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Abstract

Multi-modal image fusion aggregates information from
multiple sensor sources, achieving superior visual quality
and perceptual features compared to single-source images,
often improving downstream tasks. However, current fusion
methods for downstream tasks still use predefined fusion
objectives that potentially mismatch the downstream tasks,
limiting adaptive guidance and reducing model flexibility.
To address this, we propose Task-driven Image Fusion (TD-
Fusion), a fusion framework incorporating a learnable fu-
sion loss guided by task loss. Specifically, our fusion loss in-
cludes learnable parameters modeled by a neural network
called the loss generation module. This module is super-
vised by the downstream task loss in a meta-learning man-
ner. The learning objective is to minimize the task loss of
fused images after optimizing the fusion module with the fu-
sion loss. Iterative updates between the fusion module and
the loss module ensure that the fusion network evolves to-
ward minimizing task loss, guiding the fusion process to-
ward the task objectives. TDFusion’s training relies en-
tirely on the downstream task loss, making it adaptable to
any specific task. It can be applied to any architecture of
fusion and task networks. Experiments demonstrate TDFu-
sion’s performance through fusion experiments conducted
on four different datasets, in addition to evaluations on se-
mantic segmentation and object detection tasks. The code
is available at https://github.com/HaowenBai/
TDFusion.

1. Introduction
Multi-modal image fusion [25, 31, 51, 59, 72, 79, 82] com-
bines information from multiple sensors to produce a more
holistic and detailed representation. Infrared images capture
thermal radiation regardless of lighting conditions, while
visible images provide richer texture details. Fused im-
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ages enhance downstream tasks through improved informa-
tion density and robustness [18, 41, 45, 62, 63, 70, 71],
outperforming single-modal inputs in semantic segmenta-
tion [13, 28, 34, 56], object detection [8, 32], and other
related applications [1, 3, 20, 27]. Conventional methods
typically treat fusion as image restoration using unsuper-
vised loss [76, 83, 87–89] or perceptual loss [21, 23, 77].
These approaches prioritize visual-level fusion through pre-
defined aggregation objectives, often neglecting semantic
feature extraction. This limitation hinders scene interpreta-
tion and task performance [14, 24, 52, 64]. Recent advances
explore the mutual enhancement between fusion and down-
stream tasks [37]. By cascading the fusion network with
downstream task network [39, 49], the task loss constrains
the fusion learning, ensuring the fused images meet the task
requirements [32, 56]. Alternatively, some methods incor-
porate high-level visual task features [34, 76, 78] or focus
on learning optimal initializations [40] to enhance fusion.

While integrating downstream tasks, existing frame-
works still rely on predefined fusion loss terms lacking
dynamic adaptation. The impact of downstream tasks re-
mains limited due to specific combinations. Manually de-
fined losses preserve predefined guidance, frequently over-
looking task-specific requirements. This guidance imposes
manually designed prior constraints on the fusion pro-
cess, limiting the dynamic and adaptive influence of down-
stream tasks on specific image pairs. These approaches,
whether incorporating task features [34, 78] or employ-
ing task losses [32, 56], still face the limitations of fixed
fusion loss terms. Task-specialized networks [76] create
fusion-task dependencies, restricting flexibility and limit-
ing their applicability to various high-level vision tasks. We
address these limitations through a task-driven framework
with learnable loss. The fusion loss contains learnable pa-
rameters, generated by a loss generation module, and is de-
signed to retain the intensity information of the source im-
ages for specific downstream tasks. The purpose of updat-
ing the fusion loss is to guide the fusion network in gen-
erating fused images that minimize downstream task loss,
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thereby enhancing adaptability. Moreover, the fusion loss
update relies on the downstream task loss, making it inde-
pendent of any specific task or network architecture.

The loss generation module produces fusion losses
for subsequent fusion module updates. This complexity
presents challenges to standard end-to-end training. For-
tunately, meta-learning techniques, which are strategies for
learning how to learn, can effectively achieve the learning
objectives of the loss generation module. This involves min-
imizing task loss for fused images through an optimized
fusion loss. Meta-learning tackles common deep-learning
challenges like limited data, high computational costs, and
the need for better generalization. Core optimization areas
include parameter tuning [11], optimization strategies [26],
and network architectures search [30]. In this paper, we
draw inspiration from the Model-Agnostic Meta-Learning
(MAML) approach [11] to train our loss generation module.
Specifically, training the loss generation module involves
two stages: inner updates and outer updates. During inner
updates, the output of the loss generation module updates
a surrogate fusion module without altering the original pa-
rameters. During outer updates, the fused image from the
surrogate module is fed into the task network. The resulting
task loss then updates the loss generation module through
backpropagation. This alternating training ensures that the
loss generation module consistently produces fusion losses
that minimize the downstream task loss of the fused images.

This paper introduces TDFusion, a task-oriented fusion
framework driven by downstream tasks. It consists of a fu-
sion module, a task module, and a loss generation module
that learns to optimize the fusion loss. The fusion loss incor-
porates intensity preferences from source images and gradi-
ent preservation, guided by downstream task loss to refine
intensity preferences. This model follows the general form
of fusion loss used in advanced methods [76, 83, 88, 89], en-
suring adaptability to various tasks. The updates of the loss
generation module are performed using a meta-learning ap-
proach, optimizing the loss generation module parameters
based on task loss from the fused images after each update
of the fusion module. This process ensures that the loss
function guides the fusion module continuously, optimiz-
ing feature aggregation and minimizing downstream task
losses. The loss generation module dynamically adjusts
through alternating updates with the fusion and task mod-
ules, generating optimal fusion losses at each model state.
Our contributions can be summarized as follows:
• We propose TDFusion, a meta-learning-based fusion

framework that leverages the loss functions of down-
stream tasks for training. This method promotes task-
driven fusion and alleviates challenges caused by the ab-
sence of ground truth. Moreover, this framework is ag-
nostic of specific downstream tasks or network architec-
tures, which enhances its adaptability and flexibility.

• Our framework includes a dynamically updated, learn-
able fusion loss generation module. It selectively extracts
source image information, minimizing the loss in down-
stream tasks. This ensures optimal fusion performance
while maximizing adaptability to downstream tasks.

• We analyze the information preferences of downstream
tasks such as semantic segmentation and object detection,
providing deeper insights into multi-modal high-level vi-
sion tasks.

• TDFusion achieves outstanding performance in both fu-
sion and high-level vision tasks, validated on four fusion
datasets with semantic segmentation and object detection.

2. Related Work

2.1. Deep learning-based Image Fusion
Deep learning-based image fusion methods have revolu-
tionized the field by exploiting the powerful feature extrac-
tion capabilities of neural networks [4, 6, 33, 35, 36, 42–
44, 65, 77]. These methods are broadly categorized into
discriminative and generative approaches. Discriminative
methods [10, 81, 85, 88] leverage the strong reconstruction
ability of neural networks to directly learn the mapping be-
tween source and fused images [21, 23, 80, 82]. Gener-
ative methods, on the other hand, model the image genera-
tion process using generative approaches, integrating source
images from a distributional perspective. These include
methods based on Generative Adversarial Networks [46–
48, 87] and diffusion models [73, 84]. Unified fusion meth-
ods [66, 75, 89] bridge the gap between different fusion
sub-tasks, incorporating strategies such as continual learn-
ing [67] and self-supervised decomposition techniques [29].
The introduction of registration modules helps to mitigate
misalignment issues [16, 60, 68] in source images. Recent
studies have further explored the synergy between fusion
and high-level vision tasks. These include leveraging down-
stream task losses to optimize fusion networks [32, 56], em-
bedding high-level task features [34, 76, 78], and employing
initialization techniques [40].

2.2. Meta-Learning in Vision
Meta-learning develops algorithms to automatically fine-
tune hyperparameters for specific tasks, showing its
versatility and effectiveness across various domains.
MAML [11] and its variations [12, 50, 53] focus on learning
efficient initialization parameters to quickly adapt to new
tasks using minimal data. Meta-SGD [26] extends MAML
by learning optimal update directions and rates, beneficial
in few-shot learning scenarios. Other approaches like MW-
Net [55] and L2RW [54] emphasize selecting relevant sam-
ple weights to tackle noisy data using a compact validation
set. Additionally, some studies focus on improving model
adaptability through learning loss functions [2, 7, 15].
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Figure 1. The TDFusion workflow alternates between training the loss generation module and the fusion module. Training of the loss
generation module involves both inner and outer updates, learned through meta-learning.

In image fusion, learnable filters [22] enable the fusion
of images at arbitrary resolutions. MetaFusion [78] intro-
duces a mechanism that improves image fusion and object
detection by aligning semantics with fusion-specific fea-
tures. ReFusion [5] guides the learnable fusion loss for vari-
ous fusion tasks by reconstructing the source images. Meta-
learning also supports neural architecture search [38, 40] to
identify optimal network architectures for image fusion and
customizes network initialization for various tasks [40].

2.3. Comparison with Existing Approaches
We propose a novel image fusion method tailored for down-
stream tasks, leveraging a learnable fusion loss driven by
task-specific objectives. Our method employs a meta-
learning algorithm that alternates between inner and outer
updates, allowing the downstream task loss to guide the op-
timization of learnable fusion parameters. This results in
fused images that minimize the downstream task loss, en-
hancing their adaptability across various tasks. Unlike pre-
vious methods, our approach develops a task-specific fusion
loss, shifting focus from traditional factors such as resolu-
tion and network structure, and avoiding reliance on prede-
fined fusion loss terms. This renders our fusion framework
more flexible and applicable to various scenarios.

3. Method
3.1. Overview
Our TDFusion framework, as shown in Fig. 1, consists of
a fusion network F(·), a downstream task network T (·),
and a fusion loss generation module G(·), which produces

parameters for a learnable loss function. The parameters of
these modules are denoted as θF , θT , and θG , respectively.
The one-step updated clones of F and T are denoted as F ′

and T ′, with parameters θF ′ and θT ′ . During the updates,
the fusion network and the loss generation module alternate
in learning, as depicted by blue and purple in Fig. 1. The
update of the loss generation module consists of inner and
outer updates, detailed in the following subsections. Lf and
Lt represent the learnable fusion loss and task-specific loss,
with their formulations provided in the next section.

3.2. Loss Function
The learnable fusion loss Lf consists of the intensity term
and the gradient term. The intensity term is defined by the
output of the loss generation module {wa, wb} = G(Ia, Ib),
where wa and wb control the intensity preference in the fu-
sion loss. The Softmax function in the loss generation mod-
ule ensures wij

a +wij
b = 1 for each pixel, thereby selectively

retaining the intensity information from the source images.
The gradient term emphasizes higher gradient values from
the input images [76, 83, 89], aiming to preserve maximal
information from the source. The detailed formulation of
the learnable fusion loss is as follows:

Lf = Lint
f + αLgrad

f , (1)

Lint
f =

1

HW

∑
ij

 ∑
k∈{a,b}

wij
k

(
Iijf − Iijk

)2

 , (2)

Lgrad
f =

1

HW

∑
ij

∣∣∣∣∇Iijf − max
k∈{a,b}

(∇Iijk )

∣∣∣∣ , (3)
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where ∇ denotes the Sobel operator, commonly employed
for gradient extraction in image fusion [32, 57, 83]. The pa-
rameter α serves as a scaling factor, while Lint

f and Lgrad
f

represent the intensity loss and gradient loss, respectively.
The weights {wa, wb} control the emphasis of the loss func-
tion on the intensity information from each source image.
These parameters enable the fusion process to selectively
aggregate and incorporate relevant information from the
source images. Variations in θG lead to different configura-
tions of wa and wb, thereby influencing the characteristics
of the fusion loss. θG undergoes updates driven by the high-
level task loss during the in-step update process, as detailed
in Sec. 3.4.

The loss function Lt depends on the specific task. In this
study, we adopt SegFormer [9] and YOLOv8 [19] for the
downstream tasks, employing cross-entropy loss and YOLO
loss [19] for each task, respectively.

3.3. Dataset Partitioning
In order to enhance the effectiveness of the loss gener-
ation module G in guiding the fusion tasks, we create
non-overlapping subsets of size M at each training epoch.
The meta-training set {Imtr

a , Imtr
b } and the meta-test set

{Imts
a , Imts

b } are randomly drawn from the fusion training
set {Iftra , Iftrb }. These subsets are fed into the model se-
quentially during the training process of the loss generation
module, covering both the inner and outer updates. The en-
tire fusion training set {Iftra , Iftrb } is fully utilized during
the training of the fusion network.

3.4. Learning of loss generation module
Fig. 1 illustrates that the loss generation and fusion modules
are trained alternately, ensuring the fusion loss is optimized
at various stages of training and under different states of the
fusion network. The process of training to optimize the fu-
sion loss involves two key steps: the inner update and the
outer update. In the inner update, clones of both the fusion
network and the task network are generated, with each net-
work undergoing a single training iteration using the fusion
loss and task loss, respectively. This process is designed to
obtain the state of the network guided by the fusion loss.
During the outer update, the task loss of the fusion image
produced by the updated clone is calculated. This loss is
then backpropagated to the loss generation network. The
goal of this step is to direct the fusion network to gener-
ate fusion images that result in lower downstream task loss,
once guided by the fusion loss. The alternating updates be-
tween the inner and outer steps constitute the learning pro-
cedure for the loss generation module.

3.4.1. Inner Update
During the inner update phase, the fusion network F un-
dergoes a single update guided by the fusion loss, which

depends on the current state of network G. This update
primarily aims to compute the intermediate parameters θF ′

and θR′ , which are crucial for updating θG in the subsequent
phase. The upper section of the purple region in Fig. 1 il-
lustrates this process. During this phase, the images from
the meta-training set {Imtr

a , Imtr
b } are fed into the model:

θF′ = θF − ηF′
∂Lf

(
Imtr
a , Imtr

b , Imtr
f ; θG

)
∂θF

, (4)

where F undergoes a single gradient descent update. θG
represent the parameters of the loss generation module G,
which determine the parameters for the learnable fusion
loss. And the notation ηF ′ refers to the step size. The mod-
ule F ′ temporarily substitutes F , adjusting its parameters
in one update step. Meanwhile, the parameters of F , de-
noted as θF , remain unchanged. Similarly, T ′ is updated in
a single step using the parameters θT from the current task
network T :

θT ′ = θT − ηT ′
∂Lt

(
Imtr
f

)
∂θT

. (5)

The parameters θF ′ and θT ′ are both updated during the
inner update, which also ensures that the computation graph
of θF ′ with respect to θG is preserved. This preserved graph
is essential for optimizing θG during the outer update.

3.4.2. Outer Update
The primary objective of the outer update is to evaluate and
refine the fusion guidance capability of G, specifically by
strengthening the influence of the loss function Lf in steer-
ing the fusion module F . In the framework diagram, this
stage is represented in the lower part of the purple region.
The modules F ′ and T ′, derived from the inner update,
represent the current guidance capacity of G. In an ideal
scenario, the optimal fusion loss should enhance the per-
formance of the downstream task on the fused image. In
this stage, the meta-test set {Imts

a , Imts
b } is employed. The

parameters θG are subsequently updated using the task loss
Lt, which is computed by F ′ and T ′:

θG = θG − ηG
∂Lt

(
Imts
f

)
∂θG

, (6)

where Imts
f = F ′(Imts

a , Imts
b ), and the gradient ∂Lt/∂θG

can be calculated as:

∂Lt

∂θG
=

∂Lt

∂θF′
∗

(
−ηF′

∂2Lf

(
Imtr
a , Imtr

b , Imtr
f ; θG

)
∂θF∂θG

)
. (7)

Eq. (6) holds because the task loss Lt is determined by
Imts
f , which in turn relies on θF ′ . The optimization of θG

via Lt is realized by preserving the computational relation-
ship between θF ′ and θG throughout the inner update. The
updated G module gains the ability to generate enhanced
fusion loss functions, enabling the fusion module to inte-
grate relevant information from the source images more ef-
ficiently into the fused output for downstream tasks.
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Algorithm 1 TDFusion Training Algorithm

Require: Training set {Iftra , Iftrb } with size N.
Output: Thoroughly trained θF , θT , θG .

1: Initialize θF , θT , θG .
2: for epoch = 1 to L do
3: Sample {Imtr

a , Imtr
b } and {Imts

a , Imts
b }.

4: for step = 1 to M do
% Inner update: apply G.

5: Sample (Imtr
a , Imtr

b ) and get (Imtr
f , ymtr).

6: Compute θF ′ and θT ′ by Eq. (4) and Eq. (5).
% Outer update: optimize G.

7: Sample (Imts
a , Imts

b ) and get (Imts
f , ymts).

8: Update θG by Eq. (6).
9: end for

10: for step = 1 to N do
% Fusion update: optimize F and T .

11: Sample (Iftra , Iftrb ) and get (Iftrf , yftr).
12: Update θF and θT by Eq. (8) and Eq. (9).
13: end for
14: end for

3.5. Learning of Fusion Network
The alternating inner and outer update iterations form a flex-
ible and effective mechanism to refine G in response to the
evolving state of F . After refining G, it is utilized to fur-
ther improve the training of F . This stage, denoted in blue
in the diagrams, involves processing the fusion training set
images {Iftra , Iftrb }. Both F and T are updated through the
application of the fusion loss Lf and task loss Lt:

θF = θF − ηF
∂Lf

(
Iftra , Iftrb , Iftrf ; θG

)
∂θF

, (8)

θT = θT − ηT
∂Lt

(
Iftrf

)
∂θT

. (9)

After completing several training sessions on the fusion net-
work, the focus then shifts back to the learning phase of the
fusion generation module. The fusion framework evolves
through a series of alternating phases, with each phase fine-
tuning the fusion loss based on the fusion network’s cur-
rent state. Such alternating phases ensure that the fusion
network consistently applies the most suitable fusion loss
during its progression. Ultimately, this results in the devel-
opment of a highly efficient fusion network, optimized for
peak performance. The complete training procedure is de-
tailed in Algorithm 1.

3.6. Network Architecture
TDFusion is composed of three modules: the fusion net-
work, the downstream task network, and the loss genera-
tion network. The fusion network shares the same architec-
ture as [5], a lightweight model built upon the Restormer

Block (RTB) [74]. An adaptive fusion module is incor-
porated into this network to facilitate feature integration.
Fig. 1 illustrates the structure of the loss generation mod-
ule. It also employs the Restormer Block (RTB) [74] as its
primary component, receiving inputs {Ia, Ib}. After apply-
ing Softmax(·), the final output guarantees wij

a +wij
b = 1

for each pixel. This design ensures that the fused image
meets the similarity constraints and removes the reliance on
initialization within the loss generation module. The archi-
tecture of the downstream task network T (·) depends on the
specific task. For learning of loss generation module, we
chose the most lightweight models of SegFormer [9] and
YOLOv8 [19] for semantic segmentation and object detec-
tion, respectively.

3.7. Theoretical Analysis
To better understand the weighting mechanism of the loss
generation module G, we investigate the optimization pro-
cedure of G, which generates the weights {wa, wb}, denoted
as θG . For clarity, we rewrite Eq. (2) as follows:

Lint
f =[wa ⊙ (Ia − If )⊙ (Ia − If )

+ wb ⊙ (Ib − If )⊙ (Ib − If )]×
1

HW

=[G(Ia, Ib; θG)⊙ (Ia −FθF (Ia, Ib))

⊙ (Ia −FθF (Ia, Ib))

+ (1− G(Ia, Ib; θG))⊙ (Ib −FθF (Ia, Ib))

⊙ (Ib −FθF (Ia, Ib))]×
1

HW
.

(10)

Here, wa, wb ∈ RH×W , Ia, Ib ∈ RH×W , and ⊙ denotes
the element-wise multiplication operation. Let Ω

′
be the set

{θF ′ , θT ′}, this leads to the following expression:

θG =θG − ηG
∂Lmts

t (Ω
′
(θG))

∂θG

=θG − ηG
∂Lmts

t (Ω
′
(θG))

∂Ω′
∂Ω

′
(θG)

∂θG

=θG − ηGηF′
∂Lmts

t (Ω
′
(θG))

∂Ω′︸ ︷︷ ︸
(a)

×∂G(Ia, Ib; θG)
θG

× [(Ia − ∂FθF

∂θF
)⊙ (Ia − ∂FθF

∂θF
)︸ ︷︷ ︸

(b)

−(Ib −
∂FθF

∂θF
)⊙ (Ib −

∂FθF

∂θF
)]︸ ︷︷ ︸

(b)

=θG − ηGηF′G× ∂G(Ia, Ib; θG)
θG

.

(11)

Here, G denotes the inner product between two gradients:
(a) the first one is derived from the task loss using a meta-
testing set, and (b) the second is calculated from the fu-
sion loss based on a meta-training set. Consequently, the
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Figure 2. Visual comparison of fusion results. The cases are “01258N” in MSRS dataset, “00122” in FMB dataset, “00449” in M3FD
dataset and “200304” in LLVIP dataset.

optimization of the module θG is driven by the task loss,
with the objective of preserving task-specific information
throughout the fusion process.

4. Experiment

4.1. Setup

Experimental Setup. In our experiments, the epoch num-
ber L and the training iterations of the loss generation mod-
ule M are set to 50 and 200. The learning iterations for the
fusion network N depend on the size of the dataset. We use
the Adam optimizer with a learning rate of 1e-4, a batch size
of 2, and a hyperparameter α set to 1. All experiments are
conducted on a PC with a single NVIDIA RTX 3090 GPU.
Evaluation Metrics and Comparison Methods. The
advanced fusion methods compared in our study include
TarDAL [32], SegMIF [34], MURF [69], EMMA [86],
DCINN [61], MRFS [76], and TIMFusion [40]. The fu-
sion performance is evaluated using metrics including en-
tropy (EN), spatial frequency (SF), sum of correlation dif-
ferences (SCD), visual information fidelity (VIF), QAB/F ,
and structural similarity index metric (SSIM).
Dataset Split. We use four datasets annotated for down-
stream tasks, including MSRS [58], FMB [34], M3FD [32],
and LLVIP [17]. MSRS contains 1083/361 image pairs for
training/test, and FMB contains 1220/280 pairs for train-
ing/test. We follow the splits of the original papers for both
datasets. M3FD dataset consists of 4200 pairs of images
for detection, with 300 pairs designated for fusion evalu-

ation. The 4200 detection images are split into 3150 for
training and 1050 for testing, ensuring that the 300 pairs for
fusion evaluation are included within the detection test set.
These 300 fusion images are then employed to assess the
fusion performance. The original LLVIP dataset contains
12025/3463 image pairs as training/test set. Due to its large
size, we select every 10th image to form our training and
test sets, resulting in 1203/347 image pairs for training and
testing. Our splits for M3FD and LLVIP will be available.

4.2. Fusion Experiments

Fig. 2 presents a visual comparison of different methods.
The fused images generated by TDFusion excel in preserv-
ing discriminative details, achieving balanced brightness,
and maintaining clear object contours. It effectively pre-
serves the target features from the infrared images and the
background details from the visible images, resulting in
fused images that are more natural and exhibit greater clar-
ity across different environments. These results highlight
the advantages of TDFusion in detail preservation and vi-
sual performance. More results are available in the supple-
mentary material. Tab. 1 presents the quantitative compar-
ison of fusion over four datasets. TDFusion outperforms
other methods across most metrics. This suggests that TD-
Fusion not only enhances image details but also provides
consistent fusion results across various scenarios. Com-
pared to other methods, TDFusion shows superior adapt-
ability and robustness, particularly in handling diverse im-
age characteristics and challenging fusion tasks.
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Table 1. Quantitative comparison of Infrared-visible image fusion. The red and blue markers represent the best and second-best values.

Infrared-visible Image Fusion on MSRS [58] Dataset Infrared-visible Image Fusion on FMB [34] Dataset
EN ↑ SF ↑ SCD ↑ VIF ↑ QAB/F ↑ SSIM ↑ EN ↑ SF ↑ SCD ↑ VIF ↑ QAB/F ↑ SSIM ↑

TarDAL [32] 5.28 5.98 0.71 0.21 0.18 0.47 TarDAL [32] 6.63 6.94 1.03 0.28 0.29 0.74
SegMIF [34] 5.95 11.10 1.57 0.44 0.63 0.55 SegMIF [34] 6.83 13.69 1.72 0.39 0.65 0.60
MURF [69] 5.04 10.49 1.02 0.22 0.37 0.60 MURF [69] 6.37 13.88 1.34 0.22 0.37 0.68
EMMA [86] 6.73 11.56 1.62 0.49 0.64 0.70 EMMA [86] 6.77 15.00 1.50 0.42 0.65 0.72
DCINN [61] 6.00 10.51 1.49 0.41 0.57 0.52 DCINN [61] 6.47 11.47 1.39 0.38 0.59 0.74
MRFS [76] 7.00 8.86 1.42 0.37 0.49 0.55 MRFS [76] 6.78 12.42 1.24 0.38 0.62 0.73
TIMFusion [40] 6.27 9.67 1.34 0.32 0.48 0.68 TIMFusion [40] 6.51 12.23 1.24 0.35 0.59 0.73
TDFusion (Ours) 6.74 11.30 1.86 0.50 0.67 0.70 TDFusion (Ours) 6.86 14.16 1.76 0.43 0.68 0.75

Infrared-visible Image Fusion on M3FD [32] Dataset Infrared-visible Image Fusion on LLVIP [17] Dataset
EN ↑ SF ↑ SCD ↑ VIF ↑ QAB/F ↑ SSIM ↑ EN ↑ SF ↑ SCD ↑ VIF ↑ QAB/F ↑ SSIM ↑

TarDAL [32] 6.87 7.63 1.29 0.27 0.30 0.71 TarDAL [32] 6.32 7.42 1.04 0.27 0.22 0.58
SegMIF [34] 6.85 14.14 1.72 0.37 0.60 0.59 SegMIF [34] 6.68 15.46 1.38 0.40 0.66 0.57
MURF [69] 6.50 12.55 1.46 0.21 0.32 0.64 MURF [69] 6.13 15.08 0.96 0.21 0.31 0.57
EMMA [86] 6.92 15.23 1.49 0.38 0.59 0.69 EMMA [86] 7.35 15.37 1.57 0.41 0.64 0.66
DCINN [61] 6.59 11.21 1.46 0.34 0.51 0.72 DCINN [61] 6.98 13.34 1.43 0.38 0.52 0.64
MRFS [76] 6.94 12.07 1.26 0.34 0.55 0.70 MRFS [76] 6.83 11.04 1.23 0.31 0.42 0.64
TIMFusion [40] 6.75 12.31 1.37 0.35 0.53 0.70 TIMFusion [40] 6.58 13.52 1.14 0.33 0.46 0.64
TDFusion (Ours) 6.99 14.49 1.83 0.41 0.65 0.72 TDFusion (Ours) 7.36 16.38 1.75 0.46 0.70 0.67

Infrared Visible TarDAL SegMIF MURF EMMA DCINN MRFS TIMFusion TDFusion (Ours)Infrared Visible GTGT

Unlabelled Car Person Bike Curve Car Stop Guardrail Color Cone Bump

Background Person Motorcycle Road Car Pole Vegetation Sky Truck Building Lamp Sign Bus Sidewalk Bicycle

Figure 3. Visual comparison for Semantic Segmentation. The cases are “00726N” in MSRS dataset and “01438” in FMB dataset.

4.3. Downstream Applications

This section validates the adaptability of fusion methods to
downstream tasks. For a fair comparison, we adopt Seg-
Former [9] and YOLOv8 [19] as backbones and retrain the
task networks for each fusion method over 300 epochs to
evaluate their adaptability to semantic segmentation and ob-
ject detection. Fig. 3 and Fig. 4 present the visual com-
parisons of semantic segmentation and object detection, re-
spectively. TDFusion outperforms in image detail retention,
edge clarity, and object recognition, effectively identifying
and segmenting objects. For semantic segmentation, the
generated maps clearly distinguish different class regions,
closely matching the ground truth. In object detection, the
fused images exhibit more precise boundary localization
for salient objects. This indicates that TDFusion maintains
a better balance between fine details and overall context.
More results can be found in the supplementary material.

Tab. 2 shows the performance comparison across differ-
ent methods in semantic segmentation and object detection.
TDFusion outperforms other methods on most metrics, par-
ticularly in mIoU and mAP. This demonstrates that TDFu-

Table 2. Performance comparison of downstream applications.
The red and blue markers represent the best and second-best.

Semantic Segmentation Object Detection

MSRS FMB M3FD LLVIP

Methods mAcc mIoU mAcc mIoU mAP50 mAP75 AP50 AP75

Infrared 83.23 69.49 58.85 51.98 79.12 53.05 96.03 72.07
Visible 83.44 73.76 65.12 57.96 82.21 54.82 91.78 48.66
TarDAL 81.93 71.35 62.86 55.33 83.16 56.39 93.79 62.71
SegMIF 85.73 74.25 65.97 58.41 83.61 58.23 93.95 66.45
MURF 85.03 74.08 64.10 56.96 80.58 54.22 94.24 68.04
EMMA 85.99 74.48 62.45 56.28 83.71 56.91 94.00 66.21
DCINN 84.11 74.35 61.09 54.81 82.69 57.37 94.92 68.34
MRFS 84.76 74.50 61.93 55.71 83.28 57.74 93.03 67.21
TIMFusion 83.67 73.58 63.70 57.24 83.22 56.08 93.76 61.33
TDFusion 86.04 75.09 67.17 60.50 86.27 59.71 95.00 69.18

sion effectively enhances the quality of fused images. It
also improves the downstream task performance, especially
in terms of accuracy and robustness in complex scenarios.
Class-wise results are provided in the supplementary mate-
rial.

4.4. Task-driven Learnable Loss
Our framework incorporates a learnable fusion loss that
models the preferences of downstream tasks for information
from source images. The models trained on FMB dataset
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Figure 4. Visual comparison for Object Detection. The cases are “02236” in M3FD dataset and “210145” in LLVIP dataset.

Infrared

Visible

Infrared

Visible

Figure 5. Visualisation of learnable loss for downstream tasks.

and LLVIP dataset labeled as SS and OD, are evaluated on
MSRS dataset to simulate performance in unknown scenes,
as shown in Fig. 5. The results demonstrate that the fusion
model adaptively selects information from infrared and vis-
ible images to satisfy task requirements. In semantic seg-
mentation, the model combines scene structure and texture,
prioritizing boundaries. This improves segmentation under
varying lighting conditions. Fusion weights {wSS

a , wSS
b }

indicate a preference for visible details and infrared advan-
tages in low-light conditions. In object detection, the model
focuses on edge and contrast information, especially for in-
stances like pedestrians and vehicles. Higher fusion weights
are assigned to bright regions in infrared images, enhanc-
ing target detection in low-light conditions. Fusion weights
{wOD

a , wOD
b } reflect this preference. Comparison of fusion

losses across tasks reveals distinct differences, especially
in highlighted regions, confirming that the model adapts to
task-specific requirements by selecting the most relevant in-
formation from multimodal images. More results are pro-
vided in the supplementary material.

4.5. Ablation Studies
To thoroughly evaluate the performance of our proposed al-
gorithm, we conduct a series of ablation experiments on
FMB dataset, and the detailed results are shown in Tab. 3.
In Exp. I, we exclude the learnable fusion loss by fixing wa

and wb to 1/2. In Exp. II, we omit the gradient loss from
the loss function. In Exp. III, we also allow the fusion mod-
ule parameters to be jointly optimized by both the task loss
Lt and fusion loss Lf . In Exp. IV, we exclude the fusion

Table 3. Ablation experiment of fusion. The red denotes the best.

Ablation Studies of fusion on FMB Dataset
Configurations EN SF SCD VIF QAB/F SSIM

I fix wa and wb as 1/2 6.60 13.73 1.58 0.39 0.60 0.72
II w/o Lgrad

f 6.77 11.65 1.63 0.37 0.64 0.73
III θF influenced by Lt 6.80 13.85 1.70 0.41 0.66 0.73
IV w/o Fusion learning 6.82 14.07 1.72 0.41 0.67 0.72
V If =wa∗Ia + wb∗Ib 6.75 11.49 1.65 0.38 0.62 0.73

Ours 6.86 14.16 1.76 0.43 0.68 0.75

module’s dedicated learning phase and update it during the
outer update of the loss module, which tests the impact of
the fusion module’s training schedule. In Exp. V, we replace
our fusion method with a discriminative approach. The per-
formance decline observed across different configurations
confirms the rationality and effectiveness of our proposed
method. Visualization and more analysis are provided in
the supplementary material.

5. Conclusion
To overcome the limitations of predefined fusion losses,
which often fail to effectively guide the fusion process
for downstream tasks, we propose a meta-learning-based
framework for task-guided fusion. This framework includes
a loss generation module that outputs the parameters of the
learnable fusion loss. The module is updated using a meta-
learning approach, which alternates between inner and outer
loop steps to enhance its ability to guide the fusion net-
work. Under varying fusion conditions, this module gen-
erates the optimal fusion loss for the downstream task. This
enables the fusion network to produce fused images that
minimize the task-specific loss. The theoretical analysis ex-
plains how the downstream task loss guides the fusion loss
in our framework. Experiments using four publicly avail-
able fusion datasets and downstream tasks including seman-
tic segmentation and object detection, demonstrate the ef-
fectiveness of our approach.
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