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Figure 1. (left) Decision boundaries of a 4th-degree polynomial logistic regression model with 2D input. In this example, feature x1 is
class-specific and x2 is domain-specific, while color represents classes and shapes represent domains. The samples with solid red and
green colors are included in the training data, whereas the fainted samples are part of the hidden held-out test set. As a result, domain shift
is represented by a change in x2. Although the classifier should only infer based on x1, traditional gradient descent leads to overfitting
(top-left). The proposed method, GGA (bottom-left), introduces an annealing process that depends on gradient agreement, leading to
models that generalize well to new, unobserved target domains. (right) Schematics of the parameter updates of ERM (top-right) and GGA
(bottom-right). Parameters updated via ERM are driven by gradient conflict, whereas GGA searches for a point where gradients align
before continuing descending towards a minima.

Abstract

Domain Generalization (DG) research has gained con-
siderable traction as of late, since the ability to generalize to
unseen data distributions is a requirement that eludes even
state-of-the-art training algorithms. In this paper we ob-
serve that the initial iterations of model training play a key
role in domain generalization effectiveness, since the loss
landscape may be significantly different across the training
and test distributions, contrary to the case of i.i.d. data.

Conflicts between gradients of the loss components of each
domain lead the optimization procedure to undesirable lo-
cal minima that do not capture the domain-invariant fea-
tures of the target classes. We propose alleviating do-
main conflicts in model optimization, by iteratively anneal-
ing the parameters of a model in the early stages of train-
ing and searching for points where gradients align between
domains. By discovering a set of parameter values where
gradients are updated towards the same direction for each
data distribution present in the training set, the proposed
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Gradient-Guided Annealing (GGA) algorithm encourages
models to seek out minima that exhibit improved robust-
ness against domain shifts. The efficacy of GGA is evalu-
ated on five widely accepted and challenging image clas-
sification domain generalization benchmarks, where its use
alone is able to establish highly competitive or even state-
of-the-art performance. Moreover, when combined with
previously proposed domain-generalization algorithms it is
able to consistently improve their effectiveness by signifi-
cant margins1.

1. Introduction

The vast majority of neural networks today are trained via
stochastic gradient descent methods, such as SGD [7] or
ADAM [25], where the gradient direction guides the opti-
mization through the loss landscape, aiming to converge to
a minimum. What is more, it has been empirically shown
that the astounding performance and generalization capa-
bilities of these over-parameterized models stems from the
fact that loss surfaces of large neural networks have multi-
tudinous local minima [2, 42], most of which yield similar
performance upon model convergence [12, 37].

The above optimization process assumes that all avail-
able data samples are independent and identically dis-
tributed (i.i.d.). When this assumption holds, the parameter
values reached during training is likely to generalize to the
test distribution. However, in several real-world scenarios
the i.i.d. assumption is not met, and models are evaluated on
similar but distinct out-of-distribution (OOD) data resulting
from domain shifts to the training distribution, leading to a
domain generalization (DG) [60] problem. In this case, the
training loss minimum may lead to a poor parameter con-
figuration for the test data.

The disagreement of gradients across data from differ-
ent domains during training, can provide an indication that
the described problem occurs. This observation about gra-
dient conflicts was initially made in the multi-task learning
paradigm [58], where gradients of different tasks pointed
to conflicting directions on the loss surface. To mitigate
the effects of gradient conflicts, methods to balance the rel-
ative gradient magnitudes were proposed [11, 23], along
with algorithms that remove disagreeing gradient compo-
nents among tasks [45, 55]. Similarly, gradient conflicts
were also addressed in the context of DG in [34], where
gradients with different signs among domains were either
muted or set to random values; as they are assumed to con-
tain domain-specific information. With that being said, it
has been empirically shown that even though the above is-
sues arise, the correct selection and tuning of hyperparam-
eters can be enough for vanilla network training to surpass

1Code available at: https://github.com/aristotelisballas/GGA

even state-of-the-art algorithms [19]. This evidence leads
us to believe that there exist local minima on the vanilla
loss surface that lead to more robust and generalizable mod-
els. Depending on the starting parameter configuration,
even a model optimized by traditional Empirical Risk Min-
imization can reach a solution that is locally optimal for all
distinct domains. These hypotheses, along with problems
poised by gradient disagreement, are demonstrated in Sec-
tion 1.1 (illustrated in Fig. 1) and are further explored in
Section 3.2.

Starting from these ideas, we propose an alternative
strategy for updating the parameters of a neural network
during the optimization process, in an attempt to “set the
model up for success”. Specifically, inspired by Simulated
Annealing Optimization [26], during the early stages of
model training we iteratively anneal, i.e. randomly per-
turb the parameters of the model, and search for a set of
parameter values where the gradients between all training
domains agree, before minimizing the total loss across all
training domains. We call this simple, yet effective, strat-
egy Gradient-Guided Annealing or GGA. When evaluated
on extensive and challenging DG benchmarks, GGA is able
to boost the performance of the baseline by significant mar-
gins, even yielding state-of-the-art results without the appli-
cation of additional data processing or augmentation tech-
niques. Additionally, since GGA can be considered a gen-
eral strategy for handling multi-domain datasets it can also
be combined with previously proposed algorithms. Exper-
imental results of the combined methods, demonstrate the
efficacy of GGA, as it is able to enhance their generalization
capacity and overall accuracy, boosting their performance
over the baseline benchmarks.

Our primary contributions are as follows:
• We present Gradient-Guided Annealing (GGA), a DG

method for training neural networks such that gradients
align across domains.

• We validate the effectiveness of GGA on multiple, chal-
lenging Domain Generalization benchmarks both as a
standalone algorithm and by combining it with previous
state-of-the-art methods.

• We offer further evidence on the effectiveness of the pro-
posed method by investigating the domain gradients dur-
ing training and its sensitivity to the choice of hyperpa-
rameters.

1.1. Gradient Disagreement and Domain Overfit-
ting

To demonstrate how the domain generalization problem
manifests during optimization in the source domains during
training, we consider the following simple synthetic binary
classification problem. For training, data is sampled from
a mixture of two domains, while testing takes place on a
different, previously unseen, target domain. Each sample
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has two features, a class-specific feature x1 and a domain-
specific feature x2. Our goal is to learn a model on the
source domains, that can discriminate between classes ef-
fectively on the unseen target domain.

Concretely, for the source domains, we draw 200 points
from a 2-D Gaussian distribution with an isotropic covari-
ance matrix for each domain and class, i.e.,

x(d)
y ∼ N (µ(d)

y , σI2) (1)

Where the subscript y indicates the class and the exponent d
the domain, while µ(1)

1 = [−2.5,−2.5], µ(2)
1 = [−2.5, 2.5],

µ
(1)
2 = [2.5,−2.5], µ(2)

2 = [2.5, 2.5], σ = 0.5 and I2 is
the 2 × 2 identity matrix. We also draw an additional 400
samples from a held-out test domain with means at µ(3)

1 =

[−2.5,−7.5] and µ
(3)
2 = [2.5,−7.5]. The drawn samples

are shown in the left column of Fig. 1. In this example,
the classes can be distinguished solely on x1 (the “class-
specific” feature), while domains differ in terms of feature
x2 (the “domain-specific” feature).

We train a 4th degree polynomial logistic regression
model trained with Empirical Risk Minimization (ERM,
[49]) and binary cross-entropy loss using the SGD opti-
mizer. In the top-left example of Fig. 1 the initial parameter
conditions were such that training converged to a local min-
imum of the loss that leads the model to consider both x1

and x2 for its decisions. In this case, the model has clearly
overfit its source domains and will fail when presented with
out-of-distribution data from the held-out domain. An in-
dicator of this was the fact that gradients of the loss for
samples of different domains were dissimilar during train-
ing. This is in contrast to the bottom-left GGA model in
Fig. 1 which mostly relies on x1 to discriminate between
classes. This model was trained by using the proposed gra-
dient agreement strategy and although the resulting training
loss is slightly higher, the model successfully generalizes to
new domains.

In the rest of the paper, we first discuss the most rele-
vant works in the domain generalization literature (Section
2) and then present the proposed methodology (Section 3).
Followingly, we present the experimental setup and results
(Section 4), and finally conclude the paper with a discus-
sion on limitations of our method and directions for future
research (Section 5).

2. Related Work
Domain Generalization (DG) methods focus on learning
a model from one or multiple source data sets, or do-
mains, which can generalize to previously unseen, out-of-
distribution target domains. Existing DG methods in the
literature can be categorized into two major groups; single-
source and multi-source. In addition to not having any
knowledge about the unseen data, single-source algorithms

do not leverage information regarding the presence of dis-
inct domains in the training set. On the other hand, multi-
source methods utilize domain labels and often take ad-
vantage of the statistical differences in the sample distri-
butions. Specifically, most popular algorithms include data
augmentation [9, 59] which proves beneficial for regulariz-
ing over-parameterized neural networks and improving gen-
eralization, meta-learning [3, 14, 30, 57], which exposes
models to domain shifts during training, and disentangled
representation learning [4, 39, 51, 56], where models most
commonly include modules or architectures that focus on
decomposing learned representations into domain-specific
and domain-invariant parts. Additionally, domain align-
ment [17, 35, 53] and causal representation learning algo-
rithms [32, 33] have also been proposed in the literature to-
wards producing robust models that retain their generaliza-
tion capabilities on unseen data. Finally, ensemble learn-
ing methods [61] have also been proposed for DG, where
techniques such as weight averaging [22] lead to improved
generalization [10].

Gradient operations for DG. Lately, there has been
a surging interest in addressing the DG problem from a
gradient-aware perspective. The most relevant works to
ours, leverage gradient information to learn generalized rep-
resentations from the source datasets. For example, [21]
proposes a self-challenging learning scheme, by muting the
feature representations associated with the highest gradients
and forcing the network to learn via alternative routes. In
another work, the authors of [47] propose Fish, a first-order
algorithm that approximates the optimization of the gradi-
ent inner product between domains. Inspired by gradient
surgery in multi-task learning [55], [34] proposes aligning
the gradient vectors among source domains by retaining the
individual same-sign gradients, and either setting the rest to
zero or random values. Finally, there has also been great
interest into researching the properties of Sharpness-Aware
Minimization (SAM) [16, 28, 52, 62], as it has been hy-
pothesized that flatter minima lead to smaller DG gaps and
improved generalization.

Simulated Annealing for Deep Learning. Although
explored in past literature, simulated annealing (SA) has not
been explicitly proposed for DG. To avoid being “trapped”
in local minima during model optimization, [8] proposes
SA-GD, a simulated annealing method for gradient descent.
Similarly, [40] shows that by sacrificing computation time,
simulated annealing optimization can also improve the re-
sults of standard CNN architectures. In a more recent work,
the authors of [44] propose SEAL and apply simulated an-
nealing in the early layers of networks to prohibit them from
learning overly specific representations and improve model
generalization. Furthermore, there has also been research
regarding the combination of SA with reinforcement learn-
ing (RL) algorithms, where RL is used to optimize specific
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hyperparameters of the SA process [13].
When compared to previously proposed methods which

take into consideration gradient behaviour, GGA has some
key differences. In contrast to gradient surgery algorithms
[34, 55] that either mute, aggregate or set gradients to ran-
dom values, and Fish [47] that approximately optimizes the
inner-product between domain gradients, GGA searches for
existing parameter space points where gradients of different
domains have pairwise small angles. Furthermore, as GGA
is applied in the early stages of training and for a limited
number of training iterations, the high computational bur-
den of traditional simulated annealing methods is avoided.

3. Methods
3.1. Preliminaries
Consider a classification problem with K classes. Dur-
ing model training we have access to a data set com-
posed of distinct source data distributions (or domains),
S =

{
D1, D2, . . . , D|S|

}
. From each domain Di, we ob-

serve ni labeled data points, such that (x(i)
j , y

(i)
j ) ∼ Di,

for j = 1, . . . , ni. Similarly, the test dataset consists of
T =

{
DT

1 , D
T
2 , . . . , D

T
|T |

}
unseen target data distribu-

tions, from which the model cannot retrieve any informa-
tion during training. The goal is to learn a single labeling
function h(x;θ), parameterized by θ, which correctly maps
input observations x(i)

j to their labels y(i)j for both the seen
source and the unseen target domains.

If Li(θ) = 1
ni

∑ni

j=1 ℓ(h(xj
(i);θ), y

(i)
j ) represents the

loss associated to the i-th source data domain in the train-
ing set, we define the overall cost function L(θ) =
1
|S|

∑|S|
i=1 Li(θ), as the average loss over all available

source domains. The function ℓ(·, ·) is a classification loss,
in our case cross-entropy, that measures the error between
the predicted label ŷ of an input observation and its true la-
bel y. The standard way of model training is Empirical Risk
Minimization or ERM which uses the following objective
on the training domain data

θ∗ = argθ min
1

|S|

|S|∑
i=1

Li(θ) + λR(θ) (2)

where R(·) is a regularization term and λ a hyperparameter
responsible for controlling the contribution of regulariza-
tion to the loss, leading to a parameter vector θ∗. In prac-
tice, networks trained via ERM have been shown to overfit
the data distributions present in the training set. Previous
works (such as [47]) have observed that the directions of
gradients for different domains during training play a sig-
nificant role in model generalization. Given source domain
losses Li(θ) and Lj(θ) and their corresponding gradients
gi = ∇θLi(θ), gj = ∇θLj(θ), gradient conflicts arise

x

fe

zy zd

y d

Figure 2. Simplified generative model for multi-domain data.

when the angle of the gradients grows e.g., above |π/2|, or,
equivalently, their cosine similarity gT

i ·gj

∥gi∥∥gj∥ becomes neg-
ative. In the following section, we further explore the role
of gradient similarity as an indicator for domain overfitting.

3.2. A Generative Model for Domain Generalization
To assist with the development and understanding of the
proposed method consider the generative model of Figure
2, summarized by the following process:

y ∼Multinoulli(p1, . . . , pK)

d ∼Multinoulli(q1, . . . , qL)

zy ∼ py

zd ∼ pd

e ∼ pe

x = f(zy, zd, e)

where y is a variable corresponding to the class, d is a vari-
able corresponding to the domain (with L = |S| + |T |),
zy is a latent multivariate class-specific representation of
class y, drawn from an unknown distribution py , and zd is
a latent multivariate domain-specific representation of the
domain d, drawn from an unknown distribution pd. Notice
that these representations are disentangled, i.e., zy does not
depend on d. The observed sample x, on the other hand,
is derived using the function f(zy, zd, e) that depends on
both the class and domain representations, as well as inde-
pendent nuisance variables, e.

Without loss of generality, let’s assume that we have two
source domains (|S| = 2) and two classes (K = 2). Then,
during model training we sample only from the source do-
mains and use the loss L = α1L1 + α2L2,

Li = −Ed=i [log h(y|x;θ)] (3)

where h is the probability estimated by our model for class
y, αi is the percentage of samples of domain i, and i = 1, 2.
The expectation is over samples that have been generated
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using the above process when d = i. Each gradient update
step depends on the loss gradient

∇θL = α1∇θL1 + α2∇θL2

= −α1Ed=1 [∇θ log h(y|x;θ)]
− α2Ed=2 [∇θ log h(y|x;θ)]

(4)

where we have used the linearity of the expectation to
obtain the expectation of the derivatives. Notice that
the gradient update step depends on ∇θ log h(y|x;θ) =
∇θ log h(y|f(zy, zd, e;θ)).

For models that use an internal domain-invariant rep-
resentation (i.e., a representation that does not depend
on zd) it will hold that h(y|x) = h(y|f(zy, z1, e)) =
h(y|f(zy, z2, e)), and therefore Ed=1 [u(h(y|x))] =
Ed=2 [u(h(y|x))] for any function u. Thus, both the losses,
Li and their gradients, ∇θLi, should be equal, in expec-
tation, for different domains i. This observation provides
a necessary condition for domain-invariance, which in turn
provisions the main motivation for the development of our
method, presented in the following section.

3.3. Gradient-Guided Annealing for DG
The analysis presented in the previous section shows that we
can use the agreement of gradients ∇Li as an indicator of
domain invariance, since the less the model h(·|θ) depends
on the domain d, the more similar the expected value of the
gradient, E[∇Ld], will be (see Eq. (4)). Inspired by Sim-
ulated Annealing [26], we achieve this by adding random
noise to the parameters of the model in search for a point
with high domain gradient agreement, as measured by the
increase of the minimum gradient similarity across any pair
of domains,

grad sim = min
( i≤|S|,j≤|S|∑

i=1,j=1,
i̸=j

gT
i · gj

∥gi∥∥gj∥
)

(5)

In more detail, as it is common in DG literature, we start
with a pre-trained model f(·,θ0) and perform a small num-
ber of warmup training steps. This ensures that the model
approaches a region of the parameter space that achieves a
low loss for the target problem. We then calculate the min-
imum pairwise gradient similarity among source domains
and begin searching the neighborhood of the parameter
space for points where both: (a) the domain gradients agree
and (b) the loss are reduced2. This is implemented through
iterative random perturbations θ′ ← θ + U(−ρ, ρ), where
U is the multivariate uniform distribution. Each new point

2In our experiments, we relax the loss constraint and accept the new
parameter set when the gradient similarity has increased and training loss
has been reduced within a specific range (i.e L − L′ < 0.1), where L′ is
the loss value at the updated set of parameters.

Algorithm 1 Implementing GGA in training

Require: Pretrained DNN h with parameters θ0, training
dataset with domains S = {Di}|S|

1 . Loss gradients g.
Learning rate η, perturbation parameter ρ, optimization
step to start the annealing process As, optimization step
to end the annealing process Ae, number of annealing
iterations per optimization step na. Total number of
training iterations n.

1: for t← 1 to n do
2: Sample a mini-batch: B ← BD1

+ ...+ BD|S|

3: if As ≤ t ≤ Ae then
4: #Begin Gradient-Guided Annealing:

5: Compute the mini-batch loss at starting params:
6: LB ← L(B;θt)
7: Calculate minimum domain grad pair sim:

8: sim← min
( i≤|S|,j≤|S|∑

i=1,j=1,
i ̸=j

gT
i ·gj

∥gi∥∥gj∥
)

9: θt ← θt−1

10: for step a← 1 to na do
11: θa ← θt + U(−ρ, ρ)
12: Calculate minimum domain grad pair sim:

13: sima ← min
( i≤|S|,j≤|S|∑

i=1,j=1,
i ̸=j

gT
i ·gj

∥gi∥∥gj∥
)

14: Compute the mini-batch loss at new params:
15: La ← L(B;θa)
16: if

(
sima > sim

)
∧
(
La − LB < 0.1

)
then

17: LB ← La, θt ← θa, sim← sima

18: end if
19: end for
20: end if
21: #Update weights:

22: Compute mini-batch loss: LB = L(B;θt)
23: θt+1 = θt − η · ∇LB(B;θt)
24: t = t+ 1
25: end for

is selected only if it simultaneously achieves higher gradi-
ent agreement and lower loss (thus improving the Pareto
front). After a fixed number of iterations, the point that
has achieved the highest gradient agreement and the lowest
loss is selected. This process is repeated after every train-
ing iteration step. After a number of optimization steps, we
allow the model to be trained without parameter perturba-
tions, following a standard SGD-based procedure, as usual.
The GGA algorithm is presented in Algorithm 1.
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Table 1. Comparison of GGA with the ERM baseline. The top out-of-domain accuracies on five domain generalization benchmarks
averaged over three trials, are presented.

Algorithm PACS VLCS OfficeHome TerraInc DomainNet Avg.

ERM 85.5±0.2 77.3±0.4 66.5±0.3 46.1±1.8 43.8±0.3 63.9

GGA (ours) 87.3±0.4 79.9±0.4 68.5±0.2 50.6±0.1 45.2±0.2 66.3

Table 2. Comparison with state-of-the-art domain generalization methods. Out-of-domain accuracies on five domain generalization
benchmarks are shown. Top performing methods are highlighted in bold while second-best are underlined. The results marked by †, ‡
are copied from Gulrajani and Lopez-Paz [19] and Wang et al. [52], respectively. For fair comparison, the training of each algorithm
combined with GGA, were run on the respective codebases. Average accuracies and standard errors are calculated from three trials for the
combination of GGA with past algorithms and from 5 trials for GGA. In green and red, we highlight the performance boost and decrease
of applying GGA on top of each algorithm respectively, averaged over three trials. Due to computational resources, for DomainNet we do
not combine GGA with previous methods.

Algorithm PACS VLCS OfficeHome TerraInc Avg. DomainNet Total

Mixstyle‡ [59] 85.2±0.3 (+0.3) 77.9±0.5 (+0.6) 60.4±0.3 (+0.5) 44.0±0.7 (+1.1) 66.9 (+0.6) 34.0±0.1 60.3
GroupDRO‡ [43] 84.4±0.8 (+1.4) 76.7±0.6 (+0.6) 66.0±0.7 (+2.2) 43.2±1.1 (+1.5) 67.6 (+1.4) 33.3±0.2 60.7
MMD‡ [31] 84.7±0.5 (+0.8) 77.5±0.9 (+1.3) 66.3±0.1 (+1.6) 42.2±1.6 (+6.3) 67.7 (+2.5) 23.4±9.5 58.8
AND-mask [46] 84.4±0.9 (+0.1) 78.1±0.9 (+0.3) 65.6±0.4 (+1.2) 44.6±0.3 (−0.4) 68.2 (+0.3) 37.2±0.6 62.0
ARM‡ [57] 85.1±0.4 (+0.5) 77.6±0.3 (+0.9) 64.8±0.3 (+2.0) 45.5±0.3 (+0.8) 68.3 (+1.1) 35.5±0.2 61.7
IRM† [1] 83.5±0.8 (−1.5) 78.5±0.5 (−0.9) 64.3±2.2 (−2.1) 47.6±0.8 (−3.9) 68.5 (−2.1) 33.9±2.8 61.6
MTL‡ [6] 84.6±0.5 (+0.9) 77.2±0.4 (+2.0) 66.4±0.5 (+0.4) 45.6±1.2 (+0.6) 68.5 (+0.9) 40.6±0.1 62.9
VREx‡ [27] 84.9±0.6 (+0.6) 78.3±0.2 (+0.1) 66.4±0.6 (+1.3) 46.4±0.6 (+2.0) 69.0 (+1.0) 33.6±2.9 61.9
MLDG† [30] 84.9±1.0 (+0.7) 77.2±0.4 (+1.3) 66.8±0.6 (+1.2) 47.7±0.2 (+1.1) 69.2 (+1.2) 41.2±0.1 63.6
Mixup† [54] 84.6±0.6 (+1.2) 77.4±0.6 (+1.8) 68.1±0.3 (+1.0) 47.9±0.8 (+2.0) 69.5 (+1.5) 39.2±0.1 63.4
SagNet† [36] 86.3±0.2 (−1.0) 77.8±0.5 (+0.9) 68.1±0.1 (+0.3) 48.6±1.0 (+0.7) 70.2 (+0.4) 40.3±0.1 64.2
CORAL† [48] 86.2±0.3 (+0.7) 78.8±0.6 (−0.4) 68.7±0.3 (+0.2) 47.6±1.0 (+0.3) 70.3 (+0.2) 41.5±0.1 64.5

RSC† [21] 85.2±0.9 (+0.1) 77.1±0.5 (+0.2) 65.5±0.9 (+0.0) 46.6±1.0 (+0.2) 68.6 (+0.1) 38.9±0.5 62.7
Fish ‡ [47] 85.5±0.3 (+0.1) 77.8±0.3 (+0.9) 68.6±0.4 (−0.6) 45.1±1.3 (+3.8) 69.3 (+1.0) 42.7±0.2 63.9
SAM ‡ [16] 85.8±0.2 (+0.6) 79.4±0.1 (+0.7) 69.6±0.1 (+0.4) 43.3±0.7 (+2.6) 69.5 (+1.1) 44.3±0.0 64.5
GSAM ‡ [62] 85.9±0.1 (+0.4) 79.1±0.2 (+1.0) 69.3±0.0 (+0.3) 47.0±0.8 (+0.6) 70.3 (+0.2) 44.6±0.2 65.1
SAGM ‡ [52] 86.6±0.2 (+0.2) 80.0±0.3 (−0.3) 70.1±0.2 (−0.6) 48.8±0.9 (−0.1) 71.4 (−0.2) 45.0±0.2 66.1

GGA (ours) 87.3±0.4 79.9±0.4 68.5±0.2 50.6±0.1 71.7 45.2±0.2 66.3

4. Experiments

4.1. Experimental setup and implementation details

In our experiments, we follow the protocol of DomainBed
[19] and exhaustively evaluate our algorithm against state-
of-the-art algorithms on five DG benchmarks, using the
same dataset splits and model selection. For the hyperpa-
rameter search space, we follow [10] in order to avoid the
high computational burden of DomainBed. The datasets in-
cluded in the benchmarks are, PACS [29] (9,991 images,
7 classes, and 4 domains), VLCS [15] (10,729 images,
5 classes, and 4 domains), OfficeHome [50] (15,588 im-
ages, 65 classes, and 4 domains), TerraIncognita [5] (24,788
images, 10 classes, and 4 domains) and DomainNet [38]
(586,575 images, 345 classes, and 6 domains).

In all experiments, the leave-one-domain-out cross-
validation protocol is followed. Specifically, in each run
a single domain is left out as the target (test) domain, while
the rest of the domains are used for training. The final per-
formance of each algorithm is calculated by averaging the
top-1 accuracy on the target domain, with different train-
validation splits. For training, we utilize a ResNet-50 [20]
pretrained on ImageNet [41] for the backbone feature ex-
tractor and ADAM for the optimizer. Regarding GGA, dur-
ing training we let each algorithm run for several training
iterations depending on the dataset and then begin the pa-
rameter space search, as described in Section 3. For the
neighborhood size in the search process, we set ρ to 0.00053

3The selection of ρ was based on previous algorithms that implement
weight perturbations in ResNet-50 networks [16, 28, 52]. The sensitivity
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and search for a total of A = 250 steps before moving to the
next mini-batch of 48 samples from each domain, in each
dataset. In all experiments, we perform search iterations for
100 different mini-batches during early training stages. The
rest of the hyperparameters, such as learning rate, weight
decay and dropout rate, are tuned according to [10] and are
presented in Table 3. To account for the variability intro-
duced in the random search of GGA, we repeat the exper-
iments with 5 different seeds for each dataset. All models
were trained on a cluster containing 4 × 40GB NVIDIA
A100 GPU cards, split into 8 20GB virtual MIG devices
and 1× 24GB NVIDIA RTX A5000 GPU card.

Hyperparameter PACS VLCS OH TI DN

Learning rate 3e-5 1e-5 1e-5 1e-5 3e-5
Dropout 0.5 0.5 0.5 0.5 0.5
Weight decay 1e-4 1e-4 1e-4 1e-4 1e-4
Training Steps 5000 5000 5000 5000 15000
ρ 5e-5 5e-5 5e-5 5e-5 5e-5
GGA Start-End 100-150, 1500-1550 100-200 100-200 500-600 100-200

Table 3. Hyperparameters for DG experiments. OH, TI and
DN stand for OfficeHome, TerraIncognita and DomainNet respec-
tively. ρ is the parameter space search used during the annealing
steps in GGA, while the last row indicates the training iterations
during which GGA occurs.

4.2. Comparative Evaluation
The average OOD performances of the baseline vanilla
ERM [49] and state-of-the-art DG methods on a total of
5 DG benchmarks, are reported in Tables 1 and 2 respec-
tively. The results for each separate domain in each bench-
mark are reported in the Appendix. In the experiments, we
apply GGA on-top of the rest of the DG algorithms and
show that its properties generalize to other methods as well,
boosting their overall performance. It should also be noted
that GGA can be adapted to training scenarios where distri-
butions shifts are present in training data.

Initially, to validate whether the application of GGA in
the early stages of model training leads to models with in-
creased generalizabilty, we compare the results with the
vanilla ERM baseline. As presented in Table 1, GGA is
able to boost the performance of the baseline model by an
average of 2.4% on all benchmarks, demonstrating the effi-
cacy of the proposed algorithm. For further evaluation, we
also compare GGA with state-of-the-art DG methods [1, 6,
16, 18, 21, 27, 30, 31, 36, 43, 46–49, 52, 54, 57, 59, 62], be-
fore applying GGA to them as well. We note that we only
include previous works that have implemented a ResNet-50
as the backbone encoder and do not use additional compo-
nents or ensembles. In Table 2 we differentiate between the
methods that operate on model gradients [16, 21, 47, 52, 62]
and the rest of the algorithms. Even without its application

analysis presented in subsection 4.4 also reveals that ρ = 0.0005 yields
the best performance.

to other methods, GGA is able to surpass most of the pre-
viously proposed algorithms, while also setting the state-
of-the-art on PACS (+0.7%) and on the challenging Ter-
raIncognita (+1.8) dataset, while remaining competitive in
the other two. What’s more important is that the application
of GGA in conjunction with the rest of the DG methods,
proves beneficial and ultimately boosts their overall per-
formance in almost each case by an average of around 1%
and in some cases up to even 6.3%. With regards to IRM,
which seems to be significantly impacted negatively by the
application of GGA, its learning objective emphasizes on
simultaneously minimizing the training loss of each source
domain and not necessarily on the pairwise agreement of
gradients among domains. It is therefore not able to con-
verge to a good solution after the initial model’s weights
have been perturbed during training.

From the experimental results, it is evident that the ap-
plication of GGA and its search for parameter values where
gradients align between domains is beneficial to model
training. By introducing the proposed annealing step before
the final stages of training, the majority of the models ex-
ceed their previous performance and exhibit improved gen-
eralization capabilities.

4.3. Evaluating the impact of GGA on gradient dis-
agreement

As discussed in Section 3, when a training dataset is com-
posed as a mixture of multiple domains, conflicting gradi-
ents between mini-batches drawn from each domain lead
to models that do not infer based on domain-invariant fea-
tures and which generalize to previously unseen data sam-
ples, but are hindered by domain-specific, spurious correla-
tions. This is evident in the case of vanilla models trained
via ERM where the average gradient similarity among do-
mains continues to remain low upon reaching a local min-
ima. Our hypothesis is that this behavior can be avoided
by searching for a parameter set of common agreement be-
tween domains before optimizing via gradient descent.

To demonstrate the operation of the proposed algorithm
in practice against ERM, we calculate the average gradi-
ent cosine similarity between mini-batches from source do-
mains during training for the VLCS dataset, along with the
training loss in each iteration. As a result, each sub-figure in
Figure 3 illustrates the progression of the training gradient
alignment between domains, against the total training loss.

As expected, in the very initial iterations the gradients
of the pretrained model parameters point towards a com-
mon direction. However, in the case of ERM as training
progresses and the loss is minimized, the domain gradients
begin to disagree leading the model to converge to undesir-
able minima that do not generalize across domains. On the
other hand, when GGA is applied the model searches for pa-
rameters such that gradients are aligned before continuing
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Figure 3. Impact of GGA on gradient alignment during model training on the VLCS dataset. As illustrated, in the case of vanilla ERM, even
though the training loss is minimized, the average cosine similarity among domain gradients remains low. In the case of GGA however,
after the algorithm searches for points in the parameter space with increased gradient similarity, the gradients continue to agree during
training, while the total training loss is also minimized.

Figure 4. Sensitivity analysis of the parameter space search mag-
nitude ρ and the training stage application of GGA. The analysis
on PACS reveals smaller weight perturbations and gradient anneal-
ing during early training iterations lead to increased model perfor-
mance.

training. This is illustrated by the spike in gradient similar-
ity, during iterations 100 up to 200. After GGA concludes,
we observe that the model continues training by descending
into minima where gradients agree among domains.

4.4. Sensitivity Analysis
The two core parameters of GGA, are the size of the param-
eter search ρ and the moment of our methods implementa-
tion during training, i.e., during the early, mid or late train-
ing stages. To justify their selection, we conduct a sensitiv-
ity analysis (Fig. 4) by varying one of the above parameters
while fixing the other at its optimal value.

Regarding the magnitude of weight perturbations during
the application of GGA, we found that the optimal value
was ρ = 5e − 5. As illustrated in Figure 4, a larger mag-
nitude of perturbation led to decreased model performance.
Intuitively, the application of larger noise to the model pa-
rameters leads to sets that are not close to the solution,
making it increasingly difficult for the model to converge.
On the other hand, smaller perturbations seem to have little
to no effect on training, as the search is limited to spaces
near the current parameters, which is why the model per-
formance falls back close to that of ERM. With regards to
the stage of training during which GGA will be applied, we
found that the models yielded better performance when the
search was initialized in earlier stages.We hypothesize that

applying perturbations near the end of training displaces the
model from a local optimum, requiring additional iterations
to converge.

5. Conclusions

In this work, we investigated gradient conflicts in the con-
text of domain generalization, leading to the development of
GGA; a simple yet effective algorithm that identifies points
in the parameter space where domain gradients align early
in training before continuing optimization, ultimately en-
hancing model generalization. Through a comprehensive
comparative analysis we have demonstrated the efficacy of
GGA, which is able to achieve superior generalization ca-
pabilities in standard DG benchmarks and outperform SoTA
baselines. What’s more, as GGA is both model and method
agnostic it can also be utilized by other algorithms. Interest-
ingly, its combination with previous methods proves bene-
ficial, as their majority yields improved performance over
all benchmarks. Finally, we validate the impact of our al-
gorithm on gradient alignment through additional experi-
ments, showing that, unlike the baseline, domain gradients
align during training.

However, our method does not come without some key
limitations. First of all, the annealing steps and gradient
similarity computation add computational overhead. Fur-
thermore, GGA relies on domain labels, making it inap-
plicable to single-source DG, where domain labels are not
available during training. Its effectiveness is also batch-size
dependent, as larger batches provide further information re-
garding gradient alignment and can lead to improved re-
sults. Future work will further explore gradient alignment
in multi-domain settings and refine GGA to make annealing
steps adaptive rather than random.
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