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Abstract

We present a technique and benchmark dataset for estimat-
ing the relative 3D orientation between a pair of Internet
images captured in an extreme setting, where the images
have limited or non-overlapping field of views. Prior work
targeting extreme rotation estimation assume constrained
3D environments and emulate perspective images by crop-
ping regions from panoramic views. However, real im-
ages captured in the wild are highly diverse, exhibiting
variation in both appearance and camera intrinsics. In
this work, we propose a Transformer-based method for es-
timating relative rotations in extreme real-world settings,
and contribute the ExtremeLandmarkPairs dataset, as-
sembled from scene-level Internet photo collections. Our
evaluation demonstrates that our approach succeeds in es-
timating the relative rotations in a wide variety of extreme-
view Internet image pairs, outperforming various baselines,
including dedicated rotation estimation techniques and con-
temporary 3D reconstruction methods.

1. Introduction
The problem of estimating the relative 3D orientation be-
tween a pair of images is embodied in fundamental com-
puter vision tasks, such as camera localization [6, 34, 35]
and 3D reconstruction [29, 36, 42]. Establishing pixel cor-
respondences (either explicitly or implicitly) is typically a
prerequisite for computing the relative rotation between the
images. Correspondences, however, cannot be extracted in
extreme settings where the images have little to no overlap.
As dense imagery may not necessarily be available for many
practical applications, a natural question arises: How can
we estimate the relative rotation between non-overlapping
RGB images, without the use of additional data (such as
depth or temporal information)?

We have recently seen pioneering efforts addressing the
task of relative rotation estimation in such extreme non-
overlapping settings [8, 12]. Prior work has proposed end-
to-end neural architectures, demonstrating that hidden cues,

Figure 1. Given a pair of (possibly) non-overlapping images cap-
tured in the wild—e.g., under arbitrary illumination and intrinsic
camera parameters—such as the images of the Dam Square in Am-
sterdam depicted in red and blue boxes above∗, our technique es-
timates the relative 3D rotation between the images. ∗The back-
ground panorama is illustrated for visualization purposes only.

such as vanishing points or the directions of cast shad-
ows, can implicitly guide the model for inferring the rel-
ative orientation between the images. To facilitate learning
and evaluation, datasets constructed from panoramic views
were adopted. These datasets emulate perspective views by
cropping sub-areas from these panoramas, enabling gener-
ation of image pairs with various degrees of overlap. How-
ever, while such emulated views perhaps capture some of
the challenges associated with extreme-view imagery, are
they sufficient for representing real images—particularly,
images captured in the wild?

In this paper, we present a new approach that tackles the
problem of extreme rotation estimation in the wild. Con-
sider the boxed images in Figure 1. Internet (i.e., in the
wild) images may vary due to a wide range of factors, in-
cluding transient objects, weather conditions, time of day,
and the cameras’ intrinsic parameters. To explore this prob-
lem, we introduce a new dataset, ExtremeLandmarkPairs
(ELP), assembled from publicly-available scene-level In-
ternet image collections. We observe that the set of real
extreme-view image pairs is limited, as Internet datasets
are typically scene-centric, with nearby cameras commonly
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capturing overlapping views. Therefore, to facilitate train-
ing, we propose a progressive learning scheme that lever-
ages and augments images cropped from panoramic views,
allowing for gradually generalizing the model onto real In-
ternet data. In particular, we construct datasets with vary-
ing field of views, that better resemble the distribution of
real data, and perform image-level appearance augmenta-
tions by leveraging recent advancements in text-to-image
Diffusion models [7, 22, 31].

To estimate extreme rotations in the wild, we propose
a Transformer-based model that is provided with auxiliary
channels, including the spatial distribution of local key-
points and matches and semantic segmentation maps, al-
lowing for better reasoning over real image pairs with lit-
tle or no overlap. Our results demonstrate that our model
can accurately predict the relative rotations for a wide vari-
ety of extreme-view image pairs that vary in illumination,
dynamic regions, and intrinsic parameters. We conduct
extensive experiments, quantifying performance both over
real Internet data and also over emulated perspective im-
ages cropped from panoramic views. Our evaluation shows
that our model significantly improves over strong baselines
when considering real images, while achieving comparable
performance over emulated perspective image pairs.

2. Related Work
Relative pose estimation is a fundamental task in computer
vision, typically studied for overlapping camera views. Tra-
ditionally, this task has been divided into two stages: corre-
spondence estimation from local feature matching, followed
by geometry-based pose estimation. In recent years, fea-
ture matching methods have advanced from using heuris-
tic feature descriptors [5, 27, 32] and RANSAC-based
matches [21] to learning-based feature extraction [4, 14–16,
18, 40, 45] and matching techniques [3, 26, 33] , with sev-
eral methods performing both feature extraction and match-
ing using unified learning-based frameworks [4, 17, 38].

These methods are generally invariant to changes in il-
lumination and appearance, demonstrating robust perfor-
mance across various scene scales and also over in-the-wild
datasets. However, their reliability diminishes in extreme
view scenarios due to their dependence on visual overlap.

Extreme-view scenarios lacking local pixelwise corre-
spondences necessitate the use of end-to-end learning-based
pose estimation methods which directly infer the 3D rela-
tionships and geometry from sparse and extreme-view im-
ages. Indeed, large-scale 3D object datasets have paved
the way for learning-based methods which estimate camera
pose directly from sparse views [20, 25, 37, 43, 44, 50–52].
However, these methods primarily concentrate on object-
centric scenes, under experimental settings that typically
assume similar lighting and camera intrinsics for the input
views. Furthermore, these methods often utilize bounding

box inputs defining the object of interest, which is less suit-
able in the case of images depicting large-scale scenes.

Several prior works address a sparse view setting at
scene-scale. In particular, Chen et al. [11] propose to learn
a discrete distributions of pose space, Agarwala et al. [1]
simplify scene reconstruction using a plane representation,
and Rockwell et al. [30] introduce an inductive bias of
the 8-point algorithm into a vision transformer architecture.
Recently, models that directly predict pixel-aligned point
maps from input pairs (or sparse image collections), such as
DUSt3R [46] and Mast3R [23], have demonstrated promis-
ing results on pose estimation and scene-scale 3D recon-
struction of Internet data with a wide baseline.

Camera pose estimation for non-overlapping views
presents a greater challenge. Earlier efforts [10] explored
searching for consistent temporal behavior. Several work
utilize pairwise RGB and depth scan data to estimate rela-
tive pose among such extreme pairs [48, 49]. Cai et al. [8]
tackle pose estimation for non-overlapping views with-
out the use of additional data, by introducing a learning-
based network leveraging cross-correlation volume to ex-
ploit implicit cues. This correlation volume is later en-
hanced through the integration of transformer attention
modules [12]. Nonetheless, these approaches assume con-
strained 3D environments, including the assumption of con-
sistent lighting and camera intrinsics, and are designed for
camera distribution of emulated perspective views cropped
from panoramas. In this work, we aim to address pose
estimation for realistic in-the-wild non-overlapping image
pairs, enhancing the applicability of extreme pose estima-
tion to Internet photos and real-world data.

3. The ExtremeLandmarkPairs Dataset
Prior works on extreme pose estimation use panoramic
views, cropping from it sub-areas to emulate perspective
views [8, 12]. To evaluate and train models on real perspec-
tive image pairs, we propose a new benchmark and dataset,
ExtremeLandmarkPairs (ELP), constructed from Internet
image pairs from the MegaDepth [24], Cambridge Land-
marks [2], and MegaScenes [39] datasets. In this section,
we first describe the dataset construction procedure (Sec-
tion 3.1), and then present details regarding dataset size and
train and test splits (Table 1).

3.1. Dataset Construction

To construct a dataset of real perspective image pairs with
varying degrees of overlap, we leverage available scene-
level training data. Existing Internet image collections typi-
cally contain camera poses (predicted up to scale), which
are determined using Structure-from-Motion (SfM) algo-
rithms, such as COLMAP [36]. In what follows, we de-
scribe how we extract real image pairs from this data, which
can then be used for training and evaluating models.
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(a) Reconstruction and camera 

distribution of all images

(b) Camera distribution of 

large-overlapping pairs

(c) Camera distribution of non-overlapping pairs

Figure 2. Camera distribution of the Vatican, Rome scene from
the ExtremeLandmarkPairs Dataset. We construct a dataset of real
perspective image pairs with predominant rotational motion shown
in (b) and (c) from the dense imagery reconstruction in (a).

Identifying Pairs with Predominant Rotational Motion.
Prior works targeting relative rotation estimation, in partic-
ular for non-overlapping views, mostly utilize panoramic
views, focusing on image pairs with purely rotational mo-
tion. Pairs belonging to real image collections almost al-
ways contain a non-negligible translation component. Fur-
thermore, unlike in the StreetLearn [28] dataset used by
prior work [8, 12] that provides exact translation values
between consecutive panoramas which allows for filtering
pairs with predominant rotational motions, reconstructed
relative poses are only provided up to scale. The scale
varies among different reconstructed scenes, and therefore
there’s no global threshold on the relative translation values
which can be used for identifying pairs with predominant
rotational motion.

To automatically identify such pairs, we observe that
available Internet collections require the existence of dense
imagery, to compensate for the vast number of unknowns

in the SfM optimization. We therefore construct mutual
nearest neighbors edge-weighted graphs, with one graph per
landmark. In each graph G, nodes v ∈ V correspond to im-
ages, and two images are connected by an edge e ∈ E if
they are both among each other’s K nearest neighbors, con-
sidering L2 distances between their translations (K is em-
pirically set to 5). Note that images captured from sparser
(outlier) regions in space are unlikely to be within the mu-
tual K nearest neighbors of images captured within denser
regions, and hence won’t be included in G. Finally, we se-
lect a subset of image pairs containing relatively small dis-
tances from each scene graph G, yielding a set of image
pairs with predominant rotational motion; see the supple-
mentary material for additional details.
Extracting Level of Overlap. Following prior work [8,
12], we are interested in training and evaluating models
according to three different categories: Large, Small and
None, indicating image pairs with a varying amount of over-
lap. However, unlike prior work that use cropped images
with a fixed 90◦ FoV, Internet images contain varying FoV
values. Thus, the relative rotation angle is not sufficient for
extracting the pair’s overlap level.

Denote the FoV values of image i ∈ [1, 2] as [fovi
x, fovi

y].
We can parameterize a 3D rotation matrix R using three
Euler angles [α, β, γ], denoting the relative roll, pitch and
yaw angles, respectively:

R(α, β, γ) = Rz(α)Ry(β)Rx(γ), (1)

following Dense Correlation Volumes’ coordinate system.
We use the following conditions to determine the overlap
level o:

o =


Large |γ| < fov1x+fov2x

4 ∧ |β| < fov1y+fov2y
4

None |γ| > fov1x+fov2x
2 ∧ |β| > fov1y+fov2y

2

Small else

(2)

In other words, pairs with relative yaw and pitch angles that
are smaller than a quarter of the average corresponding FoV
values are considered as pairs with a large overlap ratio.
Likewise, pairs with relative yaw and pitch angles that are
larger than half the average corresponding FoV values are
considered non-overlapping pairs. Pairs in-between these
conditions are considered pairs with a small overlap ratio.
Additional Filtering. In the scene-scale datasets we ex-
plore, large FoV disparities could result in one image fo-
cusing on specific architectural details like a statue, while
the other captures a much broader scene perspective, fur-
ther complicating the problem of estimating the relative ro-
tations. To extract pairs consistent in scale, we limit the
difference between the FoV values to be at most 5◦. Fur-
thermore, as most images contain small roll values, we ro-
tate the scenes to match the gravity axis and horizontal axis
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#Pairs
Subset Source #Scenes Large Small None Total

Train [39] 5883 33430 13684 29481 76595
Validation [39] 515 3398 710 4130 8238
Validation Balanced [39] 177 92 55 707 854
sELP [2] 6 2512 827 1961 5300
wELP [24] 17 2700 829 643 4172

Table 1. ExtremeLandmarkPairs Dataset Statistics. Above, we
report the number of image pairs extracted for each overlap level,
split into train and test (with sELP denoting a single camera setting
and wELP denoting the “in the wild” setting).

and filtered images with rolls exceeding 10◦. Finally, we ex-
cluded images captured from an aerial perspective, by filter-
ing images with translation along y-axis exceeding a global
threshold, empirically set to 1.

3.2. Dataset Size and Splits

We apply the procedure described above over landmarks
from the MegaScenes [39] dataset to create a training set
and a validation set. As we focus on outdoor scenes in our
work, we filter reconstructions that capture indoor scenes.
We obtain a total of nearly 34K non-overlapping pairs orig-
inating from over 2K unique landmarks. The validation set
was also balanced the set over the overall angle.

For evaluation, we create two test sets, to separately ex-
amine image pairs captured in a single camera setting with
constant illumination (sELP) and image pairs captured in
the wild (wELP). Image pairs in the sELP test set con-
tain images from the Cambridge Landmarks [2] dataset,
which contains videos capturing six different landmarks.
Image pairs in the wELP test set contain images from the
MegaDepth dataset [24], which contains Internet photos
from Flickr for a set of large-scale landmarks.

As there is some overlap between the landmarks in
MegaScenes [39] and MegaDepth [24], we performed addi-
tional filtering, ensuring no overlap exists between the train
and test sets. Furthermore, we filter test pairs if one of the
images is highly transient—i.e., if transient objects domi-
nate the image. We quantify this using a pretrained seg-
mentation model [19], filtering images containing transient
objects in over 40% of the pixels. We also manually validate
non-overlapping image pairs, allowing to further filter unla-
beled objects, such as a stage or a market stand. Finally, for
non-overlapping image pairs, we observed that the overall
relative rotations are highly imbalanced, and therefore we
balance this set by the overall relative angle. Table 1 sum-
marizes the number of image pairs and landmarks used for
both training and test.

4. Method
Given a pair of Internet images with (possibly) extreme rel-
ative motion, we estimate the relative rotation R between

the images. Following prior works on extreme rotation es-
timation [8, 12], we assume a camera-centric setting, where
the two cameras have limited translation. However, our ap-
proach departs from prior works by operating on outdoor
images captured by a crowd of photographers, with vary-
ing intrinsic parameters as well as appearances—e.g., due
to illumination changes and dynamic objects.

Our model (detailed in Section 4.1; see Figure 3 for
an overview) outputs three discrete Euler angles, denoting
the relative roll, pitch and yaw angles. As illustrated in
prior work [8], this parameterization enables using a sim-
ple cross-entropy loss for training. In Section 4.2, we de-
scribe our progressive learning scheme, allowing for gradu-
ally adapting the model to extreme Internet imagery.

4.1. Model

We extract image features using a pretrained LoFTR
model [38]. In contrast to the features extracted using
common convolutional neural networks pretrained on Im-
ageNet [13], LoFTR is a Transformer-based model trained
on Internet pairs, with the goal of extracting local feature
matches – a setting and task which is highly related to the
one we address in our work, thus enabling extraction of bet-
ter (i.e., more relevant) features.

As we are interested in designing a network that can also
reason over image pairs with little or no overlap, we com-
bine the extracted features with additional auxiliary chan-
nels; see Figure 3 (bottom left). These include keypoint
and pairwise matches masks, utilized previously for dis-
ambiguating images for similar structures [9]. Intuitively,
knowledge over pairwise matches can assist the model in
cases of small overlap and for generalizing across different
camera intrinsic properties. We also incorporate a segmen-
tation map as an additional auxiliary channel, which seg-
ments images into several categories (such as sky, build-
ing, road and sidewalk). This channel allows for identi-
fying additional cues, such as the skyline or transient ob-
jects, which can aid in determining the rotation for non-
overlapping pairs. In Section 5, we demonstrate the benefit
of incorporating these auxiliary channels in our model.

We then reshape extracted features (and auxiliary chan-
nels) to tokens, concatenating these image tokens with
learnable Euler angle position embeddings. These to-
kens are processed by our Rotation Estimation Transformer
module, which uses a transformer decoder architecture [41].
The output Euler angle tokens obtain information from im-
age features and auxiliary channels within transformer at-
tention modules. These tokens are then processed by three
different prediction heads (one per angle, denoted as MLP
in Figure 3).Each output prediction head uses as input aver-
aged image tokens and one of the output Euler angle tokens,
which provides the model with additional angle-specific in-
formation, allowing for achieving improved performance,
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Figure 3. Method architecture. Given a pair of input Internet images, we extract image features using pretrained LoFTR. These features
are combined with auxiliary channels, including keypoint and pairwise matches masks, and segmentation maps (visualized on the bottom
left). These image features are reshaped into tokens and concatenated with Euler angle position embeddings, which are then processed by
our Rotation Estimation Transformer module. The output Euler angle tokens and averaged image tokens are concatenated and processed
by MLPs to predict the probability distribution of Euler angles, representing the relative 3D rotation between the input images.

as we show in the supplementary material. The prediction
heads output a probability distribution over N = 360 bins,
capturing an angle in the range [−180◦, 180◦].

4.2. Learning

As detailed in Section 3, we assemble real image pairs
from Internet imagery, which can be used for training and
evaluating models. However, even with our proposed Ex-
tremeLandmarkPairs dataset, the set of real image pairs is
limited—e.g., only ∼36K non-overlapping image pairs are
extracted, as available Internet datasets are typically scene-
centric, with nearby cameras usually capturing overlapping
views. Therefore, in what follows, we propose a progressive
learning scheme, which leverages panoramic images, and
allows for gradually generalizing the model to images cap-
tured in-the-wild. All learning stages are optimized using
a cross-entropy loss for each Euler angle prediction. Addi-
tional details are provided in the supplementary material.

Initialization. We begin by training our model on the per-
spective views cropped from panoramic images, using the
data created by Cai et al [8]. Specifically, we use the im-
age pairs cropped from panoramic images included in the
StreetLearn [28] dataset, depicting various streets in Man-
hattan. As further detailed in Cai et al [8], this training set
includes roughly 1M image pairs sampled from the same
panorama, split according to the overlap level.

Training with Data Augmentations. We observe that the
dataset constructed by prior work could be augmented to
better capture the distribution of image pairs captured in-
the-wild. In particular, we focus on two types of data aug-
mentations, which we elaborate on next: (i) field of view
(FoV) augmentations (denoted henceforth as ∆FoV) and
(ii) image-level appearance augmentations (denoted hence-
forth as ∆Im). In Section 5, we demonstrate how both types

snowy sunset 4th of July

busy street night Christmas
Figure 4. Augmenting perspective images cropped from
panoramic views with image-level appearance modifications.
Given an input image (left) and a target text prompt “Make it ⟨w⟩”
(⟨w⟩ is specified above), we use a conditional Diffusion model [7]
to create semantic appearance augmentations which modify both
the global image characteristics as well as local image regions.

of augmentations improve the model’s ability in generaliz-
ing to real Internet scenes.

Rather than cropping perspective images with a fixed 90◦

FoV as was done in prior work, we analyze the FoV values
of the images belonging to the ELP training set. We com-
pute the mean and standard-deviation values, denoted as µ
and σ, respectively. We then construct new perspective im-
ages by sampling from a Gaussian distribution G(µ, a · σ)
that resembles the distribution of real data, setting a = 1.5
for obtaining a more diverse set, which also bears higher
similarity to the perspective images used during initializa-
tion. We also allow for FoV differences (of up to 5◦) be-
tween the two images paired together. Additionally, rather
than providing the model with the full content within these
regions, we construct crops with various aspect ratios to fur-
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ther emulate real image pairs.
In-the-wild images differ not only in their intrinsic pa-

rameters, but also in their appearance – due to presence
of varying illumination and dynamic objects. Therefore,
in addition to augmenting the dataset with images of vari-
ous field of views, we also perform image-level appearance
augmentations, leveraging recent advancements in text-to-
image Diffusion models [7, 22, 31]. In particular, we ap-
ply the conditional InstructPix2Pix [7] model on a subset of
our data, using a set of text prompts of the format “Make
it ⟨w⟩”, where ⟨w⟩ captures diverse appearance modifica-
tions. See Figure 4 for a few illustrative examples; note how
some of these modify the global illumination (e.g., altering
the time of day or the season) while others yield local edits
(such as adding more people to make it “a busy street”).
We performed additional filtering on the augmented set, to
avoid significant edits that also altered the structure of the
scene; see the supplementary material for additional details.
Training on Real Data. Finally, we finetune the model
over real image pairs from our proposed ELP dataset. To
prioritize learning over extreme image pairs, we first pass a
batch of non-overlapping image pairs, followed by a batch
of overlapping image pairs.

5. Results and Evaluation
To validate our method, we compare our model with prior
relative rotation estimation methods on the sELP and wELP
test sets. In particular, our experiments seek to answer the
following questions:
• How well do previous methods perform on our proposed

task of extreme rotation estimation in the wild?
• How important is our progressive training scheme, and to

what extent can the improved performance be attributed
to training on the ExtremeLandmarkPairs dataset?

• What is the impact of our design choices?
We also present qualitative results over different overlap
levels in Figure 5. These results illustrate our model’s per-
formance, and its robustness to varying illumination condi-
tions and transient objects (such as the screen and the beer
cup in the rightmost examples). Please refer to the supple-
mentary material for many more qualitative results, includ-
ing visualizations for baseline methods.

5.1. Baselines

We compare our method to correspondence-based tech-
niques, dedicated (end-to-end) relative rotation estimation
techniques as well as recent relative pose estimation tech-
niques. Specifically, we consider two correspondence-
based methods: SIFT [27] and LoFTR [38]. These meth-
ods extract keypoint matches to compute an essential ma-
trix using the RANSAC algorithm and calculate the rota-
tion that stems from the essential matrix. We also com-
pare against two prior works specifically targeting extreme

rotation estimation using end-to-end deep learning frame-
works: DenseCorrVol [8] and CascadedAtt [12]. These
methods are trained and evaluated on images sampled from
panoramic views from StreetLearn [28]. Results for Cas-
cadedAtt are reported over a reproduced model, as a pre-
trained model is not provided; additional details are pro-
vided in the supplementary material.

We also consider 8PointViT [30], which estimates the
relative pose between two images with a Vision Trans-
former that is modified to be close to the eight point al-
gorithm. Following prior work [12], we only report results
over overlapping settings for this baseline. Furthermore, as
it assumes a single camera setting, we evaluate it only on the
sELP test set. Finally, we consider Dust3R [46], a recent
technique for dense and unconstrained stereo 3D recon-
struction. While this work does not specifically target the
setting of extreme rotation estimation, we examine to what
extent they can be adapted for this task in the wild. Note
that Dust3R was trained on MegaDepth. Since our wELP
test set is constructed from image pairs from this dataset, it
is not entirely fair comparison; therefore, Dust3R’s results
on the wELP test set are highlighted in gray.

5.2. Evaluation Metrics

For each image pair, we compute the geodesic error, defined
as follows:

err = arccos

(
tr(RTR∗)− 1

2

)
(3)

where R is the predicted rotation matrix, and R∗ is the
ground truth relative rotation matrix. We report the median
geodesic error (MGE) and relative rotation accuracy (RRA)
for each test set and overlap ratio. RRA is reported over a
predefined threshold τ , indicating the percentage of image
pairs with relative rotation error below τ . We report this
metric for τ = 15◦ (RRA15) and τ = 30◦ (RRA30).

Additionally, as we discretize the space of rotations and
estimate three rotation angles, each predicted as a probabil-
ity distribution over N bins, we also report the performance
of the Top 5 predictions in our ablation study. The Top 5 pre-
diction reports the lowest error, considering the top-5 peaks
in the relative yaw prediction only, as we observe that errors
are mostly a function of the relative yaw angles.

5.3. Quantitative Comparison

The main quantitative results comparing our method to
other methods on rotation estimation in the wild are re-
ported in Table 2. In the supplementary material, we con-
duct an additional evaluation in the more constrained setting
examined by prior work targeting extreme rotation estima-
tion (i.e., images cropped from panoramas).

As illustrated in Table 2, SIFT and LoFTR, which are
correspondence-based methods, exhibit some robustness

1066



L
ar

ge
Sm

al
l

N
on

e

Figure 5. Qualitative results on the wELP test set. We visualize the results of our model over different overlap levels, where the images
on the left serve as the reference points, and their coordinate system determines the relative rotation, which defines the images on the right.
The ellipsoids representing the ground truth are color-coded to match their respective images, with the estimated relative rotation illustrated
by a cyan dashed line. As illustrated by the examples above, our method can accurately predict relative rotations for diverse image pairs
containing varying appearances and intrinsic parameters. Please refer to the supplementary material for additional qualitative results.

sELP wELP
Method MGE↓ RRA15↑ RRA30↑ MGE↓ RRA15 ↑ RRA30↑

L
ar

ge

SIFT* [27] 1.95 92.3 95.3 2.94 74.6 80.8
LoFTR* [38] 1.76 97.2 99.1 2.13 85.2 93.8
DenseCorrVol [8] 98.51 25.9 33.3 120.53 7.0 13.0
CascadedAtt [12] 29.75 42.7 50.0 170.62 7.3 9.2
8PointViT [30] 22.33 31.9 64.8 – – –
Dust3R [46] 0.77 99.7 99.9 1.01 98.4 99.2
Ours 2.45 96.7 96.8 2.41 97.5 97.9

Sm
al

l

SIFT* [27] 5.07 64.7 71.3 7.27 61.4 68.4
LoFTR∗ [38] 2.70 81.5 93.6 6.80 66.6 81.2
DenseCorrVol [8] 143.47 2.8 9.4 125.73 3.1 9.4
CascadedAtt [12] 148.44 0.0 3.0 139.14 2.7 4.4
8PointViT [30] 51.30 1.7 12.8 – – –
Dust3R [46] 1.96 95.9 94.6 2.80 89.8 94.4
Ours 4.35 88.3 89.0 4.47 87.2 91.6

N
on

e

SIFT* [27] 121.94 2.7 5.4 122.84 0.0 2.0
LoFTR* [38] - - - 56.54 0.0 33.0
DenseCorrVol [8] 77.10 9.0 27.0 82.04 2.9 13.7
CascadedAtt [12] 69.69 8.4 23.1 78.60 7.5 20.8
Dust3R [46] 114.33 19.8 23.9 81.21 15.4 26.9
Ours 13.62 52.7 59.7 26.97 36.1 50.7

Table 2. Rotation Estimation in the Wild. We evaluate per-
formance over the sELP and wELP test sets, separately consid-
ering Large (top), Small (middle) and Non-overlapping (bottom)
pairs. ∗ indicates median errors are computed only over success-
ful image pairs, for which these algorithms output a pose estimate
(failure over more than 50% of the test pairs is shown in gray).
Note that Dust3R was trained on images from wELP.

when handling highly overlapping Internet images, com-
pared to methods that trained on images cropped from
panoramas, achieving a median error of less than 3◦ for
Large overlap pairs in both test sets. However, these meth-
ods rely on image overlap and may not always provide an
output of estimated camera pose, as the geometric verifica-
tion requires a sufficient number of detected inliers. There-
fore, they struggle to produce reliable matches in cases of
limited overlapping regions, as also observed in prior work

focusing on extreme scenarios [8, 12].
DenseCorrVol, CascadedAtt and 8PointViT exhibit rel-

atively poor performance on the ELP test sets, illustrating
that models trained on images sampled from panoramas
cannot easily generalize to Internet photos. In the supple-
mentary material, we show that our model significantly out-
performs these prior work even when trained on the same
dataset (i.e., images with a constant FoV and illumination
cropped from panoramas). As further discussed there, we
believe this gap can be partially attributed to the usage of
a pretrained LoFTR feature extractor, which is capable of
encoding knowledge between Internet image pairs (which
vary in their intrinsics and appearance).

Dust3R operates on Internet datasets without the need
for calibration and performs exceptionally well on overlap-
ping pairs, achieving the lowest median error and highest
success rates for Large and Small overlap categories for
sELP test set. However, this method is designed for over-
lapping pairs as it initializes the model using pretrained
CroCo [47], which is trained to address cross-view comple-
tion problem from two overlapping views. Furthermore, its
output consists of a unified dense point cloud for each pair
of images. Due to its design for overlapping pairs, its per-
formance on non-overlapping views is extremely low, also
on the wELP test set, which contains images from scenes in-
cluded in its training set. Moreover, in terms of size, Dust3R
(with a DPT head) contains 577 million parameters. In con-
trast, our model is significantly more compact, with only
80 million parameters. As shown in the table, despite its
smaller size, our model yields significantly improved per-
formance over non-overlapping pairs on both test sets.

5.4. Ablation study

We conduct various ablations analyzing the effect of our
progressive training scheme and other design choices,also
reporting performance over the Top 5 predictions (consid-
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Top 1 Top 5
Overlap Train data MGE ↓ RRA15 ↑ RRA30↑ MGE ↓ RRA15↑ RRA30↑

Large [8] 13.65 35.4 73.5 12.22 61.4 84.7
+∆FoV 4.61 79.7 81.1 4.41 90.3 98.9
+∆Im 4.46 90.4 92.4 4.43 94.3 99.1
+ELP 2.41 97.5 97.9 2.41 98.4 99.4

Small [8] 55.28 3.7 29.1 29.83 15.0 50.3
+∆FoV 12.91 56.2 68.2 10.97 66.0 85.4
+∆Im 11.46 62.5 80.6 10.73 68.0 91.0
+ELP 4.47 87.2 91.6 4.24 91.1 97.2

None [8] 74.94 12.8 25.3 25.11 26.1 58.8
+∆FoV 61.62 25.0 38.4 16.82 44.2 75.0
+∆Im 68.31 25.0 36.1 16.21 45.7 78.2
+ELP 26.97 36.1 50.7 12.85 57.1 85.8

Table 3. Ablation study, evaluating the effect of our progressive
training scheme over the wELP test set. All experiments start with
the cropped panoramas used in Cai et al. [8].

ering the top-5 peaks in the relative yaw prediction, as de-
tailed in Section 5.2). Additional ablations, including an
analysis of architectural components, are provided in the
supplementary material.

The effect of our progressive training scheme. We con-
duct multiple experiments ablating the effect of our progres-
sive training scheme. Our training process consists of four
stages: initialization (following prior work [8]), incorpo-
rating multiple FoVs (+∆FoV), training with image-level
appearance augmentations (+∆Im), and training with Ex-
tremeLandmarkPairs pairs (+ELP).

Table 3 illustrates the impact of each training stage on
the results. As can be observed from the table, each train-
ing stage further refines the model’s performance, often in
a significant manner. For instance, the median error in
the wELP small overlap test set decreased from 55.3◦ to
12.9◦ when FoV augmentations were added. Additionally,
the ExtremeLandmarkPairs training set plays a crucial rule
in finalizing our training process, yielding a significant re-
duction in the median error (more than half) for small and
non-overlapping scenarios in the wELP test set. While this
median error remains relatively high for non-overlapping
pairs, we observe that the top-5 scores show significant im-
provements, e.g., reducing the median error from 27.0◦ to
12.8◦. This demonstrates that the model has learned this
knowledge, although it cannot necessarily be recovered by
the largest peak alone. In the supplementary material, we
demonstrate that the intermediate training stages are indeed
important and that the improved performance cannot be ob-
tained with the ExtremeLandmarkPairs training set alone.

Moreover, evidenced in Table 3, our model demonstrates
strong generalization capabilities even when trained exclu-
sively on panorama-cropped images. The model general-
izes to the wELP test set significantly better (e.g., for Large
overlap cases, our model achieves an MGE of 13.65◦ com-
pared to values higher than 120◦ achieved by baselines),
demonstrating that the improvement is not just due to our

Top 1 Top 5
Overlap KP SM MGE ↓ RRA15↑ RRA30↑ MGE ↓ RRA15↑ RRA30↑

Large × × 2.18 97.4 98.1 2.18 97.4 98.1
× ✓ 2.30 97.0 97.4 2.30 98.5 99.4
✓ × 2.44 97.6 98.3 2.31 98.4 99.7
✓ ✓ 2.41 97.5 97.9 2.41 98.4 99.4

Small × × 4.50 87.9 91.6 4.50 87.9 91.7
× ✓ 4.49 88.1 92.0 4.46 91.2 96.7
✓ × 4.41 87.5 92.2 4.32 91.9 97.6
✓ ✓ 4.47 87.2 91.6 4.24 91.1 97.2

None × × 48.81 34.0 44.1 12.56 57.5 84.6
× ✓ 43.07 31.2 44.2 13.99 53.5 83.2
✓ × 41.39 35.3 46.8 13.04 56.9 86.2
✓ ✓ 26.97 36.1 50.7 12.85 57.1 85.8

Table 4. Ablation study, evaluating the effect of the auxiliary chan-
nels added as input to our network. We train models without the
keypoints and matches (KP) and without the segmentation maps
(SM), comparing to our model over the wELP test set , after using
a validation split that is balanced over the overall angle.

progressive training scheme. We further examined architec-
tural differences by conducting an additional ablation study,
applying our progressive training scheme to the baseline
models (see Table 9 in the supplementary materials). This
experiment revealed that prior models are not directly suit-
able for real-world applications, as these baseline models
showed significantly poorer performance across all metrics.
The effect of adding auxiliary channels. We ablate the
effect of adding auxiliary in Table 4, training models with-
out keypoints and matches (KP) or the segmentation map
(SM) provided as additional inputs. As illustrated in the
table, for non-overlapping cases, these auxiliary channels
boost performance almost across all metrics. In particular,
both channels play a role in reducing the errors (reducing
the median error from over 40◦ to 27.0◦).

6. Conclusion
We present a method and benchmark dataset for estimat-
ing relative 3D rotations between pairs of (possibly) non-
overlapping RGB images. Our approach extends prior work
addressing extreme rotations to real-world data that exhibit
variation in both appearance in intrinsic camera parame-
ters. While our model shows promising results on real-
world Internet image pairs, it also highlights the inherent
difficulty of the underlying task, suggesting that consider-
able progress can be achieved with future techniques that
leverage our dataset. Our paired data could also potentially
serve for exploring the challenging task of estimating ex-
treme translations in real-world settings. Future work could
also consider incorporating more views for enhancing per-
formance in such extreme non-overlapping scenarios.
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