating good

ball control and natural
motion while dribbling

at a slow speed. (Legs)

Legs The player is taking big
steps to control the ball,
but lacks body control,

and needs to slow
down to maintain

control.

LLAMA3

.

.

.

.

.

Summarization and
body part labeling

Temporal
alignment

LLAMA3

Final training dataDataset with expert commentary

Figure 2. Overview of the dataset creation. We first summarize the human-provided expert commentary [29] in one sentence using an
LLM, and then map it to a body region and correct (green) or incorrect (red) execution label. We then choose incorrect-correct pairs for the
same body region to obtain C. Finally, we choose pairs with minimum temporal alignment loss to obtain the training data. Best in zoom.

and show corrections. To this end, we create a weakly-
supervised training dataset consisting of tuples (V, T, V̄)
from Ego-Exo4D [29], as follows.

Expert commentary classification and body localiza-
tion. The commentary in [29] is obtained from voice
recordings of the experts converted to text with ASR. Most
of the samples contain extra comments like “oh, I will give
this a five out of ten” and “that’s how I would do it too”.
Additionally, as discussed above, they lack positive and
negative labels and do not explicitly indicate the body re-
gion involved (e.g., legs, arms). Thus, we preprocess the ex-
pert commentary for three things—making the commentary
concise to extract the improvable feedback, marking which
body region the feedback is about, and marking whether the
feedback states the need for improvement or not.

Since these are all addressable with text reasoning, we
use a large language model (LLM) to provide the de-
sired answers. We use Llama3-70B [2], a recent open-
sourced model that performs well in current benchmarks.
In essence, given a commentary T , the language model
L responds to the prompt: “Given an expert’s commen-
tary, summarize the feedback into a single sentence and
also provide which body regions need improvement or are
correctly executed...” (see Supp.). Formally, this yields
L(T ) = (T ′, (b1, cj), ..., (bs, cs)) where T ′ is the concise
summary and bi is a body region like head or arms and
ci ∈ {0, 1, 2} are labels representing needs improvement,
correct execution, and no mention, respectively. We group
the skeleton joints into six pre-defined body regions bi (de-
tails in Supp.). See red and green boxes in Fig. 2.

Pairing incorrect and correct executions. Next, we use
the above information to mine pairs of incorrect and correct
execution in the dataset. Ego-Exo4D also contains meta-
data about the skill-level S of the demonstrator, broken into
four categories (1-4 in increasing expertise) starting from

novices who have not performed the activity before to late
experts who have performed the same activity, e.g., basket-
ball for 10+ years. We sample incorrect learner demon-
strations from beginners and correct demonstrations from
experts from the same activity in Ego-Exo4D, e.g., penalty
kicks in soccer or reverse layup in basketball. Even though
there can be incorrect executions by experts and correct
ones by beginners, errors by experts are likely incompara-
ble to beginners’ due to the skill gap. We use the mapping
of body regions to find (in)correct executions referring to
the same body region. This results in a collection of video
pairs with negative and positive feedback about the same
body region, e.g., legs in Fig. 2. Formally, the collection C
is curated as

{(V1, T,V2) | S1 ∈ Sn, S2 ∈ Se,∃j s.t. cj1 = 0, cj2 = 1}

where Sn ={novice, early expert} and Se = {late ex-
pert, intermediate expert}. Using this matching, we obtain
a collection of video pairs of incorrect and correct execution
(Fig. 2, yellow box).

Temporal alignment and filtering demonstrations.
The commentary annotation process in [29] allows the ex-
perts to pause at any instant and provide their feedback.
Thus, the clip V1 could have the start of a basketball jump
shot, whereas the clip V2 could also have content before the
shot and the follow-through. Thus, we temporally align the
learner and the expert video in the collection C to ensure we
are capturing the same step of a demonstration.

For all pairs of clips in the collection C, we compare
the two poses P to quantify their alignment (similarity)
using Procrustes-aligned Mean Per Joint Position Error
(PA-MPJPE) [27], a translation-invariant and body shape-
invariant measure. Note that the video component of the
input (Sec. 4) is complementary, as it does capture the per-
son’s overall movement in the space.
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The player
needs to

slow down

Video tokenization Pose tokenization Text tokenization

Expert commentary generation Expert demonstration retrieval Expert pose generation

The player needs
to slow down

Retrieval candidate

Relevance score

Figure 3. Model overview. We tokenize individual modalities using a modality-specific architecture (top). Once all the modalities are
encoded as tokens, we use a large language model to learn expert commentary generation, demonstration retrieval, and pose generation.
At inference, the model only takes the learner demonstration video V . See text for details.

Denote the commentary timestamp as t1 and t2 for the
two videos. We first choose a fixed window around t1, say
[ta1 , t

b
1] such that ta1 < t1 < tb1. Next, we find the corre-

sponding time window [ta2 , t
b
2] with ta2 < t2 < tb2 in V2 such

that the PA-MPJPE error is the minimum. Specifically,

[ta2 , t
b
2] = argmin

[ti2,t
j
2]∈V2

PA-MPJPE
(
V1[t

a
1 , t

b
1],V2[t

i
2, t

j
2]
)

such that |tj2 − ti2| = |tb1 − ta1 |.

We obtain a subset from C that contains the aligned
video segments. There can be some video pairs where the
demonstration can be very different and hence no appropri-
ate match exists. Therefore, we only keep the top-k pairs
with maximum alignment for every incorrect execution.

Overall, we obtain a novel dataset D that contains pairs
of videos where the first video has an incorrect execution
(on some body region) and the second video corrects it,
thus obtaining the desired tuple (V, T, V̄) for training and
testing. See Fig. 2 (right) and examples in Supp. To ensure
fair evaluation, we separately establish a clean gold stan-
dard test set, free of potential noise from LLM inference.
The test set is manually verified (see Supp for details).

3.3. Architecture and training design
Next, we discuss the architecture that encodes the videos V ,
poses P , and text T and enables training the auto-regressive
function F . The overall idea is to encode all the represen-
tations into a text embedding space and use the strong ca-
pabilities of recent language models to obtain output text
and pose tokens. This approach has been recently used in
vision-conditioned language models [6, 35, 45, 55] for im-
age and video captioning. This setup also allows for a uni-
fied architecture for various input and output combinations,
as opposed to different input streams for individual modal-
ities. Fig. 3 shows a schematic diagram of the architecture,

and each part is explained below.
Encoding video as tokens. Each video V is an ego-exo

clip pair.1 The input thus allows the model to see both close-
up hand-object interactions (more visible in the learner’s
ego view) as well as full-body poses in the scene context
(more visible in the observer’s exo view). We use a pre-
trained video model to extract spatio-temporal features from
both videos’ frames, followed by a mapper to convert the
video features to video tokens. Formally, v = fvm(fV (V))
where fV is a standard feature extractor (we use Intern-
Video2 [77]) and fvm is the visual mapper. See Fig. 3 (top
left). The mapper is typically a low-parameter model that
is trainable, whereas the high-parameter feature extractor is
kept frozen. The mapper helps transform the visual map-
per to be akin to text tokens—a popular strategy in visual
instruction tuning models [35, 45].

Encoding pose sequences as tokens. To encode a
pose sequence, we use a series of linear layers and MLP-
mixer [25] to convert a single pose P ∈ Rd×3 to an
embedding that can be discretized using a codebook, i.e.,
p′ = fP (P ). The architecture in [25] also contains a de-
coder that converts the embeddings back to human poses,
i.e., P = f−1

P (p′), which we use in Fg to generate cor-
rected poses. Similar to the above, we use a pose map-
per to convert the tokens to embeddings. Formally, p =
fpm(fP (P )) = fpm(p′) is the pose token where fpm is
the pose mapper. See Fig. 3 (top center). We concatenate
embeddings from every frame to obtain the representation
for the whole sequence. Having fpm allows training with
fewer parameters and thus, we use p for learning Ft and
Fr. However, using fpm for generation Fg would require
adding an inverting function for fpm. Thus, we directly add
p′ to LLM tokens for pose generation Fg . An innovative as-

1The exo view is the one annotated in Ego-Exo4D as having the maxi-
mum subject visibility.
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pect of our approach is to encode pose as multimodal tokens
and train with LLMs, unlike other work regressing the pose
parameters from a special pose embedding [20] or using a
dedicated pose transformer [49, 82].

Encoding text as tokens. Text tokenization is the stan-
dard process before inputting a text sentence to the LLM
[59, 73], i.e., t = ft(T ) where ft is the tokenization func-
tion. See Fig. 3 (top right).

Multi-modal sequence prediction. The previous steps
yield multimodal tokens v, p, and t for video, pose, and
text, respectively. Next, we use the strong sequence pre-
diction capabilities of large language models to obtain the
desired output tokens based on the sequence of multi-modal
inputs [6, 35, 45, 55].

For training F for expert commentary generation, we
provide a sequence of learner video and pose tokens (v
and p) and the corrected pose tokens (v̄ and p̄ correspond-
ing to V̄). We ask the model to predict the expert com-
mentary token sequence. For the sequence prediction lan-
guage model Ls, we wish to obtain t = Ls(v,p, v̄, p̄).
Consequently, the training objective is the standard cross-
entropy loss, minθ {− log (t | v,p, v̄, p̄; θ)}, where θ are
the parameters of the model. See Fig. 3 (bottom left).
For consistency with the training of these language mod-
els, the sequence is formatted to be conversational in na-
ture, e.g., “provide an expert’s commentary based on this
pose sequence:”. Similarly, for expert demonstration re-
trieval, we wish to obtain a retrieval candidate p̄ =
Ls(v,p, t). Likewise, the training objective with param-
eters γ is minγ {− log (p̄ | v,p, t; γ)}, which we also use
as the relevance score for retrieval during inference. Expert
pose generation is trained with the same objective, except
we use p′ instead of p (and obtain p̄′). See Fig. 3 (bottom).
Generating pose further requires converting back the pose
tokens p̄′ to 3D joints using the pose decoder f−1

P .
At inference time, as introduced in Sec. 3.1, we only

use V as the input: Ft drops the expert demonstration and
predicts the expert commentary T̂ . We use this predicted
commentary as input for Fr and Fg .

3.4. Implementation details
Dataset and statistics. Ego-Exo4D [29] contains 5,035
videos of participants doing activities across eight scenar-
ios. We focus on three physical scenarios—basketball, soc-
cer, and rock climbing—though our model is in princi-
ple generalizable to other physical skills, without any task-
specific design, unlike [63, 78]. We use physical scenarios
since the coaching feedback is groundable in the body re-
gions, as opposed to procedural tasks like cooking, where
the suggestions can be alternate ingredients or steps that are
not visually present. Details and statistics are in Supp. Fol-
lowing the dataset creation process outlined in Sec. 3.2, we
obtain a dataset of 25,505 training and 1,272 testing tuples

of (V, T, V̄). We choose k = 5 (train) and k = 1 (test) for
min-k choice of correct demonstrations per incorrect exe-
cution. To reiterate, we manually examine the test set for
correct commentary summary and body region labeling.

Network architecture. The video model fV is an In-
ternVideo2 [77] encoder that provides strong visual rep-
resentations. The pose encoder fP and decoder f−1

P are
adapted from PCT [25], which learns compositional tokens
from human poses. Since the original training in [25] uses
2D poses, we adapt it to use 3-dimensions and retrain on
the human poses in [29]. Both the visual and pose mappers
are low-parameter MLP layers [44]. Finally, we use Llama
3-8B [2] as the LLM multimodal encoder for sequence pre-
diction. We finetune Ft and Fr for 5 epochs with a learning
rate of 5 × 10−5. Next, we modify the token dimension in
Fg to accommodate pose tokens p′, and hence, we fine-tune
Ls when learning Fg with a learning rate of 5 × 10−6 for
5 epochs. Video (fV ) and pose models (fP , f−1

P ) are kept
frozen. All the models are trained on 8 V100 32GB GPUs.

4. Experiments and results

We first discuss the baselines and ablations, followed by the
evaluation setup and results for the three outputs—expert
commentary generation (Ft), expert demonstration retrieval
(Fr), and pose demonstration generation (Fg). We also
show qualitative examples and discuss the limitations.
Baselines. We compare with the following baselines:

• InternVideo2-NN, InternVideo2-FT [77]: Given a query
video V , the nearest neighbor baseline (NN) finds the most
similar video by InternVideo2 [77] feature similarity in the
training data and returns the corresponding commentary
or demonstration, for all tasks. The FT version finetunes
the model to contrastively match the learner demonstration
with the expert commentary/demonstration.

• VideoChat2 [36, 37], LLaVA [45]: In these methods, we
prompt SOTA video and image captioning models to gen-
erate commentary for an input demonstration. We use the
log-likelihood loss to find the retrieved expert demonstra-
tion. These baselines evaluate if existing video captioning
methods can provide expert feedback or retrieve expert
demonstrations. We use the ego and “best exo” frames,
same as for our method. Note that neither of these base-
lines are applicable for pose generation Fg .

• LLaVA-FT [45], LLaVA-FT w/ pose [45]: These base-
lines are based on the SOTA visual-language method
LLaVA [45] but trained on our dataset with the same text
model, i.e., Llama 3-8B [2], for an apples-to-apples com-
parison. The “w/ pose” variant also takes the 3D pose co-
ordinates in text form as input.

• PoseScript [16], PoseFix [17]: These two works enable
pose-to-text and text-to-pose reasoning. The text gener-
ated or used for pose generation contains detail about the
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Commentary Gen. Demo Ret. Pose Gen.

Method B@4 M R-L R medR ↓ P ↓

InternVideo2-NN [77] 42.1 46.9 49.3 13.5 198 161
InternVideo2-FT [77] 42.9 47.6 50.0 14.1 190 157
VideoChat2 [37] 27.8 44.3 41.9 14.9 183 —
LLaVA [45] 28.5 44.1 44.2 15.0 183 —
LLaVA-FT [45] 43.5 48.5 51.5 17.8 177 —
LLaVA-FT w/ pose [45] 43.6 48.5 51.7 18.0 172 150
PoseScript/Fix [16, 17] 24.1 44.5 46.3 15.9 182 182

ExpertAF 44.9 49.6 54.6 19.1 158 135
ExpertAF w/o video 44.6 49.4 54.2 18.7 161 139
ExpertAF w/o pose 44.2 49.3 54.2 18.6 163 —

w/o alignment 42.0 48.6 51.5 16.9 180 153
w/ global pose 43.0 47.9 52.6 16.5 184 150

ExpertAF w/ full-sup 45.8 50.9 55.7 22.5 146 131

3.2
1.1

2.5
1.3

1.8
Expert commentary generation

3.2
1.2

2.6
1.6

2.1
Expert demonstration retrieval

0 1 2 3

2.4
1.1

1.9
2.0

Expert pose generation

InternVideo2
LLaVA

LLaVA-FT w/pose
PoseScript/Fix

ExpertAF

Table 1. Results on automatic metrics (left) and human evaluation (right). We break down results for the three outputs—expert
commentary generation, expert demonstration retrieval, and expert pose generation. Our method outperforms all baselines and prior work
on all tasks. The last row “w/ full-sup” uses privileged input (the demo video V̄) at inference. (B@4: BLEU-4, M: Meteor, R-L: ROUGE-L
F1, R: recall@50, medR: median rank, P: PA-MPJPE). For all metrics higher is better, except medR and PA-MPJPE (↓). Our method is
also rated higher by human raters on a Likert scale (min:1, max:4), compared to all the other methods (right). See text for details.

location of body parts, e.g., the hands are raised, as op-
posed to expert commentary. Hence, they let us evaluate
if pose description is adequate for expert feedback. For
pose generation, we evaluate if providing an expert com-
mentary helps generate the desired expert demonstration.
Both methods use SMPL [47] pose and hence we convert
3D pose to SMPL and vice versa [39], as needed.

Ablations. In addition to the strong baselines, we also
compare the performance against ablations and variants
of our design choices. ExpertAF w/o pose and Ex-
pertAF w/o video evaluate the performance when only
one modality is used. ExpertAF w/o alignment quan-
tifies the need for temporal alignment (Sec. 3.2), while
ExpertAF w/ global pose evaluates if just providing the
model with one correct pose per activity chosen based on
expert commentary is enough (vs. finding the closest cor-
rect pose sequence). ExpertAF w/ full-sup is a stronger
variant with privileged input for inference—Ft uses V, V̄ to
predict T and Fr and Fp uses both V and T . See Supp. for
additional ablations of the choice of LLM Ls, contribution
of ego and exo videos, and joint training.

Expert commentary generation. To evaluate the text
commentary, we use standard metrics BLEU-4 [60], ME-
TEOR [7] and ROUGE-L F1 [65], following prior work in
evaluating text generation [14, 58] (higher is better).

Tab. 1 (left) shows the results. Our method outperforms
all methods on all captioning metrics, with gains up to 3%
over the best baseline trained on the same dataset. All
the gains are statistically significant using paired t-test with
p < 0.05. Fig. 4 (top) shows commentary generation
by various methods. Firstly, SOTA methods LLaVA [45]
and VideoChat2 [37], being captioning methods, yield a
verbose description of the activity, rather than a critique.

Fine-tuning LLaVA with our method improves the perfor-
mance, but still it misses our use of expert demonstrations
and pose sequences. Even using pose information as text
only marginally improves “LLaVA-FT w/ pose”, showing
the effectiveness of our explicit pose encoding. Moreover,
PoseScript [16] generates pose descriptions like “head is
turned to the left” which is inadequate for feedback. Our
results over the baselines shows the advantage of temporal
alignment and a diverse expert demonstration set.

Our stronger variant “w/ full-sup” achieves an even bet-
ter result by taking V and V̄ as inputs during inference. It
is useful in cases where a learner has access to the expert
demonstration but wants actionable feedback in language-
form. Finally, Fig. 4 (bottom row) shows a failure case of
commentary generation, showcasing the difficulty in pin-
pointing the exact mistake.

Expert demonstration retrieval. For retrieval, we use
standard retrieval metrics: recall@k and median rank. We
set k=50 to account for the fact that multiple expert demon-
strations could suitably correct the given learner demonstra-
tion. The retrieval set contains 1, 272 samples, the same as
the test set size. Higher recall and lower ranks are better.

Tab. 1 (middle) shows the results. Our method improves
the median rank by 14 positions compared to the best base-
line and a significantly better recall@50. Our method and
the baselines show a similar trend as with the expert com-
mentary generation above, the stronger baseline w/ “full-
sup” (>4% better recall and 26 rank improvement) being
crucial in cases where a learner has the commentary but
wants a video exemplar to learn from.

Expert pose generation. Tab. 1 (right column) shows
the expert pose generation results, with error measured by
PA-MPJPE [27] (mm). Our novel pose generation method
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The climber is
exhausted and

struggling to make a
move, with poor hand
and arm positioning.

The climber is
struggling to maintain

the position and is
unable to make the

next move.

The climber is wasting
energy by pulling away,
which is slowing down

reaching the next
handhold

The person can
improve by practicing

their technique,
warming up and

stretching.

The person is standing
on their left leg with the
right leg lifted up and
bent at the knee. The
torso is leaning to the

left. The head is turned
to the left.

Ours

The shooter’s stance is
correct, but they need to

throw the ball with one hand
and guide it with the other.

The shooter is using two
hands to shoot the ball,

instead of using one shooting
hand and arm with the other

at a 90- degree angle.

Ground Truth

Learner

Expert comment. - OursLearner demonstration Ground truth commentary Expert demo. retrieval Pose generation

Expert

The player’s stance is too
straight, which prevents them
from generating the required
power and control on the ball.

The player’s foot position and
body lean are affecting the
quality of their ball contact,

leading to a loss of power and
control.

Learner Expert

Ground truth Ours LLaVA-FT VideoChat2 PoseScript

Failure case
The shooter's left elbow is

bent and his wrist is not fully
extended, affecting the ball's

rotation and accuracy.

He does a good job using his
left hand on the left side, but
needs to improve his posture

and weight distribution.
Learner Expert

Figure 4. Qualitative results. (Top) Comparison of expert commentary generated by various baselines. (Second and third row) Examples
of expert commentary generation, demonstration retrieval, and pose generation by our method. Notice the expert demonstration and
pose generation corrects the mistake pointed out in the commentary, i.e., one hand is used to throw and the other to guide, and body
position is improved to control better control and power. Colored text and marks (red for mistake, green for correction) are shown only for
visualization. (Bottom) Failure cases. See Supp. for video results.

performs better than learning 3D position using text in
“LLaVA-FT w/ pose”. Furthermore, PoseFix [17] is de-
signed to generate SMPL parameters based on a coarse
modification text description. Our use of generation to out-
put poses (vs. retrieval) is advantageous when the candidate
retrieval set does not contain the correct demonstration; see
Supp. See Fig. 4 and Supp. for qualitative examples in-
cluding failure cases. The 3D pose sequences in the dataset
are often auto-generated and have some noisy samples, dis-
cussed in Supp. Across the three tasks, our method is supe-
rior to its ablations.

Human evaluation. For all the tasks, we also solicit
human evaluation (Tab. 1 right) to rate the quality of the
generated text descriptions. Five raters (per scenario) unin-
volved with this project rate the quality of each generated
output by scoring on a Likert scale from 1 to 4 (higher is
better);details in Supp. We ensure that the raters have a ba-
sic knowledge of the scenario they are rating (basketball,
soccer, rock climbing).

Across all three tasks, human raters score our method
the highest. A significant gap of up to 0.7 over the pos-
sible range (1 − 4), as well as gains up to 3×, showcase
ExpertAF’s expert feedback quality. That said, there is nat-

urally room for improvement on this new task. We find that
while humans say our model excels on cases where the feed-
back is visually groundable, e.g. incorrect hand angle, it
tends to fall short when the feedback is not directly visible,
e.g. the climber looks fatigued. The human evaluation com-
plements the automatic metrics above, overcoming the lim-
itation that a “ground truth” commentary or a visual demon-
stration may capture only one of multiple possible errors in
the learner’s demonstration [23, 68] (e.g., for a basketball
shot, both the hand placement and the jump could be incor-
rect, but only one may be mentioned in the ground truth).

5. Conclusion

We proposed a novel task and method to generate expert
commentary and demonstrations from a learner’s video. We
develop a weakly-supervised training approach and bench-
mark for this problem. Our novel method fusing multi-
modal inputs from learner and expert demonstrations to-
gether with expert commentary results in state-of-the-art
performance in actionable feedback, and lays the ground-
work for accessible, affordable, and actionable AI coaching
applications in the future.
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