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Figure 1. Our approach excels in refer ence-based edits, faithfully reproducing the copied reference parts with a single source and reference
image. Leveraging 3D-aware triplanes, our edits are versatile and 3D consistent, allowing for rendering from various viewpoints. We show
results on human faces, heads, bodies, and extending beyond to animal faces and class-agnostic samples.

Abstract

Generative Adversarial Networks (GANs) have emerged as
powerful tools for high-quality image generation and real
image editing by manipulating their latent spaces. Re-
cent advancements in GANs include 3D-aware models such
as EG3D, which feature efficient triplane-based architec-
tures capable of reconstructing 3D geometry from single
images. However, limited attention has been given to pro-
viding an integrated framework for 3D-aware, high-quality,
reference-based image editing. This study addresses this
gap by exploring and demonstrating the effectiveness of the
triplane space for advanced reference-based edits. Our
novel approach integrates encoding, automatic localiza-
tion, spatial disentanglement of triplane features, and fu-
sion learning to achieve the desired edits. We demonstrate
how our approach excels across diverse domains, including
human faces, 360-degree heads, animal faces, partially styl-
ized edits like cartoon faces, full-body clothing edits, and
edits on class-agnostic samples. Our method shows state-

of-the-art performance over relevant latent direction, text,
and image-guided 2D and 3D-aware diffusion and GAN
methods, both qualitatively and quantitatively.1

1. Introduction

In recent years, the high-fidelity image synthesis perfor-
mance has been profoundly transformed by the emergence
of Generative Adversarial Networks (GANs) [24, 34, 35].
Through adversarial training, they learn to map random dis-
tributions to actual data observations, enabling the genera-
tion of photo-realistic images from latent codes. The evolu-
tion of GANs from 2D into 3D-aware [9, 10, 25, 51] has fur-
ther boosted this capability, integrating hybrid 3D represen-
tations and Neural Radiance Fields (NeRF) [49] into style-
based generators, yielding unparalleled success in crafting
highly realistic 3D portraits.

The application of GANs extends beyond generation,
venturing into real image editing through GAN inversion [3,

1three-bee.github.io/triplane edit
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Figure 2. Current methods struggle with 3D consistency [63,
70, 85], faithfulness to the reference [8, 33, 69], and visual ar-
tifacts [69, 70]. Our method provides 3D-consistent, reference-
based edits from single images, independent of camera poses. N/A
indicates the model is incapable of such edits.

56, 62, 74, 76] and manipulation of the latent space [59]. A
critical challenge in reference-based image editing via this
latent space is striking the optimal balance between retain-
ing essential elements from the input image and incorporat-
ing desired attributes from the reference image. This bal-
ance is crucial to avoid overshadowing the input image’s
essence in the editing process, thereby maintaining its iden-
tity while still transferring the reference’s attributes. This
presents itself as a complex problem of disentanglement and
fusion, requiring the identification and integration of rele-
vant feature components from both the reference and input
images within the latent space to produce the edited output.

Despite the advancements in image editing, there is a
noticeable gap in the development of reference-based, 3D-
aware image editing techniques. Existing methods in 3D-
aware image editing lack reference-based capabilities [23,
39, 76], while current GAN and diffusion reference-based
editing approaches do not support 3D-awareness [63, 70,
85] and/or facilitate local editing [7, 8, 13, 53, 59] (Figs. 2
and 6). Addressing this gap, our work focuses on pioneering
reference-based, 3D-aware image editing, where we learn
spatial disentanglement and fusion within triplane latent
spaces [10, 20]. Our primary motivation stems from dis-
covering that triplanes can be manipulated for editing pur-
poses akin to the 2D image domain but offer distinct ad-
vantages. Triplanes not only facilitate 3D editing but also
alleviate alignment issues inherent in 2D image space. For
example, transferring eyeglasses from one person to another
in 2D necessitates precise alignment in the image space.
Conversely, in the triplane space, stitching is facilitated as
images with varying camera parameters can be projected
onto the same canonical triplane space. However, ensuring
seamless boundaries requires careful attention. To accom-
plish reference-based image editing, our framework local-
izes parts within triplanes using masked residual gradients
and fuses them using the encoders we train.

Our contributions span the following:
1. We are at the forefront of conceptualizing reference-

based 3D-aware image editing as an integrated frame-
work by leveraging the power of triplanes. Our approach
includes encoding triplane features, spatial disentangle-

ment with automatic localization of features, and fusion
learning for desired image editing.

2. Our work establishes new benchmarks for quantita-
tive and qualitative assessment in reference-based image
editing and surpasses the 12 most recent and relevant
baseline editing methods. This advancement is quanti-
fied by significant improvements in FID for quality and
masked pixel-wise metrics for source preservation.

3. We extend our framework based on [10] towards 360-
degree human heads [4], animal faces [10], cross-
domain edits with cartoon portraits [60], full-body [20]
clothing edits, and edits on class-agnostic samples [29,
37, 68], showcasing its versatility and robustness across
different triplane domains as shown in Fig. 1. This not
only proves the effectiveness of our method but also
broadens its potential in creative editing contexts.

2. Related Works
StyleGAN inversion-based editing. It has been shown
that well-trained GAN models organize their latent space
in a semantically meaningful way that enables edits via
latent vector arithmetic. Especially for StyleGAN mod-
els [35], many methods are proposed to find interpretable
directions in unsupervised ways such as GANSpace [27],
StyleFlow [2], StyleSpace [64], StyleCLIP [53] and su-
pervised ways such as InterFaceGAN [59], and recently
E3DGE [36], Barbershop [85], HairCLIPv2 [63], and
SFE [7]. These methods are combined with real image in-
version methods so that an image is projected onto Style-
GAN’s latent space (W,W+,F , etc.) and is edited [54, 56].
Recently, EG3D [10] augmented StyleGAN architecture
with triplanes that provide efficient 3D-aware representa-
tions. For this new domain, new inversion methods are
proposed [23, 67, 75, 76]; however, previous editing meth-
ods [53, 59] are re-used from 2D StyleGAN literature,
which all lack reference-based editing.
Reference-based image-to-image translation. We refer to
the models that are end-to-end trained for editing applica-
tions as image-to-image translation methods. These meth-
ods are trained to change selected attributes of images while
preserving the content [12, 21, 30, 40, 41, 47, 58, 66, 77],
rather than using the latent codes of StyleGAN. Specif-
ically, they include an encoder for the reference image
and another encoder or shared one for the source im-
age [12, 31, 40, 48, 71, 83, 84]. In these models, the ref-
erence style can be sampled from a normal distribution, or
it can be encoded from a reference image [14, 15, 40]. One
major limitation of these works is that they require labeled
datasets for each attribute [45]; hence, models like Vec-
GAN [15] and HisD [40] can only achieve a handful of edits
(hair color, smile, eyeglasses, bangs, etc.). They also can-
not provide editing using images taken from vastly different
camera poses and lack faithfulness to the reference.
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Text and image-conditioned diffusion models for im-
age editing. There is an abundance of diffusion-based
image editing methods [8, 13, 19, 61, 69, 70], leverag-
ing the prior of Stable Diffusion (SD) denoiser [57] and
achieving diverse edits. Recently, methods like Control-
Net [78], IP [73], and T2I [50] have made editing more
controllable. Still, all these SD-based methods lack 3D-
aware, faithful-to-reference image editing, especially in the
face and body domain. LEDITS++ [8] and InfEdit [69]
utilize text prompts and are incapable of image reference-
based editing. Paint by Example [70] fine-tunes the de-
noiser with masked images to carry information from refer-
ence images. Nevertheless, [70] is not capable of choosing
which region to copy, harming the controllability - more no-
ticeably when camera poses are different. NoiseCLR [13]
attempts to find editing directions unsupervised but fails
for fundamental face-edit attributes like hair color and style
changes. There are 3D-aware denoisers [43, 44, 72] and
edit methods [22, 52, 81], but they also become impracti-
cal in our context, as they are either fine-tuned with gen-
eral object datasets [16, 17] failing to perform well in the
face domain or lack faithful reference-based editing alto-
gether. There are also methods fusing GAN & diffusion for
adding stylization and diversity [5, 26, 39, 60], but control-
lable reference-based edits are not achieved in those, either.

3. Method
Our main motivation lies in that triplanes can be stitched
and blended for editing like in the 2D image domain.
However, achieving satisfying results requires carefully de-
signed steps, which will be detailed in this section.

3.1. Localizing parts in the triplane space

2D seg

Post
processing

Figure 3. Triplane part localization stage, where E, G, and R are
encoder [6, 76], generator [10], and neural volumetric renderer,
respectively. For the 2D segmentation model S2D, we use state-of-
the-art off-the-shelf segmentation models [1]. Images other than
the input image are zoomed in for visualization purposes.

The most direct way to perform a region transfer from
reference to source image would be to mask and copy &
paste the region of interest. However, this process becomes
intricate in hybrid 3D representations like triplanes, due to
the absence of a conventional method for identifying the
regions to be masked.

Algorithm 1 Triplane localization and masking
Require: Generator G, encoder E, rendererR, image I , extrinsic matrices

π1,2,...,N , segmentation net S2D, post-processing params (ϵ, γ)
Ensure: Triplane mask M

1: T,∇T,← G(E(I)), 0 ▷ Initialize triplane and gradients
2: for each πi in π1,2,...,N do ▷ Triplane localization
3: Iπi ←R(T, πi)
4: ∇R(T,πi)

← S2D(Iπi ,attr)
5: ∇T ← ∇T + autograd(R,∇R(T,πi)

)
6: end for

7: for each c in∇T do ▷ Post-processing
8: ∇Tc ← {x ∈ ∇Tc : |∇Tc (x)− µc| ≤ ϵ}
9: ∇Tc ← (∇Tc −min∇Tc )/(max∇Tc −min∇Tc )

10: ∇Tc ← {x ∈ ∇Tc : 1 if ∇Tc (x) ≥ γ else 0}
11: end for

12: return M← ∇T

To address this, we take advantage of the volumetric
renderer used in [10] being fully differentiable, and back-
propagate the 2D image domain masks to the 3D hybrid
triplane domain to calculate gradients on triplanes (Fig. 3,
triplane localization in Algorithm 1). First, input images
are encoded using a pre-trained model [6, 76] to obtain tri-
plane features T. These features are rendered with different
camera poses π1,2,...,N to create multi-view 2D renderings
R(T, π). An off-the-shelf segmentation network S2D iden-
tifies attributes [1] (e.g., hair, eyes, glasses) in each render-
ing. The segmentation outputs are assigned as output gra-
dients ∇R(T,π), and are back-propagated to the triplane do-
main to accumulate input gradients Σπ∇T, which localizes
the triplane mask.

To convert a gradient mask into a binarized one, we per-
form mean clipping, normalization, and thresholding with
parameters (ϵ, γ) (post-processing in Algorithm 1). These
parameters are set once and used across all experiments for
each attribute and domain, and are in the Supplementary.
This localization is done for source and reference images.

For finer granularity and to avoid copying unwanted at-
tributes, such as copying glasses and not the eyes, W+ di-
rections [59] can be utilized in addition. By computing the
difference between triplanes with and without the attribute,
∆Tattr = G(w) − G(w − wattr) and multiplying with gra-
dient mask M, a more precise mask can be created.

3.2. Implicit fusion by encoding & decoding
After finding suitable masks for reference and source tri-
planes, Mref and Msrc respectively, a naive approach would
be to follow Eq. (1):

Ttmp = Mref ∗ Tref + Msrc ∗ Tsrc (1)

However, Fig. 8 (V1) reveals only using Eq. (1) distorts the
geometry and color consistency, and creates stitching seams
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around the editing borders. In addition, in some cases, the
contents in Tref and Tsrc are not enough to ensure the edit-
ing looks natural around the region where two masks meet,
necessitating the hallucination of additional content to com-
plement the editing. For example, we may want to remove
the long hair from the source image and replace it with the
short hair from the reference image. In this case, the pixels
that correspond to long hair regions need to be inpainted.

Given the above observations and GAN’s latent spaces
embed natural images, we render the naively fused tri-
plane with the canonical pose πcan, re-encode EW+ , and
re-decode via the generator G to obtain an implicitly fused
triplane, shown in Eq. (2):

Timp = G(EW+(R(Ttmp, πcan))) (2)

Note that state-of-the-art image inversion methods for
EG3D [6, 76] employ both low-rate W+ and high-rate F
features. The latter is crucial for reconstructing fine im-
age details. However, our objective in this phase is not
to achieve perfect image reconstruction. On the contrary,
we aim for the encoder to map the image to a latent space
with natural reconstructions. To achieve this, we disable
the high-frequency restoration branch of EW+ to prevent
encoding visible seams. This allows us to project the edited
image onto its nearest representation on G’s manifold, im-
plicitly fusing the masked triplanes. Fig. 4 showcases seam-
less boundaries across the stitches after this operation.

Note that image details are compromised at this stage,
as we solely depend on the low-rate W+ space. To bring
the details back, we only employ Timp at the transition re-
gions, as depicted in Eq. (3). For instance, when we transfer
the mouth from reference to source, we aim for the triplane
features outside the mouth to originate from Tsrc, the mouth
features from Tref, and features near mouth from Timp.

Tf = E(Mref) ∗ Tref + E(Msrc) ∗ Tsrc

+ (E(Msrc)− E(Mref)) ∗ Timp
(3)

Here, E denotes morphological erosion. We also apply
Gaussian blurring with parameters (µ, σ) onto the masks to
avoid sharp edges. This step is not illustrated in Fig. 4 for
brevity, but (µ, σ) are provided in the Supplementary.

Finally, Tf is rendered from any desired pose πR, and the
final image is obtained, as illustrated in Eq. (4).

Iedited = R(Tf, πR) (4)

3.3. Fine-tuning the image encoder
Although Timp obtained in Sec. 3.2 helps tremendously even
though a pre-trained encoder is used to obtain it, we notice
in some cases where we have skin color inconsistencies,
background leakages, and missing high-frequency details

around the editing regions (Fig. 8 (V2)). Hence, we fine-
tune implicit fusion encoder EW+ , jointly with the triplane
editing pipeline to mitigate the aforementioned effects.

During the fine-tuning phase, we generate renders as
ground-truths from various viewpoints of the source and
reference images corresponding to different attributes.
Then, we employ masked losses to guide EW+ in encoding
only the visible regions, illustrated in Fig. 5. For instance, if
our objective is to transfer hair, we mask the reference ren-
derings to exclude pixels that do not represent hair while do-
ing the opposite for the source ground truth. To ensure that
losses do not affect the boundaries, we dilate the segmenta-
tion masks. The objective function is provided in Eq. (5):

min
E

λΦLΦ(D(M̃ref) ∗ R(Tf, πi),D(M̃ref) ∗ R(Tref, πi))

+λIDLID(D(M̃src) ∗ R(Tf, πi),D(M̃src) ∗ R(Tsrc, πi))

(5)

where LΦ is the learned perceptual image patch similar-
ity loss (LPIPS) [82], LID is the identity similarity loss [18],
D is dilation operation, and M̃src and M̃ref are the corre-
sponding 2D segmentation masks for the rendered images
R(Tsrc, πi) and R(Tref, πi) with poses πi, respectively.

To achieve identity preservation of the source image, we
rely on the ID losses, and to copy the attribute with details,
we rely on the LPIPS score from Eq. (5). We omit pixel-
wise losses like L2 since they are highly dependent on the
quality of the off-the-shelf 2D segmentation network. Dur-
ing the fine-tuning, we use each subject tuple (Tsrc,Tref)
multiple times, rendered from N randomly chosen πi’s.

Compliant with the common encoder training methodol-
ogy, we use the same training datasets generators are trained
with. We employ Ranger optimizer, which is a combination
of Rectified Adam [42] with Lookahead [80]. The learning
rate is set to 1e−4, and fine-tuning is done for 1500 steps
with a batch size of 2 on a single RTX 4090.

4. Experiments

Evaluation. We present metrics evaluating both the recon-
struction and editing qualities of our approach. For edit-
ing assessment, we employ the Fréchet Inception Distance
(FID) [28], which evaluates realism by comparing the distri-
bution of target images with that of edited images. Specifi-
cally, we compute FIDs for adding eyeglasses and hair ed-
its from black to blonde transition using the CelebA [45]
dataset. For instance, leveraging ground-truth attribute la-
bels, we add eyeglasses to images without them and com-
pute FIDs between the edited and original images that al-
ready have eyeglasses. This procedure is similarly applied
to hair edits. For reconstruction evaluation, we mask the
edited areas and measure the L2 and Structural Similarity
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Figure 4. Triplane localization and implicit fusion stages, where E∗ denotes the fine-tuned image encoder that is described in Sec. 3.3.
Straightforward stitching in the triplane results in color inconsistency across the boundaries, as shown in Itmp (zoom in for details).
Leveraging E∗, we aim to attain seamless boundaries and produce outputs with a natural appearance.

Triplane
fusion

Output

GT

GT

Figure 5. Pipeline for the implicit fusion encoder fine-tuning. We generate masked ground truths for our task by utilizing 2D segmentation
networks and via renderings from multiple views. We aim to carry the reference parts in great detail to our source image while preserving
the source’s identity. Triplane fusion corresponds to Eq. (3).

Index (SSIM) between the input and edited images. For in-
stance, in the eyeglasses edit, we mask the eyeglasses and
measure the alteration in the unedited regions. This dual as-
sessment framework ensures a robust evaluation of both the
fidelity and quality of our editing approach.
Baselines. We conducted comprehensive comparisons by
evaluating our method against a range of latent direction,
text and image reference-based, 2D and 3D-aware, GAN,
and diffusion-based editing methods. Notably, no existing
reference-based editing methods achieve 3D consistency
within a single framework.

HiSD and VecGAN++ are reference-based 2D image-
to-image methods. InterFaceGAN, StyleCLIP (W+), SFE
(W+/F), StyleFusion (W), Barbershop, and HairCLIPv2
(F/S) operate within the latent spaces of StyleGAN and
can be adapted to 3D-aware GANs like EG3D. However,
only the last three are reference-based, with two focusing
on hair edits. E3DGE is a SDF-based generator, and editing
is done via latent directions. For diffusion-based models,
LEDITS++ and InfEdit perform text-based editing, while
NoiseCLR utilizes pretrained latent edit noise directions.
Paint by Example inpaints the masked source image with
the reference image but lacks control over which parts of

Table 1. Quantitative scores on CelebA. (✗) indicates the method
is not capable of such edits. First and second best method are
given in bold and underlined. Time is measured on Tesla T4.

Eyeglasses Hair Time
FID ↓ MSSIM ↑ ML2

↓ FID ↓ MSSIM ↑ ML2
↓ (s)

HiSD [40] 77.56 0.9471 0.0090 94.53 0.9743 0.0036 1.1
VecGAN++ [14] 71.47 0.7483 0.0630 80.47 0.9296 0.0090 2.2
Barbershop [85] ✗ ✗ ✗ 62.80 0.8756 0.0182 125

HairCLIPv2 [63] ✗ ✗ ✗ 85.75 0.8769 0.0173 180
StyleFusion [33] ✗ ✗ ✗ 84.67 0.8435 0.0198 2.4

InterfaceGAN [59] 88.13 0.9398 0.0104 80.93 0.7888 0.0387 0.6
StyleCLIP [53] 80.13 0.8421 0.0476 92.60 0.8716 0.0196 0.6

SFE [7] 106.1 0.9341 0.0099 89.49 0.9355 0.0050 5.1
E3DGE [36] ✗ ✗ ✗ 77.86 0.8083 0.0257 1.2

NoiseCLR [13] 107.1 0.7958 0.0440 ✗ ✗ ✗ 17.2
LEDITS++ [8] 115.2 0.9645 0.0047 96.56 0.9717 0.0025 25.9

InfEdit [69] 90.33 0.8338 0.1042 105.4 0.7425 0.0613 9.1
Paint by ex. [70] 74.18 0.8828 0.0252 82.38 0.9229 0.0155 9.6

Ours 66.68 0.9818 0.0021 64.59 0.9720 0.0029 6.0

the reference are used.
Results. We present quantitative and qualitative compar-
isons with competing methods in Tab. 1 and Fig. 6, respec-
tively. From Tab. 1, it is evident that our method outper-
forms competing methods significantly in terms of FID and
preserves identity better in the non-edited regions.

Observing Fig. 6, our method demonstrates superior per-
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Reference Source Ours E3DGE HisD VecGAN++ InterFaceGAN StyleCLIP SFE LEDITS++ InfEdit NoiseCLR Paint by Ex. Barbershop StyleFusion HairCLIPv2

Figure 6. Comparisons with the competing editing methods for glasses addition and hair edits. Ours, HisD, VecGAN++, Barbershop,
StyleFusion, HairCLIPv2, and Paint by Ex. use reference images for editing. InterFaceGAN, StyleCLIP, SFE, E3DGE, and NoiseCLR use
previously calculated latent directions. LEDITS++ and InfEdit use text prompts. N/A indicates the model is incapable of such edits.
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Reference Source Output Reference Source Output Reference Source Output Reference Source Output

Figure 7. Additional editing examples from the CelebA dataset showcasing our method’s ability to seamlessly incorporate features such as
lips, eyes, and nose from reference to source, despite pose differences and interference like eyeglasses.

formance in hair and glasses edits compared to competing
methods. HisD and VecGAN++ struggle with maintain-
ing fidelity to the reference, particularly with glasses, due
to their reliance on low-rate latent spaces. While Inter-
FaceGAN, StyleCLIP, and SFE can add glasses and per-
form some hair transfers, they falter with uncommon edits
like hat removal (row 5) and red hair (row 8) due to the
limitations of their W+/F spaces and their non-reference-
based approach. E3DGE’s pre-trained editing directions
yield unsatisfactory results. LEDITS++ and InfEdit, be-
ing text-conditioned, fail to accurately reflect the original

reference in their edits. NoiseCLR does not effectively ex-
plore hairstyle directions, and its glasses modifications are
entangled with makeup changes (rows 2 and 4). Paint by
Example can transfer some features but often produces se-
vere out-of-domain artifacts (rows 1, 5-8). Barbershop and
HairCLIPv2, optimized for hairstyle edits, suffer from ge-
ometric inconsistencies (row 8) and fail in some hair edit
cases (row 5). Finally, StyleFusion’s feature transfer relies
on W/W+ directions, resulting in the loss of many high-
rate details and outputs that do not fully reflect the orig-
inal images, especially when the features cannot be well-

5909



Table 2. Results of our user study where participants are asked to
identify the edited image. Based on this study, we find that our
edits are challenging to distinguish.

FFHQ AFHQ
Eyes Nose Mouth Overall Eyes Nose+Mouth Overall

Original 40% 29% 34% 34% 40% 42% 41%
Ours (edited) 49% 59% 40% 49% 49% 43% 46%

Undecided 11% 13% 26% 16% 11% 15% 13%

Table 3. Quantitative ablation study of our editing. V1 is the post-
processing triplane gradients, V2 is the implicit fusion, and V3
fine-tunes the implicit fusion encoder.

Eyeglasses Hair
V1 V2 V3 FID ↓ MSSIM ↑ ML2

↓ FID ↓ MSSIM ↑ ML2
↓

✗ ✗ ✗ 79.50 0.8451 0.0323 82.42 0.8177 0.0195
✓ ✗ ✗ 74.46 0.9814 0.0022 77.30 0.9674 0.0034
✓ ✓ ✗ 68.19 0.9822 0.0020 67.04 0.9691 0.0033
✓ ✓ ✓ 66.68 0.9818 0.0021 64.59 0.9720 0.0029

Reference Source No V +V1 +V2 +V3

Figure 8. Qualitative ablation study for glasses and hair edits,
showing the effects of all fundamental stages of our pipeline.
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Figure 9. Cross-generator edits with stylizing. Our method
achieves copying local parts from stylized images, such as car-
toon portraits.

represented in those domains (row 8).
Next, we conduct a user study with 25 participants to

evaluate our reference-based edits. Participants are shown
original and edited images and asked to identify the edited
ones. We utilize outputs of EG3D for both original and
edited images to neutralize the influence of encoding on the
results, and utilize the same angle for the source and edited
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Figure 10. Additional editing examples from AFHQ dataset. The
nose and mouth are handled as a single part.

images with random ordering to minimize bias. Participants
could also choose ”undecided” if they find it difficult to dis-
tinguish. The study focus on edits to mouth, eyes, and nose
on the FFHQ dataset, and eyes, nose & mouth on the AFHQ
dataset. Some participants frequently chose ”undecided”,
while others perform near random chance, in Tab. 2.
Ablation study. We demonstrate the improvements during
the development of our pipeline stages, both quantitatively
and qualitatively, in Tab. 3 and Fig. 8, respectively.

In our initial ablation study, we apply Eq. (1) to merge
the triplanes using a mask calculated via autograd function
without any post-processing (No V). Due to the intricate
volumetric function affecting many pixels for each value
in the triplane, the initial mask fails to stitch images effec-
tively, resulting in blurry outputs. Following the introduc-
tion of post-processing (+V1), as described in Sec. 3.1, we
successfully achieve clear stitching, as depicted in Fig. 8.
This allows us to transfer the hair of one person to our input
while aligning the features using the canonical representa-
tion of the triplane. However, the resulting output still lacks
realism because it combines features from two different im-
ages with varying illuminations, identities, and skin colors
(row 2). To address the issue of smoothness at stitch bound-
aries, we follow Sec. 3.2 and perform encoding and decod-
ing via the pretrained encoder and decoder, respectively, on
the fused triplane. Since these encoders are trained with
real images, they know about real image priors. Despite
the input image not being realistic, as shown in Fig. 8 (V1),
the encoder successfully encodes its latent to the generator’s
natural latent space while attempting to preserve the iden-
tity in (+V2). However, a pretrained encoder optimized for
projecting real images onto the generator’s latent space is
not optimal for our specific use case. Consequently, we re-
place the encoder with one trained specifically for this task,
elaborated in Sec. 3.3. This specialized encoder (+V3) en-
sures color preservation (row 2) and enhances editing de-
tails, such as the coherence of eyeglass frames, as well as
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Figure 11. Extending our method on full-head hair edits on [4].
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Figure 12. Extending our method on try-on edits on [20].

reducing background leakage (rows 1 and 4).
Cross-generator edits. We also provide novel edits
in Fig. 9, where the reference and source triplanes are gath-
ered from stylized and non-stylized generators, respectively.
Specifically, we utilize [60] and fine-tune the EG3D back-
bones via different text prompts [55]. Then, we synthesize
stylized triplanes (Tref) and perform reference-based editing
on the triplanes of default EG3D (Tsrc). The rest of the steps
are the same as before, using the original EG3D and encoder
we train for EG3D. The results presented in Fig. 9 demon-
strate our method’s independence from backbones, show-
casing its capability to achieve part-based attribute styliza-
tion. This differs from [60], which offers global stylization.
Full body and 360-degree head edits. Fig. 7 demon-
strates challenging human face reference-based edits on
EG3D [10] like transferring lips, eyeglasses, and nose from
one person to another. Fig. 10 shows edits on animal face
parts for eyes, nose, and mouth. Fig. 12 demonstrates fash-
ion edits on AG3D [20] trained with DeepFashion [46]
dataset. Fig. 11 extends human face part edits to full 360-
degree hair edits on PanoHead [4]. It is evident that our
approach is generalizable to different triplane generators.

While extending our method to different triplane-based
generators and datasets, we only changed the 2D segmenta-
tion network and the encoder fine-tuning dataset to comply
with the generator, when required. We also provide multi-
view image results and more examples in Supplementary.

Src Ref (1) Ref (2) Ref (3) Hair (1) Eyes (2) Lips (3)

Figure 13. Simultaneous editing results.

Generalizing to class-agnostic edits. Given the impor-
tance of large reconstruction models [11, 29, 32, 37, 38, 65,
68, 79], we extend our method to arbitrary object edits using
the triplanes of LN3Diff and InstantMesh [37, 68] in Fig. 1,
proving the potential capabilities of our method.

5. Conclusion
In conclusion, our work presents a comprehensive frame-
work for reference-based, 3D-aware image editing, lever-
aging the unique capabilities of triplanes. Through spatial
disentanglement and fusion learning, we achieve seamless
integration of reference attributes while preserving the iden-
tity of the input image. We have shown our method’s effec-
tiveness through extensive qualitative and quantitative ex-
periments. Our approach fills a crucial gap by offering a
unified and generalizable solution.

Limitations. Our approach relies on the capabilities
of EG3D, AG3D, PanoHead, LN3Diff and InstantMesh,
which may struggle with background generation and high-
quality reconstruction. Consequently, in some instances,
rich background details may not be fully presented (row 4
on Fig. 6). However, this can be mitigated by not relying on
the generator for background generation.

Future work. Extending our reference-based editing
approach beyond triplanes using large reconstruction mod-
els [11, 32, 38, 65, 79] is an underexplored path. Specif-
ically, on DiT-based approaches, we believe that the refer-
ence and source image tokens can be processed jointly, and
the masks created via gradient accumulation can be applied
onto self-attention layers for implicit fusion. We think that
this can also eliminate the necessity for a canonical space
where the source and reference features must be aligned, as
the attention mechanism can handle misalignment easily.
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