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Abstract

High-speed autofocus in extreme scenes remains a signifi-
cant challenge. Traditional methods rely on repeated sam-
pling around the focus position, resulting in “focus hunt-
ing”. Event-driven methods have advanced focusing speed
and improved performance in low-light conditions; how-
ever, current approaches still require at least one lengthy
round of “focus hunting”, involving the collection of a
complete focus stack. We introduce the Event Laplacian
Product (ELP) focus detection function, which combines
event data with grayscale Laplacian information, redefin-
ing focus search as a detection task. This innovation en-
ables the first one-step event-driven autofocus, cutting fo-
cusing time by up to two-thirds and reducing focusing er-
ror by 24 times on the DAVIS346 dataset and 22 times
on the EVK4 dataset. Additionally, we present an auto-
focus pipeline tailored for event-only cameras, achieving
accurate results across a range of challenging motion and
lighting conditions. All datasets and code are available in
https://github.com/YuHanBaozju/ELP.

1. Introduction
Focus is a prerequisite for most visual tasks. An ideal aut-
ofocus (AF) system guides the motor directly toward the
correct focus position from any starting point, and stop im-
mediately upon arrival, ensuring precision and efficiency,
which can be considered as “one-step AF”.

Conventional AF algorithms predict focus by evaluating
the image contrast [19] (or sharpness) at different points,
which often requires repeated sampling around the focus
position, leading to “focus hunting”. At the same time,
the contrast-based AF methods are susceptible to low frame
rates, motion blur. To enhance speed and accuracy, Phase
Detection AutoFocus (PDAF) with dual-pixel sensors is
commonly employed. These sensors measure phase differ-
ences to calculate focus position. However, PDAF is con-
fronted with several challenges: the complexity of pixel de-
sign limits the number of dual pixels, reduced light intake
impacts performance in low-light conditions, and it strug-
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Figure 1. Visualization of ELP, event frames, images and Lapla-
cian at different ∆v.

gles in scenarios with significant defocus.
Recent research has shown the potential of event cam-

eras for high-speed AF applications. Event cameras detect
brightness changes at individual pixels with extreme tempo-
ral resolution, down to 1 µs, making them ideal for dynamic
scenarios. However, the unique asynchronous character-
istics of event cameras set event-driven AF methods apart
from traditional frame-based approaches. The use of event
rate (ER) as a focus evaluation function was first proposed
in [10], where the focus position is identified by locating the
position with the highest ER in the focus stack. Building on
this, the Event Golden Search (EGS) algorithm was intro-
duced to improve the speed of focus search. Additionally,
another study [1] noted that brightness changes exhibit sym-
metry around the focus position in the focus stack. Building
on this insight, the Polarity Based Autofocus (PBF) algo-
rithm was developed, effectively leveraging this symmetry
to achieve rapid and precise focusing across various light-
ing conditions, including strobe lighting. However, current
event-driven AF algorithms require analyzing a complete
focus stack, including information both before and after the
focus position, before the focus position can be determined.
While these methods eliminate repeated “focus hunting”,
they still require a single round of it, which involves captur-
ing the entire focus stack, searching for the focus position,
and moving there.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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For the first time, we integrate both events and grayscale
information to achieve one-step event-driven AF. We the-
oretically derive a fundamental connection between the
spatial second-order derivative and the temporal first-order
derivative of the image during the focusing process. Build-
ing on this, we introduce a focus detection function called
the “Event Laplacian Product” (ELP), which shows a dis-
tinct “sign mutation” at the focus position, as shown
in Fig. 1. The proposed ELP method determines the fo-
cus position in real time by detecting the “sign mutation”
of the ELP value from positive to negative, eliminating the
need for iterative searches required by traditional methods
based on the “peaked” focus evaluation function. Addition-
ally, ELP predicts the direction of focus adjustment based
on the sign of its value, effectively serving as a focus pre-
diction function. Moreover, by integrating ELP with the
latest event-based temporal mapping photography [2], we
achieve one-step high-speed AF using event only.

To the best of our knowledge, we are the first to imple-
ment event-driven one-step AF, achieving accurate focusing
with less than one depth of focus across various brightness
conditions and motion states in the synthetic, DAVIS346,
and Prophesee EVK4 datasets. Compared to existing state-
of-the-art event-driven AF method, ELP reduces focusing
error by 24 times on the DAVIS346 dataset and by 22 times
on the EVK4 dataset. Additionally, the focusing time is re-
duced by two-thirds. Compared to the current one-step AF
method PDAF, our approach is not limited by the number
of dual-pixels, remains robust in low-light conditions, and
performs reliably even under significant defocus.

2. Related Work

2.1. Conventional camera AF

Currently, the widely-used AF methods for conventional
cameras are contrast-based AF and PDAF, or a mixture
of both. The contrast-based AF algorithm consists of two
key components: the focus evaluation function and the
search algorithm. The focus evaluation function typically
includes: (1) First-order gradient methods, such as the Pre-
witt operator [11] and Sobel operator [13], (2) Second-
order gradient methods, like the Laplacian operator [8], and
(3) Histogram-based methods [5], among others. Search
algorithms commonly used include hill climbing [6] and
Fibonacci search [9]. More recently, deep learning-based
AF approaches have shown promising results [14], offering
some ability to predict the focus position. Yang [18] intro-
duced Differential Focus Volume into the depth from focus
field, where the concept of differentiation also serves as an
inspiration for AF tasks. However, a significant issue with
contrast-based AF is the ambiguity between pre-focus and
post-focus, which has been addressed by the introduction
of PDAF [16]. By analyzing phase differences between the

two elements of dual-pixel sensors, PDAF can determine
both the direction and the distance needed for focusing, en-
abling one-step AF. Nevertheless, the complexity of dual-
pixel design and its impact on image quality limit the num-
ber of dual-pixel sensors in digital cameras. In conventional
camera AF, the frame rate for acquiring raw image data
has long been a limiting factor for AF speed. Furthermore,
the problem of “focus hunting” in complex scenes—such as
low light, motion, and significant defocus—remains a per-
sistent challenge.

2.2. Event-driven AF
The high temporal resolution, dynamic range, and low data
redundancy of event cameras offer new possibilities for AF
and related applications [15, 17]. The use of ER as a fo-
cus evaluation function for event cameras was first intro-
duced in [10], along with the EGS method for quickly de-
termining the focus position within the entire focus stack.
However, its focusing principle relies on the assumption
that optical flow exists and remains constant, which does
not hold in most focusing scenarios. An in-depth investiga-
tion of event-driven AF in [1] revealed that pixel brightness
changes during focusing exhibit symmetry around the focus
position. This insight led to the development of the PBF al-
gorithm, which identifies the focus position by locating the
center of symmetry in the event polarity rate (EPR) across
the focus stack. Experiments demonstrated the PBF algo-
rithm’s robustness in complex scenarios, including both dy-
namic and static scenes, as well as challenging conditions
such as strobe flashes.

Both EGS and PSF, as well as other event-driven meth-
ods such as Ge’s [4] and Lou’s [12], require capturing a
complete focus stack, spanning from defocus to near-focus
and back to defocus. They analyze the entire stack to locate
the focus position and drive the motor to the target posi-
tion, a process that is often too slow and results in a poor
user experience due to “focus hunting”. Additionally, the
focus evaluation functions they use are “peaked” functions,
making them vulnerable to multiple peaks in the presence
of interference, which can lead to suboptimal focusing. The
most critical limitation of EGS and PBF is their inability
to predict in real time whether the focus motor is moving
toward the focus position, which can result in misguided
“focus hunting”, further increasing the focusing time.

3. Proposed method
Our goal is to develop a one-step event-driven AF method
that can predict in real time whether to move toward the
focus position and promptly signal the focus motor to stop
once the focus position is achieved. Compared to existing
event-driven AF methods, this approach reduces focusing
time by up to two-thirds, including motor runtime. Fur-
thermore, our one-step AF approach eliminates “focus hunt-
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ing”, significantly streamlining the focusing process.

3.1. Background and Basics
Event camera. Each pixel on the event cameras can re-
spond to changes in the brightness L(x, y, t). Eq. (1) shows
how the event camera works:

p(x, y, t) =

{
+1, if ∆L > C,

−1, if ∆L < −C,
(1)

where ∆L = L(x, y, ti)−L(x, y, ti−1) denotes the change
in brightness since the last trigger event, C denotes the
contrast threshold, and p(x, y, t) denotes the event polarity.
When the brightness change exceeds the threshold, event
cameras emit events with different polarities depending on
the direction of the change. Brightness is a logarithmic
mappping of light intensity [3]. While events capture infor-
mation about brightness changes, they do not provide exact
intensity values like grayscale images.
Event-driven Temporal-mapping Photography. While
passively generated events do not directly represent
grayscale information, prior work [2] has demonstrated that
the timestamps of events obtained through active transmit-
tance modulation can be mapped to grayscale values. In
this method, a motorized aperture modulates the incom-
ing light, allowing the event camera to capture the Ini-
tial Positive Event (IPE) for each pixel as the aperture
opens. By mapping IPE timestamps to grayscale values,
this method enables accurate high-dynamic-range (HDR)
grayscale imaging. The detailed mapping relationship is
provided in Eq. (4) of [2]. Event-driven Temporal-Mapping
photography (EvTemMap) provides valuable grayscale in-
formation for event-only cameras, which can be utilized in
event-driven one-step AF.

3.2. Principle
Principle of focusing optics. For a thin lens, the follow-
ing equation holds when the image is in focus: 1u + 1

v =
1
f ,where u represents the object distance, f represents the
focal length of the thin lens, and v represents the ideal im-
age distance. Ideally, the point spread function (PSF) of
an optical system in defocus can be modeled as a Gaus-
sian function of the amount of defocus ∆v [1]: h(x,∆v) =

1√
2πσ

exp(− x2

2σ2 ), σ = k |∆v|
2v0

D, where k represents the in-
verse of the sensor pixel size, while v0 and D represent the
ideal image distance and the exit pupil diameter, respec-
tively. And σ can be interpreted as the blur kernel size in
pixels. In a real optical system, the PSFs are slightly dis-
torted by aberrations, but their Root Mean Square (RMS)
radius always increases with ∆v. In a focusing task, the fo-
cus motor typically adjusts the image distance v to achieve
the position that minimizes |∆v|, i.e., the point where the
blur kernel radius is minimized.

Derivation of image differentiation during the focusing
process. Let F (x, t) represent a clear dynamic scene and
h(x, t) a Gaussian kernel with its variance σ2 changing over
time during focusing. The image on the image plane of an
event camera, G(x, t), is expressed as: G(x, t) = F (x, t)∗
h(x, t), where ∗ represents convolution.

We can compute the first-order derivative of G(x, t) with
respect to time as follows:

∂

∂t
G(x, t) =

(
∂

∂t
F (x, t)

)
∗h(x, t)+F (x, t)∗

(
∂

∂t
h(x, t)

)
,

(2)
where the first term corresponds to the temporal scene vari-
ation and the second term is associated with the focusing
process. In the focusing task, the change in F (t) is signifi-
cantly slower than that in h(t). Therefore, in our derivation,
we assume ∂

∂tF (x, t) = 0. For simplicity, assume that the
Gaussian variance satisfies σ(t)2 = σ2

0 + αt. The expres-
sion in Eq. (2) can then be articulated as:

∂h(x, t)

∂t
=

α

2
h(x, t)

(
x2

σ(t)4
− 1

σ(t)2

)
. (3)

Similarly, we can compute the spatial second-order deriva-
tive of G(x, t). Due to the interchangeability of convolu-
tion and differentiation operations, F (x, t) ∗ ∂2h(x,t)

∂x2 =
∂2F (x,t)

∂x2 ∗ h(x, t). Therefore,

∂2G(x, t)

∂x2
= 2F (x, t) ∗

(
∂2h(x, t)

∂x2

)
, (4)

where

∂2h(x, t)

∂x2
= h(x, t)

(
x2

σ(t)4
− 1

σ(t)2

)
. (5)

We can derive S(t) from Eq. (2) and Eq. (4):

S(t) = −
∫

∂G(x, t)

∂t
· ∂

2G(x, t)

∂x2
dx

= −α

[ ∫ (
F (x, t) ∗ ∂2h(x, t)

∂x2

)2

dx

]
.

(6)

The value within [] is non negative, and the sign of S(t) is
entirely determined by α.

3.3. Event Laplacian Product
We use “Event Laplacian Product” (ELP) as the focus de-
tection function for the event-driven one-step AF, which is
defined as:

ELP(t) = −
∑(

∇2I(t) · E(t)
)
, (7)

where I(t) denotes a grayscale image closest to the current
time t, ∇2 represents the Laplacian for I(t), and E(t) refers
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to the event frame acquired at t. The definition of an event
frame is as follows. Let the event stream from an event cam-
era be denoted by {ei}, where each event ei is represented
by the tuple (xi, yi, ti, pi). Here, (xi, yi) denotes the pixel
location, ti is the timestamp, and pi represents the event
polarity. The event frame E(x, y, t − ∆t, t), which accu-
mulates events over the time interval [t − ∆t, t], is mathe-
matically expressed as:

E(x, y, t−∆t, t) =
∑
i

pi · δ(x− xi, y − yi). (8)

ELP(t) in Eq. (7) is the difference approximation of S(t) in
Eq. (6), where E(t) ≈ ∂

∂tG(x, t) and I(t) ≈ G(t). The
gap between G(t) and I(t) is essentially whether h is the
current defocus kernel. According to Eq. (6), h(x, t) can be
replaced with h(x, t′) at any given moment t′ without af-
fecting the sign of S(t), as well as ELP(t). The gap between
E(t) and ∂

∂tG(x, t) results in fluctuations in ELP values.
Figure 1 illustrates how the ELP varies with ∆v as the

system transitions from defocus to near-focus and back to
defocus. As the focusing process approaches the focus po-
sition, the ELP value increases steadily. Upon reaching the
focus position, the ELP undergoes a sharp “sign mutation”
from positive to negative. Comparing event frames with
the Laplacian of grayscale images at different ∆v reveals
the underlying causes of ELP value changes. As the sys-
tem moves closer to the focus position, the coefficient α in
Eq. (3) is negative, causing negative events to occur in re-
gions where the Laplacian is positive, thereby resulting in a
positive ELP value. When |∆v| is large, the Laplacian val-
ues are generally low, and events are dispersed, resulting in
a low ELP value. Approaching the focus position, Lapla-
cian values increase, and the event frames sharpen progres-
sively, leading to a surge in the absolute ELP value. Upon
crossing the focus position, α in Eq. (3) turns positive, re-
sulting in positive events occurring in regions of positive
Laplacian, which induces an ELP “sign mutation”.

The combination of the grayscale Laplacian and events
gives ELP excellent properties as a focus detection func-
tion: (1) Its positive and negative values indicate whether
the system is moving toward or away from the focus posi-
tion, helping to avoid misguided “focus hunting”; (2) ELP
is highly sensitive in identifying the focus position, with the
abrupt “sign mutation” typically occurring within a single
depth of focus; (3) ELP does not require repeated searches
for the focus position, but only needs to detect the “sign
mutation” once, making it a one-step AF solution.

3.4. ELP adaptive filter
In Eq. (8), the time interval ∆t of event frames can be made
very short (<1ms) to enhance the focus sensitivity. How-
ever, if ∆t is too short, focus events may become suscepti-
ble to noise, leading to local fluctuations in the ELP. To ad-
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Figure 2. Event-driven one-step AF setup and pipeline. (a) Hard-
ware setup. (b) Collected real events. (c) The pipeline of grayscale
image acquisition and ELP value calculation.

dress this, we introduce an adaptive ELP filter to suppress
fluctuations. The filter is defined as follows:

1. Calculate the average of the past W collected ELP
values, ELP = 1

W

∑W
i=1 ELPi.

2. If
∣∣ELPnow − ELP

∣∣ < ELPthd, return the filtered
value ELPfiltered = S ·ELPnow+(1−S) ·ELP ; otherwise,
return the original value ELPfiltered = ELPnow.

The ELP adaptive filter determines whether to apply
filtering based on the comparative judgment, which pre-
serves the steepness of the ELP at the “sign mutation” while
smoothing out local fluctuations elsewhere. The smoothing
factor S, where S ∈ [0, 1], controls the level of smooth-
ness, with smaller values of S resulting in greater smooth-
ness. The window size W defines the filter’s visible range.
The black solid line in Fig. 1 shows the filtered ELP, which
removes local fluctuations in the green dashed line while
preserving the steepness at the “sign mutation” point.

3.5. Event-only one-step AF pipeline
The event-only one-step AF pipeline consists of two stages:
(1) Aperture opening stage: EvTemMap [2] is applied to
capture a grayscale image; (2) Focusing stage: After se-
lecting the focus region of interest (ROI), focus events are
captured to compute ELP values and detect “sign mutation”.

Figure 2 (a) shows the ELP hardware setup. Figure 2 (b)
shows real events captured with a Prophesee EVK4 (an
event-only camera), with 20 ms for the aperture opening
and 100 ms for the focusing stage. The IPEs from aperture
opening stage are color-coded by timestamp, while focus
events are marked with blue ‘x’ for negative events and red
‘o’ for positive events. To illustrate the entire variation in
ELP, we also capture focus events during the additional de-
focusing process. As shown in Figure 2 (c), in the aperture
opening stage, following the principle of EvTemMap [2],
we capture only the IPE from each pixel, forming a “Tem-
poral matrix”. After real-time EvTemMap, the “Temporal
matrix” is converted into an HDR grayscale image, allow-
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Figure 3. The pipeline of PSF-based focus event simulator.

ing the user to select the focus ROI. The focus motor then
begins to move, and the event camera continuously cap-
tures focus events, which are combined with the previously
obtained grayscale image to compute ELP values. During
the focusing stage, the AF system continuously monitors
changes in ELP: (1) If the ELP value is negative, the motor
reverses direction toward the focus position; (2) When the
ELP value shows an abrupt “sign mutation”, indicating the
focus position has been reached, the motor stops.

Notably, event cameras like the DAVIS346 can capture
grayscale images directly and output them in sync with
events, eliminating the need for an aperture opening stage.

4. Experiment
We compare the proposed ELP method with two event-
driven AF methods EGS [10] and PBF [1] on synthetic
datasets as well as the DAVIS346 and Prophesee EVK4
datasets, demonstrating the accuracy and efficiency of ELP.

4.1. Synthetic experiment setup
We develop a PSF-based focus event simulator to accurately
generate focus events of real lenses, since the blur kernels
of a real lens during focusing are determined by the PSFs
at different ∆v, which, due to lens aberrations, differ from
ideal Gaussian blur kernels.
Simulator Overview. Figure 3 illustrates the pipeline for
generating synthetic PSF-based focus events. The process
begins by loading a sharp grayscale image with a resolution
of [3H×3W ]. This image is then convolved with psf(∆v)
at each defocus position ∆v to generate the corresponding
image, which is subsequently downsampled to a resolution
of [H ×W ]. In the synthetic dataset, H and W are equal to
200 pixels. To simulate motion during focusing, we trans-
late the convolved image before generating events using the
event simulator (“V2E”) [7]. The focus event stack spans 1
second: ELP utilizes only the first 0.5 seconds of events (fo-
cusing process), while EGS and PBF use the entire 1-second
focus event stack (focusing and defocusing process).
PSF characteristics. The synthetic dataset includes four
groups of PSF sequences, corresponding to four fields of
view (FoV), with each sequence containing 1001 PSFs sam-

pled uniformly within the range of ∆v ∈ [−400, 400] µm.
The RMS radius of the PSF at maximum defocus is 10 times
that at the focus position, indicating a challenging initial
defocus. For further details on the PSF, please refer to the
supplementary material.
Motion simulation. The motion vector, t, for each frame
consists of two components: (1) random jitter vjitter and (2)
constant motion vmotion, expressed as t ∼ N (vmotion, v

2
jitter).

In the synthetic dataset, we provide two types of motion
parameters: moderate and violent. For the moderate mo-
tion, vmotion = [3, 3] pixels/s and vjitter = [20, 20] pixels/s,
whereas for the violent motion, vmotion = [3, 3] pixels/s and
vjitter = [100, 100] pixels/s.
Brightness simulation. Brightness affects the frame rate of
grayscale image capture, impacting the acquisition of the
Laplacian in the ELP method. Under normal brightness
(>100 lux), the DAVIS346 camera captures images at up
to 50 frames per second (FPS). However, at lower bright-
ness (<1 lux), the grayscale image frame rate drops to 20
FPS or lower. We evaluate the performance of ELP at both
50 FPS and 20 FPS. Additionally, since the event-only one-
step AF system mentioned in Sec. 3.5 uses only a single
defocus image, we also simulate this scenario.

4.2. Synthetic experiment result

Method Motion state
Static Moderate Violent

EGS 33.31 29.33 21.78
PBF 4.93 3.99 2.69

ELP(1FPS) 2.00 3.66 3.66
ELP(20FPS) 2.00 2.40 2.97
ELP(50FPS) 2.00 1.51 2.26

Table 1. MAE comparison on synthetic datasets (in µm). ELP
method is tested with various grayscale frame rates under three
lighting conditions. The best performances are marked in bold.

In the synthetic dataset of 84 cases, the EGS method
yields the highest mean absolute error (MAE), as shown in
Tab. 1. In contrast, both the PBF and ELP methods achieve
near-optimal results across various motion states. Detailed
results for each case in the synthetic dataset are provided
in the supplementary material, where the focusing errors
for both PBF and ELP remain within one depth of focus
(16 µm) for each case. However, the EGS method fails to
provide a focus position in 28.6% of cases, and in 68.3% of
the remaining cases, its error exceeds one depth of focus.
With its one-step AF principle, ELP eliminates the need for
defocusing and returning to the target, reducing focusing
time by two-thirds compared to PBF and EGS.

Figure 4 presents a visual comparison of three event-
driven AF methods in a violent motion scenario, where ELP
utilizes only one grayscale frame (1 FPS) for Laplacian in-
formation. In this case, both PBF and ELP achieve sharp
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Figure 4. Visualization of a violent shake scene. Top row: tempo-
ral variation of ELP and EPR across the entire focus stack. Bottom
row: grayscale images at different ∆v overlaid with focus events.

focus, while the blur kernel of the EGS method exceeds two
pixels, as shown in the bottom row. The top row reveals that
the severe jitter causes significant localized fluctuations in
both the EPR and the ELP curves. The ELP adaptive fil-
ter effectively suppresses these fluctuations while preserv-
ing the steepness of the “sign mutation” point, ensuring the
accuracy of ELP. In instances of random violent jitter, EGS
incorrectly identifies the location with the highest ER as the
focus position, whereas PBF accurately locates the center
of symmetry of the EPR, closely aligning with the Ground
Truth (GT) focus position.

4.3. Real experiment setup

Focusing hardware and configuration. In real experi-
ments, a motorized focusing lens is used for the focus-
ing process, with DAVIS346 and Prophesee EVK4 cameras
capturing events (and, if available, grayscale images). The
focus ring of the motorized lens is driven by a stepper mo-
tor. When the lens reaches the GT focus position, a trigger
signal is sent to the AF control unit to mark the GT times-
tamp during focusing. The GT focus position is determined
by locating the point where the blinking focus star appears
sharpest. The complete focus event stack—from defocus to
near-focus and back to defocus—spans approximately 200
ms, starting from a significant ∆v of 200 µm.
DAVIS dataset. In the DAVIS dataset, time-synchronized
event and grayscale images are captured simultaneously.
The maximum frame rate for grayscale images is 50 FPS,
but it can drop to as low as 20 FPS under low-light con-
ditions. ELP uses real-time events and the latest grayscale
frame to compute the value and detects in real time whether
the “sign mutation” has happened. In contrast, EGS and
PBF require capturing the entire focus event stack, perform-
ing an algorithmic search for the focus position, and then
driving the motor to that position.
EVK4 dataset. Since EVK4 only provides events, we build

a event-only one-step AF system (cf . Sec. 3.5). ELP com-
putes the focus detection function using a single frame of
the defocus image acquired from the aperture opening stage,
along with the subsequent real-time focus events. In con-
trast, EGS and PBF do not use events from the aperture
opening stage; instead, they rely on the event stack from
the entire focusing stage. The aperture is opened by the
motorized lens’s high-speed motor, transitioning from fully
closed to fully open within 20 ms.

4.4. Real experiment result

One-step AF visualization. The supplementary videos pro-
vide a visualization of the one-step AF process of the ELP
method on real datasets, showcasing its ability to drive di-
rectly to the focus position with precision and efficiency.
Quantitative results. Table 2 details the quantitative focus-
ing errors of the EGS, PBF, and our ELP methods on the real
datasets. The motorized focusing len is considered accu-
rately focused if the focusing error is within 6 µm (i.e. one
depth of focus). The ELP method achieves accurate focus
in every case for both the DAVIS and EVK4 datasets, while
the PBF method achieves accurate focus in approximately
43% of the cases, and the EGS method fails to achieve accu-
rate focus in any case. Table 3 summarizes the MAE of the
three event-driven AF methods on both datasets, showing
that the focusing error of the ELP method is reduced by 24
times compared to the state-of-the-art PBF method on the
DAVIS346 dataset and by 22 times on the EVK4 dataset.
Speed analysis. The focusing speed analysis for the three
event-driven AF methods is summarized in Tab. 3, where
“Runtime” refers to the algorithm’s execution time, and
“Focusing time” includes the entire focusing process, en-
compassing motor operation and data acquisition. In terms
of algorithm runtime, the PBF algorithm performs best on
both datasets, with a complexity of O

(
1
∆t

)
[1], where 1/∆t

is the sampling rate of event frames. The EGS algorithm
performs well on the DAVIS dataset but worst on the EVK4
dataset, due to its complexity of O(Ne) [10], where Ne de-
notes the ER. Our ELP algorithm demonstrates moderate
runtime performance on both datasets, with a complexity
of O

(
k
∆t

)
, where k represents the number of non-zero pix-

els in the event frame. For the total time required for the
complete focusing process, however, our ELP method is
nearly three times faster than the other two methods. This
efficiency results from ELP’s one-step AF principle, which
continuously detects in real time if the focus position is
reached as the focus motor moves, rather than waiting for
the full focusing trip to complete and then analyzing the en-
tire focus stack before positioning the motor.
Impact of contrast, brightness, and motion. A high-
contrast, bright, and static scene is a straightforward case
for the focusing task, as seen in Scene 1 of Fig. 5. In this
scene, ELP achieves precise focus, whereas PBF exhibits
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dataset scene bright dynamic bright static dark dynamic dark static
EGS PBF ELP EGS PBF ELP EGS PBF ELP EGS PBF ELP

DAVIS

box -10.8 -1.4 0.3 -33.1 -9.2 0.2 -27.1 0.1 0.5 -25.4 -7.2 0.2
focus star -26.7 2.4 0.4 -44.6 -8.0 0.0 -28.9 -3.0 0.0 -27.2 -3.4 0.7
forest -12.1 -3.1 0.6 -14.8 -6.4 -0.7 -11.5 1.4 0.2 -13.1 -5.9 0.2
ghost -21.2 -19.4 0.6 -54.1 -25.6 0.4 -24.3 -14.1 -0.1 -24.9 -7.7 0.3
lens -44.5 4.3 0.7 -42.3 3.4 -0.2 -39.1 -35.5 0.2 -37.8 6.7 0.0
mountain -12.4 1.1 0.1 -28.4 -7.2 -0.4 -13.6 2.1 0.2 -22.3 -5.0 0.0
statue -65.4 9.1 0.1 -38.7 -16.8 0.2 -26.4 -13.2 0.2 -25.1 -1.5 0.6

EVK4

box -17.4 10.6 0.6 -32.4 -1.9 0.1 -15.6 13.7 -0.3 -26.2 4.7 -1.3
focus star 29.8 -6.6 0.4 -26.0 4.0 0.0 86.9 5.9 -0.1 88.1 10.1 0.1
forest -16.3 -3.7 0.3 -9.1 6.1 0.1 -9.4 9.7 -0.3 -10.8 6.8 -0.2
ghost -38.4 18.4 0.4 -37.5 0.1 0.1 -6.2 35.3 -0.7 -16.5 7.2 3.2
lens -26.4 -4.3 0.7 126.3 -5.8 0.2 120.5 19.3 1.3 164.8 72.7 -0.3
mountain -20.2 -2.3 -0.3 -18.4 2.0 0.0 -15.4 7.7 -0.3 -44.2 40.4 0.4
statue -36.3 10.7 0.7 -37.3 7.0 0.0 -48.4 -7.3 1.7 -26.5 26.8 1.8

Table 2. Quantitative comparison of focusing errors across event-driven AF methods on each case of real datasets, measured in µm. The
best performances are marked in bold.

EGS ∆𝑣𝑣 = −44.6𝜇𝜇m PBF ∆𝑣𝑣 = −8.0𝜇𝜇m ELP ∆𝑣𝑣 = 0𝜇𝜇m GT EGS ∆𝑣𝑣 = −24.3𝜇𝜇mPBF ∆𝑣𝑣 = −14.1𝜇𝜇m ELP ∆𝑣𝑣 = −0.1𝜇𝜇m GT

Scene 1: Focus star (high-contrast), bright, static Scene 2: Ghost (low-contrast), dark, dynamic

EL
P

EL
P

EP
R

EP
R

Figure 5. Visualization of two scenes from the DAVIS dataset. Top row: temporal variation of ELP and EPR across the entire focus stack.
Bottom row: grayscale images corresponding to the focus positions determined by the three event-driven methods, alongside the GT. Green
boxes indicate the focus ROI.

Dataset Method MAE (µm) Runtime (ms) Focusing time (ms)

DAVIS
EGS 28.42 10.81 310.81
PBF 7.02 2.37 302.37
ELP 0.29 12.14 103.36

EVK4
EGS 41.12 104.25 404.25
PBF 12.54 2.52 302.52
ELP 0.57 83.00 112.97

Table 3. Quantitative comparison of focusing performance. The
best performances are marked in bold.

a focusing error exceeding one depth of focus, and EGS
shows an even larger error, exceeding seven depths of fo-
cus. Observing the changes in ELP and EPR over time, the
“sign mutation” point of the ELP curve is very close to the
symmetric position of the positive and negative EPR curves.
Recalling Eq. (8), ELP, like PBF, also incorporates event po-
larity information. The search for the symmetry center of
EPR in PBF is transformed into the detection of the “sign
mutation” in ELP using the additional spatial texture infor-

mation provided by the Laplacian, enabling one-step AF.
In the absence of optical flow, the principle of EGS cannot
hold, which explains its failure.

In a low-contrast, dark, and dynamic scene (Scene 2
in Fig. 5), the signal-to-noise ratio of the focus event
drops sharply, resulting in significant fluctuations in both
ELP and EPR curves. Under these challenging conditions,
EGS demonstrates a focusing error of four depths of focus,
whereas PBF exceeds two depths of focus, resulting in no-
ticeable blurring. In contrast, ELP consistently achieves
precise focus. This example highlights how incorporating
Laplacian information from grayscale images enhances the
event-driven AF robustness in extreme scenarios.
Event-only one-step AF. Figure 6 shows two scenes from
the EVK4 dataset captured by the event-only one-step AF
system. Although the event-only system is limited to ac-
quiring a single defocus grayscale frame, it benefits from
EvTemMap’s high dynamic range, ultra-high grayscale res-
olution, and large depth of field [2]. The increased dynamic
range allows ELP to utilize more texture information, while
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Scene 1: Statue (low-contrast), bright, static Scene 2: Forest (high-contrast), dark, dynamic

Figure 6. Visualization of two scenes from the EVK4 dataset. Top row: visualization of raw event data and initial defocus grayscale images
obtained from EvTemMap [2], with green boxes indicating the focus ROI. Bottom row: temporal variation of ELP and EPR.

Figure 7. Visualization of ELP curves from the ablation study.

the enhanced grayscale resolution improves the accuracy of
Laplacian computations. Additionally, the larger depth of
field enables the frame to serve as a sharp texture reference
for ROIs at different focus positions, similar to an all-in-
focus frame. The objects captured in Scene 1 of Fig. 6
and Scene 2 of Fig. 5 are both low-contrast plaster stat-
ues. However, the high grayscale resolution and dynamic
range of EvTemMap provide a more accurate Laplacian,
allowing ELP to perform effectively even with only a sin-
gle frame for reference. In Scene 2 of Fig. 6, characterized
by richer textures and more motion events, the ELP curve
shows greater local fluctuations. The ELP adaptive filter ef-
fectively reduces most of these fluctuations, ensuring robust
results. Comparing the two scenes in Fig. 6, the richer tex-
ture and stabilized optical flow in Scene 2 enable EGS to
achieve better focusing results. Both PBF and ELP, which
incorporate event polarity, consistently achieve accurate fo-
cus across different scenarios.

Dataset ELP w.o. filter w.o. Laplacian
DAVIS 0.29 2.12 2.48
EVK4 0.57 19.85 7.81

Table 4. Ablation experiment results. Metric: MAE (µm).

Ablation study. Table 4 summarizes the results of ablation
experiments on real datasets, while Fig. 7 illustrates the ELP
curves for a specific case (mountain, bright, dynamic) in

the EVK4 dataset under two ablation settings. In the ELP
method, the adaptive filter is crucial for robustness, espe-
cially in the EVK4 dataset, which uses a single grayscale
frame. As shown by the green dashed line in Fig. 7, remov-
ing this filter introduces noise fluctuations, causing prema-
ture false focus detections. Replacing the Laplacian with
a uniform 1 matrix flattens the orange dashed-dotted ELP
curve, leading to an earlier “sign mutation”. Without Lapla-
cian information, ELP degenerates into the difference be-
tween negative and positive event rates, losing the ability to
determine the focus direction based on sign. Consequently,
in 40% of cases in the DAVIS dataset, the ELP without
Laplacian provides incorrect focus adjustment direction, re-
sulting in “focus hunting”. Additionally, for the event-only
EVK4 dataset, we ablate the EvTemMap method and in-
stead use E2VID to obtain grayscale Laplacian information.
Detailed results are provided in the supplementary material.

5. Discussion

We introduce the first event-driven, one-step AF method,
the Event Laplacian Product (ELP), which reduces focus
time to one-third of existing event-driven methods and re-
solves the issue of “focus hunting”. Experiments on syn-
thetic data and two real-world event camera datasets across
diverse lighting and motion conditions demonstrate that
ELP consistently achieves precise focus within one depth
of field. Compared to the state-of-the-art event-driven
method PBF, ELP reduces focusing error by 24 times on the
DAVIS346 dataset and by 22 times on the EVK4 dataset.

ELP is typically fast and accurate across most scenar-
ios but faces challenges under extreme high-speed motion
in event-only settings. Future work could focus on adaptive
“sign mutation” detection to enhance ELP’s robustness, en-
suring reliable performance in demanding conditions.
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