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Figure 1. We introduce MEt3R, a metric for multi-view consistency between pairs of generated images, which is independent of image
quality and content and does not require camera poses. Left: generated images from different generative models, conditioned on the first
frame, with MEt3R score map (Cons. Error) indicating levels of inconsistencies between consecutive images i and i+1. Right: pair-wise
consistency scores, evaluated for consecutive frames in a sliding window, averaged over multiple sequences. The pattern in MV-LDM’s
consistency clearly shows artifacts from using anchor frames that are generated first, highlighting the high signal-to-noise ratio of MEt3R.

Abstract

We introduce MEt3R, a metric for multi-view consistency in
generated images. Large-scale generative models for multi-
view image generation are rapidly advancing the field of
3D inference from sparse observations. However, due to
the nature of generative modeling, traditional reconstruc-
tion metrics are not suitable to measure the quality of gen-
erated outputs and metrics that are independent of the sam-
pling procedure are desperately needed. In this work, we
specifically address the aspect of consistency between gen-
erated multi-view images, which can be evaluated indepen-
dently of the specific scene. Our approach uses DUSt3R
to obtain dense 3D reconstructions from image pairs in a
feed-forward manner, which are used to warp image con-
tents from one view into the other. Then, feature maps of
these images are compared to obtain a similarity score that
is invariant to view-dependent effects. Using MEt3R, we
evaluate the consistency of a large set of previous methods
for novel view and video generation, including our open,
multi-view latent diffusion model. Code is available online:
geometric-rl.mpi-inf.mpg.de/met3r/.

1. Introduction

Generative models, such as diffusion [14, 34] or flow-
based [21] models, are trained to sample from a given
data distribution, which makes them ideal candidates for
stochastic inverse problems, such as reconstruction from in-
complete information [11, 38, 45]. However, they raise the
inherent challenge that, for individual samples, no ground
truth is available to measure the quality of generations with
pairwise distance metrics. As a result, metrics such as
FID [13], KID [1], and CMMD [17] have been proposed to
measure the quality of generated images without the need
for a paired ground truth.

Recently, a trend is to repurpose video [3, 15] and im-
age [29, 35] diffusion models for generation of 3D scenes
and objects, by generating multiple views from different
camera poses [11, 41, 52], with or without given images
as conditioning. Compared to direct generation of 3D rep-
resentations [6, 25, 31], such multi-view generative mod-
els can be trained on images and videos, and their pixel-
aligned representation allows for more efficient models and
better scalability. However, they have only a weak to non-
existent inductive bias to produce actually 3D consistent re-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

6034



Partially Inconsistent

MET3R: 0.24
TSED: cons.





MET3R: 0.28
TSED: cons.





MET3R: 0.28
TSED: cons.





MET3R: 0.32
TSED: cons.





Consistent

MET3R: 0.03
TSED: incons.





MET3R: 0.03
TSED: incons.





MET3R: 0.04
TSED: incons.





MET3R: 0.04
TSED: incons.





Fr
am

e 
i

Fr
am

e 
i+

1

Figure 2. Existing metrics. A comparison between MEt3R and TSED [48] scores obtained from individual image pairs generated by
GenWarp [32]. TSED misses obvious, partial multi-view inconsistencies and is biased to small violations of epipolar geometry. In
contrast, MEt3R correctly captures clear 3D inconsistencies and is robust to insignificant artifacts almost invisible to the human eye.

sults, which is of large importance for the subsequent lift
into 3D. A reliable metric to evaluate the multi-view con-
sistency of such generations is critically needed to advance
these models further. Fortunately, similar to general im-
age quality, 3D consistency between views can be evaluated
without the existence of paired ground-truth data. Existing
metrics such as TSED [48], though, fail to reliably perform
such evaluation, as shown in Fig. 2. In this work, we pro-
pose a metric to measure 3D consistency, which is inde-
pendent of the specific scene and model used to generate
the images, works under changing lighting conditions, does
not require camera poses, is differentiable, and is a gradual
measure of consistency instead of a binary one.

MEt3R utilizes DUSt3R [42] to obtain dense reconstruc-
tions from image pairs in a common 3D space. It then
projects features of one image into the view of the other us-
ing the reconstructed point maps and computes feature sim-
ilarity between the obtained images. As feature extractors,
DINO [4] + FeatUp [10] are used to obtain high-resolution
features from input images that are robust view-dependent
effects, such as lighting, while preserving semantics and
image-level structures, to quantify 3D consistency. We fur-
ther introduce an open-source multi-view latent diffusion
model (MV-LDM) to be used in our studies, which is able
to generate good quality and consistent scenes. MEt3R is
evaluated in different scenarios to validate its usefulness and
robustness. It is used to benchmark existing methods that
generate videos and multiple views of objects and scenes,
with and without an intermediate 3D representation, as well
as our MV-LDM. We show that MV-LDM performs well in
the quality vs. consistency trade-off and find that MEt3R is
a reliable metric that aligns well with the theoretical expec-
tations of consistency among the different classes of scene
generation methods. In contrast to previous metrics, it can
distinguish perfectly consistent from almost consistent se-
quences and can robustly capture fine-grained changes in
consistency over time.

In summary, our contributions include:
• a simple yet effective metric for measuring 3D consis-

tency of generated views without given camera poses,
• a comprehensive analysis of existing methods that gener-

ate videos and multiple views of objects and scenes, and
• an open-source multi-view latent diffusion model, which

performs best in the quality vs. consistency trade-off.
Our code and models are publicly available.

2. Related Work
We introduce a metric to evaluate the 3D consistency of
multi-view generations. Thus, we review existing methods
that generate multi-view representations of scenes and give
an overview of existing quality metrics in this setting.

Multi-view Generative Models. Recent success in 2D
image generation using generative models like diffu-
sion [29] has sparked interest in generating 3D scenes. As
the scarcity of high-quality training data and the complexity
of 3D representations present a challenge for direct text-to-
3D generative methods, recent methods explore repurpos-
ing image or video generation models as supervision signal
or initialization for 3D generation [5, 11, 12, 20, 22, 26, 28,
32, 33, 38, 41, 45, 48, 52].

3D-aware image generation methods can be grouped into
methods for pose-conditioned single-view generation [20,
32, 43, 48, 52], simultaneous multi-view image genera-
tion [11, 28, 33] and methods that use an internal 3D rep-
resentation of the scene as prior for generation [5, 22, 38,
44, 45]. Further distinction can be made between models
that are trained on single-asset 3D datasets [20, 22, 33, 43],
such as Objaverse [7], and models trained on full 3D
scenes [5, 11, 28, 32, 38, 45, 48, 52]. Our introduced met-
ric is agnostic to how images are generated. In our exper-
iments, we perform a comprehensive evaluation of consis-
tency for images generated by openly available models, in-
cluding those that model the joint distribution of input and
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single output views [32, 48], multiple output views [28],
and methods that use an internal 3D representation [38] to
enforce consistency.

Existing Metrics. Existing metrics used for quantifying
image generation outputs include distribution-based met-
rics, such as the Fréchet Inception Distance (FID) [13], Ker-
nel Inception Distance (KID) [1], Inception Score (IS) [30],
or the CLIP Maximum Mean Discrepancy (CMMD) [17].
While these metrics are used to measure the alignment
of generated samples with a target distribution using pre-
trained feature extractors, they do not measure 3D consis-
tency, which is of utmost importance for multi-view gener-
ative models. To this end, Xie et al. [46] proposed using the
Fréchet Video Distance (FVD) [39] to measure the quality
of generated sequences with moving camera.

To explicitly measure 3D consistency, Watson et al. [43]
proposed to train a NeRF [24] from a subset of generated
views and compare rendered novel views with the remain-
ing generated set of images. This metric comes with several
drawbacks, as it requires a large amount of generated im-
ages, does not work on sparsely observed scenes, is expen-
sive to compute, and difficult to interpret: are dissimilarities
between generated views and rendered novel views from
the trained NeRF caused by inconsistencies in the multi-
view generation pipeline or insufficient quality of the NeRF
training? As an alternative, Yu et al. [48] proposed TSED, a
metric that checks whether image features detected in pairs
of generated images respect the epipolar constraint, given
the relative camera pose. As can be seen in Fig. 2, it has cer-
tain limitations, e.g., it deems two images consistent when it
finds enough matching features, ignoring obvious inconsis-
tencies in the images. In contrast, MEt3R does not require
camera poses as inputs, and we find that it is more aligned
with perceptual assessment when looking at the results of
individual methods.

3. MEt3R: Measuring Consistency
In this section, we introduce MEt3R, our feed-forward met-
ric to measure multi-view consistency. Given two images
as input, a metric for multi-view consistency should (1) pe-
nalize image pairs that are not consistent, and (2) must not
penalize pairs that are consistent but deviate from a given
ground truth or do not follow a desired distribution. Thus,
we develop MEt3R to be orthogonal to image quality met-
rics, e.g., FID [13], and to pixel-wise reconstruction met-
rics, e.g., PSNR.

An overview of MEt3R is shown in Fig. 3. Given two
images I1, I2 as input, we first process them with DUSt3R
to obtain dense 3D point maps for I1 and I2. Then, we ob-
tain DINO [4] features on the original images and upscale
them using FeatUp [10]. We use the predicted point maps to
unproject the upscaled features of both images into the 3D

coordinate frame of I1 and render them separately onto the
2D image plane of the 1st camera to obtain two projections.
Lastly, we compute feature similarity on the projected fea-
tures, leading to cosine similarity scores, which we denote
as S(I1, I2) and S(I2, I1).

MEt3R Definition. Given the scores S(I1, I2) and
S(I2, I1), we can define MEt3R as,

MEt3R(I1, I2) = 1− 1

2

(
S(I1, I2) + S(I2, I1)

)
, (1)

which gives MEt3R(·, ·) ∈ [0, 2], lower is better, due to
S(·, ·) ∈ [−1, 1], and is symmetric. We found S to al-
ready behave approximately symmetric. Thus, in practice,
MEt3R(·, ·) can also be approximated well by only com-
puting one direction of S in case of runtime constraints. We
now provide the details for the DUSt3R reconstruction in
Sec. 3.1 and feature similarity in Sec. 3.2

3.1. Stereo Reconstruction with DUSt3R

The core of our method relies on pose-free stereo recon-
struction of pixel-aligned point clouds. Given an image pair
I1, I2, the DUSt3R [42] model Ψ regresses pixel-aligned
3D point clouds X1 ∈ RH×W×3 and X2 ∈ RH×W×3:

X1,X2 = Ψ(I1, I2), (2)

where point locations of both, X1 and X2 are given in the
camera space of I1. It does so by employing a shared
ViT [8] backbone to extract image features. Then, both
feature maps are decoded by separate transformer decoders
with cross-view attention that encodes a multi-view prior
and shares important information between views. Finally
the decoded features are regressed into point maps Xi. For
more details, please refer to the original work [42].

DUSt3R does not require camera poses, which is inher-
ited by MEt3R. While MASt3R [19] additionally finds po-
tentially useful feature correspondences between the two
images, we do not make use of them in our method and
hence stick with DUSt3R.

3.2. High-Resolution Feature Similarity

Since both generated point maps contain points in the
canonical coordinate frame of I1, we can use the point maps
to project pixel-aligned features from camera space of I2
into that of I1. Instead of performing this projection and
the subsequent comparison directly in RGB pixel space, we
found it more suitable to perform them in feature space. The
reason are view-dependent effects, such as different light-
ing, which often occurs in natural videos and negatively im-
pacts RGB comparisons. We provide a detailed comparison
between both approaches in Sec. 5.4.

Concretely, we first use DINO [4] to obtain semantic fea-
tures for I1 and I2. Then, since the corresponding feature
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Figure 3. Method overview. Our metric evaluates the consistency between images I1 and I2. Given such a pair, we apply DUSt3R to
obtain dense 3D point maps X1 and X2. These point maps are used to project upscaled DINO features F1, F2 into the coordinate frame
of I1, via unprojecting and rendering. We compare the resulting feature maps F̂1 and F̂2 in pixel space to obtain similarity S(I1, I2).

maps are of low resolution and do not represent detailed
structures, we upsample them using FeatUp [10], which em-
ploys an image-adaptive upsampling, i.e., a stack of Joint
Bilateral Upsamplers (JBUs) that learned to upsample low-
resolution feature maps from DINO. It uses the high resolu-
tion image to transfer high frequency information to the up-
sampling process, allowing the upsampled features to faith-
fully reconstruct and preserve important details.

Let F1 and F2 denote the upsampled DINO features
from images I1 and I2, respectively. We unproject both
features into 3D space using the DUSt3R point maps and
subsequently reproject them onto the camera frame of I1:

F̂1 = P(F1,X1), F̂2 = P(F2,X2), (3)

where P assigns each 3D point the feature vector from its
corresponding pixel before rendering the feature point cloud
using the PyTorch3D [18] point rasterizer.

Following the projections, we obtain S(I1, I2) as the
weighted sum of pixel-wise similarities between F̂1 and F̂2:

S(I1, I2) =
1

|M|

W∑
i

H∑
j

mij f̂ ij
1 · f̂ ij

2

∥f̂ ij
1 ∥∥f̂ ij

2 ∥
, (4)

where mij := [M]ij is a boolean mask representing the
overlapping region, f̂ ij

1 := [F̂1]ij and f̂ ij
2 := [F̂2]ij .

4. Multi-View Latent Diffusion Model

Additionally to our metric, we provide an open-source
multi-view latent diffusion model (MV-LDM). It is inspired
by the architecture of CAT3D [11], which is not publicly
available. While CAT3D is trained on top of proprietary
image/video diffusion models, we initialize our model with
Stable Diffusion 2.1 [29]. For a detailed description of MV-
LDM, we refer to the appendix Sec. A. Our code and model
are publicly available for further research.

Architecture and Training. MV-LDM encodes images
into a latent space using a pre-trained VAE encoder from
Stable Diffusion. Then, ray maps are concatenated to the in-
put latents, providing camera pose information. We take the
2D UNet architecture, add attention between views at each
UNet block, and finetune the full model on RealEstate10k
for 1.65M iterations.

Anchored Generation. We adopt the anchored genera-
tion strategy from CAT3D. When generating many views
of a scene, the process starts by sampling four anchor im-
ages for widely distributed cameras, conditioned on a single
input image. Then, in the second step, the remaining views
are generated and conditioned on the closest anchor and the
initial input image. The goal of the anchoring strategy is to
prevent accumulating errors that often occur when generat-
ing target views autoregressively, conditioned on the previ-
ously generated views. When generating with anchors, the
accumulation of errors can be effectively limited. We ana-
lyze the effect on consistency and image quality in Sec. 5.3.

5. Experiments

In this section, we evaluate MEt3R and existing generative
models for multi-view and video generation. Specifically,
we aim to answer the following questions:
Q1: Does MEt3R fulfill the requirements for a useful con-

sistency metrics as stated in Sec. 2, and how does it fare
against previous metrics?

Q2: How consistent are the outputs of existing generative
models for multi-view and video generation of objects
and scenes?

Q3: How do individual design choices in MEt3R influ-
ence the metric quality?

We begin by introducing the experimental setup in Sec. 5.1
before validating MEt3R (answering Q1) in Sec. 5.2. Then,
we address Q2 in Sec. 5.3 and Q3 in Sec. 5.4.
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Figure 4. Metric comparison. We compare MEt3R against TSED, SED, FWS (PSNR), and FVD by computing average per-frame (/-
segment for FVD) scores over many generated sequences. MEt3R can capture nuanced differences in the consistency of DFM, MV-LDM,
and real videos, while TSED rates them all very similarly. Unlike MEt3R, SED does not capture increasing inconsistency for PhotoNVS
and DFM. MEt3R also captures the influence of anchor views in MV-LDM (c.f. Sec. 4 and A.2) as structured high-frequency patterns. For
MEt3R, the standard deviation gradually increases, starting from a small value. This behavior is expected due to the proximity of initial
frames to the conditioning frame (c.f. Sec. 5.3.3) and is not the case for the other metrics.

5.1. Experimental Setup

To evaluate MEt3R, we consider three sets of baselines for
multi-view, video, and object-level generation models. In
addition, we categorize the multi-view generation methods
into three general classes: 1) single-view, 2) multi-view, and
3) 3D diffusion models.

Multi-view Generation Models. We consider GenWarp
[32], which is a single-view inpainting diffusion model, and
PhotoNVS [48], which is a two-view generation model that
generates a single view at a time conditioned on the previ-
ous. Moreover, we consider DFM [38], which is a 3D dif-
fusion method, and MV-LDM, our own open-source multi-
view latent diffusion model, coupled with cross-view atten-
tion (c.f. Sec. 4 and A). For more details on baselines, we
refer to Sec. D in the appendix.

Video Generation Models. We take Stable Video Diffu-
sion (SVD) [2], Ruyi-Mini-7B [36] and I2VGen-XL [49],
which are standard open source video diffusion models that
can generate a full video from a single input image.

Object-Level Generation Models. From object-level
methods, we compare EpiDiff [16], SyncDreamer [22], and
VideoMV [53]. EpiDiff and SyncDreamer employ an un-
derlying multi-view diffusion model, while VideoMV uses
a video diffusion model to generate novel views of objects.

Dataset. To faithfully benchmark with MEt3R, we collect
100 image sequences from the RealEstate10K [51] test set.
We take the first image for each sequence as the initial in-
put, followed by 80 target poses, which the multi-view gen-
eration models generate. We perform consecutive pairwise

evaluations on the generated images in a sliding-window
fashion. In this way, we: 1) allow maximal projection area
and more overlapping pixels to evaluate; 2) cover regions
that are extrapolated and not visible in the input image; and
3) investigate the evolution of pairwise consistency as the
camera pair moves further away from the input image. We
set a standard resolution of 2562 as input to MEt3R. In the
case of DFM, we upsample from 1282, and for GenWarp,
we downsample from 5122 bilinearly. Similarly, we use
identical test sequences for video diffusion models but limit
them to 48 frames to address memory constraints. Note
that we do not have explicit camera control over the genera-
tion and, therefore, are not equivalent in camera trajectories.
The generated videos also differ in resolution, which we re-
size accordingly to the closest resolution of 2562 while pre-
serving the aspect ratio. For object-level methods, we use
Google Scanned Objects (GSO) [9] dataset, which consists
of 360◦ views of objects. We subdivide the range [0◦, 360◦]
into 16 frames at 2562 resolution, forming a closed loop
with the frame at 0◦ as the conditioning. Both EpiDiff and
SyncDreamer generate 16 frames, while VideoMV gener-
ates a fixed set of 32 frames, which we uniformly down-
sample to 16.

5.2. Validating MEt3R

Computing lower bound. We validate the efficacy of
MEt3R by computing the lower bound that the baselines
must follow. Intuitively, we can evaluate MEt3R on a
dataset of real video sequences. Although they are assumed
to be perfectly 3D consistent, a lower bound slightly above
zero is observed, attributed to errors in point map align-
ment from DUSt3R [42] and small 3D inconsistencies in
DINO [4] features. The results for both multi-view genera-
tion baselines and real videos are shown in Fig. 4.
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Figure 5. Qualitative comparison of generated novel views. We compare generated views of the multi-view generation method for the
same conditioning view. We can extract certain characteristics: DFM is almost perfectly consistent but has lower image quality. PhotoNVS
and MV-LDM are reasonably consistent on a structural scale but fail to produce consistent details. GenWarp fails to keep the structural
consistency over the sequence while producing high-quality images. These observations are confirmed by MEt3R in Tab. 1 and Fig. 4.
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(a) Quality vs. Consistency, Number of Parameters

Methods MEt3R ↓ TSED ↑ SED ↓ FVD ↓ FID ↓ FWS (PSNR) ↑
GenWarp [32] 0.120 0.674 1.398 1312.7 29.80 21.41
PhotoNVS [48] 0.069 0.996 0.479 1498.7 43.67 25.10
MV-LDM (Ours) 0.036 0.998 0.405 945.8 37.29 28.46
DFM [38] 0.026 0.990 0.346 1174.6 73.02 39.56

I2VGen-XL [49] 0.050 - - 1722.6 66.88 28.62
Ruyi-Mini-7B [36] 0.047 - - 850.5 42.67 28.01
SVD [2] 0.032 - - 674.6 48.33 29.93

(b) Quantitative comparison with different metrics

Table 1. Quantitative comparison. Average MEt3R alongside TSED [48], SED [48], FVD [40], FID [13], and FWS (PSNR). (a) Plot
comparing MEt3R with FID and FVD. (b) Quantitative comparison of multi-view and video generation baselines. Among multi-view
methods, DFM achieves the best consistency in MEt3R, FWS (PSNR), and SED but the worst in FID. We attribute the low FID and high
PSNR to blurry renderings, both of which are sensitive, whereas GenWarp delivers the best image quality with worse consistency but with
a lower signal-to-noise ratio. In contrast, our MV-LDM achieves a favorable position in the image quality vs. consistency trade-off for
multi-view generation. Unlike TSED and SED, MEt3R applies to generated video as it does not require camera poses.

Comparison to other Metrics. We compare MEt3R with
existing metrics to measure 3D consistency. As baselines,
we consider SED [48], TSED [48], and FVD [39] for multi-
view generation. We also compare with several variants
of flow warping score (FWS) using RAFT [37] to warp
one frame to another and compute PSNR, SSIM, LPIPS,
and RMSE, among which we show the results for PSNR
in Fig. 4. For the remaining, we refer to Sec. B in the
appendix. In Fig. 4, we plot per image-pair scores for all
generated frames, averaged over 100 sequences. For FVD,
we compare the distributions of image segments by split-
ting the sequences into chunks of 10 frames each. We find
that MEt3R, SED, FWS (PSNR), and FVD increase as we

progress through the image-pair sequence, suggesting a de-
crease in consistency, which is qualitatively visible in Fig. 5.
Although TSED captures this trend for GenWarp [32], it
does not report a meaningful separation for other baselines.
Unlike TSED and SED, MEt3R captures the gradual de-
crease in consistency for PhotoNVS [48] and MV-LDM.
For GenWarp, MEt3R captures this trend more accurately,
starting with a lower score and standard deviation, as the
first frame provides stronger conditioning for closer views
with a larger overlap, resulting in better consistency. Fur-
thermore, we observe sudden periodic spikes for MV-LDM
in MEt3R, FWS (PSNR), and SED, attributed to transition
artifacts when we switch between anchors during sampling
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(c.f. Sec. 4 and A.2). Unlike all other metrics, FVD can-
not be applied to image pairs and requires a collection of
frames. Ideally, a larger sample size is preferred to accu-
rately capture and compare the underlying distribution of
the generated and ground-truth image sequences [39], to
which FVD is sensitive. Moreover, both FVD and FWS
(PSNR) are sensitive to blur. Specifically, DFM achieves
worse FVD, which is supposed to be 3D consistent by de-
sign (c.f. Sec. 5.1 and D), while the real video, which is
perfectly 3D consistent, gets worse than DFM in PSNR, as
shown in Fig. 4.

5.3. Evaluations of Models

5.3.1 Multi-View Generation

Following the validation of MEt3R in comparison to other
metrics, we now benchmark our multi-view generation
baselines on the test sequences (c.f. Sec. 5.1). In Tab. 1(a),
we plot MEt3R against FID [13] and FVD [40] along with
the respective model size in terms of the number of pa-
rameters. We find that GenWarp [32] achieves the worst
consistency in terms of MEt3R, where the contents of the
scene change drastically as we transition from one image
to another, which can be qualitatively observed in Figs. 5,
17 - 21. This behavior is expected since GenWarp gen-
erates one image at a time. Meanwhile, PhotoNVS [48]
performs slightly better than GenWarp but produces low-
quality results, which the FID captures quantitatively. Gen-
Warp and PhotoNVS cannot learn an expressive multi-view
prior since they have a single-sized context window, hinder-
ing their ability to produce consistent 3D results.

Conversely, diffusing multiple views at a time induces
a stronger prior towards 3D consistency, as in MV-LDM,
where we see an overall improvement in MEt3R. Among
all evaluated methods, MV-LDM achieves the best trade-
off between 3D consistency and novel view quality, both
qualitatively and quantitatively. Moving further towards 3D
consistency, DFM [38] uses an underlying 3D representa-
tion and produces consistent novel views by design, which
is captured quantitatively in the form of better MEt3R
scores than MV-LDM. However, this strong inductive bias
comes at the cost of blurry renderings pushing further from
the ground-truth distribution, as reflected by the FID, and
achieves a higher signal-to-noise ratio, as indicated by FWS
(PSNR). This highlights that MEt3R only focuses on 3D
consistency irrespective of image content and can, there-
fore, complement standard image quality metrics well.

5.3.2 Video Generation

A particular advantage of MEt3R is that it does not require
camera poses, unlike TSED [48] and SED [48], where it can
be used directly on generated videos to measure consistency
similar to FWS (PSNR).
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Figure 6. Average pairwise MEt3R on generated videos. Per-
image-pair plot for MEt3R across 48 frames and averaged across
100 sequences of RealEstate10K [51]. We find that SVD [2]
achieves the best MEt3R score, followed by Ruyi-Mini-7B [36]
and I2VGenXL [49].

0 90 180 270 360

Angle θ◦

0.00

0.06

0.12

0.18

0.24

0.30

M
E

t3
R

EpiDiff VideoMV SyncDreamer Real Video

Figure 7. Object-level evaluation on GSO [9]. Average pairwise
MEt3R on 30 examples, each consisting of 360◦ rotation around
the object with loop closure, i.e., at 360◦, we evaluate the first
and the last frame. We find that SyncDreamer [22] achieves the
best in MEt3R, followed by VideoMV [53] and EpiDiff [16] while
respecting the lower bound.

Table 1 shows the average MEt3R, FID, FWS (PSNR),
and FVD. Moreover, Fig. 6 shows the average MEt3R per
image pair for I2VGen-XL [49], Ruyi-Mini-7B [36] and
SVD[2] which shows that SVD has better 3D consistency
than Ruyi-Mini-7B and I2VGen-XL. However, SVD gen-
erates smoother and shorter camera trajectories, whereas
Ruyi-Mini-7B and I2VGen-XL produce large motion at the
expense of 3D consistency. For I2VGen-XL, as the inputs
are out of distribution, MEt3R starts from a higher value fol-
lowed by a gradual improvement as the model forces each
progressing sample to be more in distribution while preserv-
ing similar global structures as in the initial input image.
This behavior is also qualitatively visible in Figs. 17 - 21.
Meanwhile, Ruyi-Mini-7B shows several spikes indicat-
ing abrupt inconsistencies throughout the video sequence,
which are attributed to unstable camera motion. Further-
more, in Tab. 1, FWS (PSNR) gives the lowest score to
Ruyi-Mini-7B, indicating a slightly noisy generation even
though it is more 3D consistent than I2VGen-XL.
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Figure 8. Feature similarity ablation. We compare MEt3R
against versions of it that compare RGB projections via PSNR
and SSIM. It can be seen that unlike MEt3R, PSNR and SSIM
give better scores to DFM than to real videos. We attribute this to
their sensitivity to view-dependent effects, such as lighting. Note
that for real videos, the standard deviation of PSNR and SSIM are
much higher, indicating a lower signal-to-noise ratio.

5.3.3 Object-Level Generation

Lastly, we evaluate object-level diffusion models on
GSO [9] dataset. We consider EpiDiff [16], VideoMV [53]
and SyncDreamer [22] as the baselines and are evaluated on
360◦ camera rotation spread across 16 frames on 30 exam-
ples. We find that MEt3R can differentiate models with var-
ious levels of inconsistencies, which we report in Fig. 7. Al-
though the baselines show good visual quality, consistency
varies heavily. Notice how MEt3R captures the slightly
increasing inconsistency for EpiDiff when moving further
away from the condition, which suggests that the strength
of conditioning plays an important role in producing better
consistency (c.f. Fig. 4 and Sec. 5.2). Further qualitative
results are provided in Figs. 22 - 25 in the appendix.

5.4. Analyzing Alternative Similarities

We evaluate alternatives to the cosine similarity between
DINO features as described in Sec. 3.2.

Image Similarity. Instead of projecting features onto a
shared view, staying in RGB space would enable the use
of classical image quality metrics such as PSNR and SSIM.
Fig. 8 provides a comparison of such variants MEt3RPSNR

and MEt3RPSNR with MEt3R. While a reasonable nega-
tive correlation can be observed, DFM [38] outperforms the
ground-truth video w.r.t. these metrics. We attribute this
to the bias of PSNR and SSIM to blur, which is apparent
in novel views generated by DFM due to its low resolution
and reliance on pixelNeRF [47] acting as an architectural
bottleneck. In contrast, real videos exhibit view-dependent
effects, including brightness variations and reflections, to
which PSNR and SSIM are highly sensitive. With MEt3R,
we aim to abstract from these pixel-level inconsistencies
and instead provide a metric that robustly measures the 3D
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Figure 9. Feature backbone ablation. We analyze the effect of
different feature backbones on MEt3R. While DINOv2 [27] and
MaskCLIP [50] can be employed as well, we found DINO [4] fea-
tures to lead to a more informative separation of models.

consistency of generative approaches. Therefore, we opt for
similarities in a suitable feature space.

Feature Backbones. In Fig. 9, we evaluate MEt3R in
combination with DINOv2 [27] and MaskCLIP [50] as al-
ternatives to DINO [4] in the feature backbone. DINOv2
and MaskCLIP strongly compress the values in a tighter
range, reducing the gap between extremely inconsistent and
consistent generation. We find that DINO features provide
a better separation of model performance and capture sub-
stantial inconsistencies more reliably, as seen from the ran-
dom noise. Nevertheless, MEt3R is flexible with this design
choice as better and more 3D consistent feature backbones
can improve and reduce the lower bound further.

6. Conclusion
We presented MEt3R, a novel metric for 3D consistency of
generated multi-view images. Given the huge success of
large-scale image diffusion models and their applications
as strong priors for the generation of multi-view images as
a form of 3D representation, purely distribution-based met-
rics like FVD are insufficient to properly evaluate the 3D ca-
pabilites of such methods. First, MEt3R leverages DUSt3R
to warp images robustly into a shared view without relying
on ground truth camera poses as input. Secondly, by com-
puting similarities in the feature space of DINO, MEt3R ab-
stracts from view-dependent effects. As a result, we show
that our proposed metric can be effectively employed for
comparing the performance of multi-view generation ap-
proaches like our open-source multi-view latent diffusion
model, which finds the best trade-off between novel view
quality and consistency. Given the recent trend towards
large video models, we see great potential for MEt3R to
effectively evaluate their 3D consistency since no ground
truth camera poses are required.
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Porzi, Samuel Rota Bulò, Matthias Nießner, and Peter
Kontschieder. MultiDiff: Consistent novel view synthe-
sis from a single image. In 2024 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), page
10258–10268. IEEE, 2024. 2

[27] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
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