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Figure 1. Improving pose estimation by interpolating frames using a video model. Given two images of a scene with almost no overlap, we aim to
recover their relative camera pose. Without being able to rely on visual correspondences, existing methods struggle in this setting (left). We propose to
use an off-the-shelf video generation model to interpolate a video connecting the two images. Augmented with the frames generated by the video model,
existing pose estimators (e.g. DUSt3R [60]) are able to more accurately recover the correct pose (right).

Abstract

Pairwise pose estimation from images with little or no
overlap is an open challenge in computer vision. Existing
methods, even those trained on large-scale datasets, strug-
gle in these scenarios due to the lack of identifiable corre-
spondences or visual overlap. Inspired by the human ability
to infer spatial relationships from diverse scenes, we pro-
pose a novel approach, InterPose, that leverages the rich
priors encoded within pre-trained generative video models.
We propose to use a video model to hallucinate interme-
diate frames between two input images, effectively creat-
ing a dense, visual transition, which significantly simplifies
the problem of pose estimation. Since current video models
can still produce implausible motion or inconsistent geom-
etry, we introduce a self-consistency score that evaluates
the consistency of pose predictions from sampled videos.
We demonstrate that our approach generalizes among three
state-of-the-art video models and show consistent improve-
ments over the state-of-the-art DUSt3R baseline on four di-
verse datasets encompassing indoor, outdoor, and object-
centric scenes. Our findings suggest a promising avenue for
improving pose estimation models by leveraging large gen-

erative models trained on vast amounts of video data, which
is more readily available than 3D data. See our project
page for results: Inter-Pose.github.io.

1. Introduction

Consider the classroom in Fig. 1. We, as humans, can rea-
sonably guess the spatial relationship between the two im-
ages, recognizing that the table on the left side of the first
image is the same as the table on the right side of the sec-
ond image. Even though the images are taken from view-
points with almost no overlap, we leverage our prior knowl-
edge about typical classroom layouts to infer this connec-
tion. This task of determining the relative pose between two
images is a core component of all pose estimation pipelines
and a pre-requisite for most tasks in 3D computer vision.

Traditional approaches to pairwise pose estimation rely
on identifying and matching features between an image
pair [35] to compute the relative geometric transforma-
tion [18]. While effective for images with significant over-
lap and texture, these methods struggle when faced with
drastically different viewpoints, as seen in our classroom
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example. Recent advances in deep learning have led to more
robust pose estimators. The groundbreaking DUSt3R [60]
model is trained on a mixture of several large-scale 3D
datasets and demonstrates impressive performance and gen-
eralization ability. However, even such a sophisticated
method struggles with extreme viewpoint changes where
establishing correspondences becomes impossible.

Unlike 3D understanding models like DUSt3R, video
models can be pre-trained on vast amounts of web-scale
video data, orders of magnitude larger than 3D datasets.
The scale of the data allows for training models that learn
significantly more powerful priors of the visual world com-
pared to 3D understanding models. For instance, state-
of-the-art video models can generate videos with complex
camera motions moving through a scene, reflections on
shiny materials, and dynamic subjects undergoing complex
interactions, and they can be prompted by images or text.
Our goal is to tap into this extracted knowledge for down-
stream scene understanding tasks, like pose estimation.

An exciting application of such generative video mod-
els is to generate videos that interpolate between two given
key frames. Thanks to the learned visual prior, the gen-
erated interpolated videos can display plausible, 3D con-
sistent camera motions that transform one video into an-
other. We observe that such hallucinations provide an ex-
planation of the the scene. In this paper, we propose Inter-
Pose, which demonstrates that feeding generated interpo-
lated frames along with the original input pair to state-of-the
art pose estimation methods can improve their robustness
and accuracy over using the original pair alone.

In some cases, generated videos contain visual inconsis-
tencies, like morphing or shot cuts, that can degrade pose
estimation performance. One approach is to sample multi-
ple video interpolations, with the hope that one displays a
plausible interpretation of the scene that is 3D consistent.
However, how do we tell whether a video sample is good?

We address this by introducing a self-consistency score
to evaluate the reliability of the predicted pose for a given
video. Our method samples different sets of frame indices
from the interpolated video, and computes multiple pose es-
timates using these frames together with the input image
pair, creating multiple pose estimates per sampled video.
An ideal pose prediction comes from a video whose pose es-
timates are invariant to the specific sampled frame indices,
e.g., whose pose estimates are tightly clustered, and among
the pose estimates from that video, one that is close to the
other estimates, e.g., the centroid or medoid.

Although simple, we demonstrate the efficacy of our
method on challenging input pairs extracted from four di-
verse datasets, including indoor, outdoor and object-centric
scenes. In summary, our key contributions include:
• we demonstrate for the first time that a generative video

model can improve pose estimation by acting as a world

prior, improving on the results of a state-of-the-art pose
estimator (DUSt3R);

• we present a new benchmark of challenging image pairs
with small to no overlap across four different datasets en-
compassing outdoor scenes, indoor scenes, and object-
centric views;

• and we propose a simple-yet-effective way to score the
self-consistency of estimated poses from interpolated
videos that generalizes across three different publicly
available video models.

2. Related work
2.1. Generative Video Models

Early efforts to build video generators based on GANs [29,
44, 54, 58] and VAEs [13, 22, 56] had limited visual fi-
delity. More recently, diffusion models [19, 49, 50] have
revolutionized generative image [39, 40, 43] and video gen-
eration. Earlier diffusion-based models often made predic-
tions directly in pixel space [20, 21, 48]. Such architec-
tures made it computationally expensive to predict high res-
olution image frames. To alleviate this issue, subsequent
works looked at making predictions in the latent space of
an autoencoder [3, 7, 17, 57, 62]. Since then a variety
of video models has been released that demonstrates near-
photorealism at high resolution. These models are only
available behind a paywall [28, 36, 42] or are not available
to the public at all [9]. In our work, we evaluate both public
and commercial video models.

2.2. Relative Pose Estimation

The classic approach to computing the pose between two
images is to extract image features [5, 35, 41], find corre-
spondences [37], and then compute the fundamental ma-
trix [18, 34, 38] while rejecting outliers [16]. Learning-
based methods have significantly improved each of these
components, providing better features [14, 55] and match-
ers [24, 26, 32, 45] or even learning the correspondences
directly [51–53]. While these bottom-up approaches are ca-
pable of achieving pixel-perfect alignment, their reliance on
correspondences make them brittle and require salient vi-
sual overlap between the images.

With the advent of deep learning, top-down pose esti-
mation models trained on large-scale 3D datasets can learn
to estimate relative pose between images with wide base-
lines [6, 10]. A key challenge is that the relative pose
is often ambiguous. Recent works have explored han-
dling pose estimation probabilistically using factorized dis-
tributions [11], energy-based models [31, 64], or diffu-
sion [59, 65]. More recent approaches have transitioned
to distributed ray- or point-based representations of pose
to great effect [4, 30, 60, 65, 66]. Because these methods
rely on 3D datasets with limited diversity, finding data for
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Figure 2. Common failure modes of video models. We show some failure
modes of interpolating between two images. In the first row, a microwave
suddenly appears over the sink. In the second and third row, the video
model morphs and blends images without consistent changes to the under-
lying scene geometry. In the fourth row, the object’s appearance changes
in an unrealistic way.

generalization across all scene distributions is an open chal-
lenge. DUSt3R [60] leverages CroCo pre-training [61] and
a transformer architecture to predict per-image point maps
relative to the camera coordinate frame of the first image.
Subsequently, camera poses can be recovered from these
predicted point maps. MicKey [4] and MASt3R [30] fur-
ther improve pose estimation by incorporating local fea-
ture extraction and enhancing feature matching. We view
these methods as complementary to our work and in fact,
we make direct use of DUSt3R [60] and MASt3R [30] as
video models can bridge the distribution gap but cannot re-
cover poses by themselves.

3. Method
Given two images IA and IB , our goal is to recover their
relative camera pose. We introduce InterPose, which lever-
ages off-the-shelf video models to generate the intermediate
frames between the two images. By using these generated
frames alongside the original image pair as input to a cam-
era pose estimator, we provide additional context that can
improve pose estimation compared to just using the two in-
put images. A key challenge is that the generated videos
may contain visual artifacts or implausible motion. Thus,
we generate multiple videos which we score using a self-
consistency metric to select the best video sample.

3.1. Preliminaries

Pose parameterization. Given two images IA and IB as-
sociated with ground truth world-to-camera transformations
TA and TB :

TA =

[
RA tA
0 1

]
, TB =

[
RB tB
0 1

]
, (1)

we aim to recover their relative pose Trel = TBT
−1
A , where

the relative rotation and translation are Rrel = RBR
−1
A and

trel = tB −RreltA, respectively.

The distance between two pose transforms T1 and T2 can
be computed by summing their geodesic rotation and trans-
lation angle error. Note that translation angle error makes
the distance invariant to scale, and is typically used for pose
evaluation.

dist(T1, T2) = distR(R1, R2) + distt(R1, R2), (2)

distR(R1, R2) = arccos

(
Trace(R2R

⊤
1 )− 1

2

)
, (3)

distt(t1, t2) = arccos

(∣∣∣∣ t1
∥t1∥

· t2
∥t2∥

∣∣∣∣) . (4)

Camera pose estimator. In the following, we assume a
black-box camera pose estimator, that given N images re-
turns estimated relative poses across all N images. In prac-
tice, we use DUSt3R [60] and MASt3R [30], but other
options could be possible, including non-learning based
ones like COLMAP [46, 47]. While the core algorithms
of DUSt3R and MASt3R are designed for pairwise image
matching, we utilize their multi-view extensions, which per-
form post-processing optimization over point clouds and
poses to estimate poses for an entire image set. Henceforth,
we refer to these multiview extensions as DUSt3R and
MASt3R. We denote the pose estimators as:

fpose({IA, IB , I1, . . . , IN−2}) = T̂BT̂
−1
A = T̂ (5)

that takes the input pair IA, IB , with optionally additional
frames Ii, and outputs the relative pose from IA to IB .
Generative video models. We use a generative video
model fvid capable of interpolating between image frames:

fvid(IA, IB , p) = [I1, I2, . . . , IN ] (6)

where I1=IA, IN=IB , and p is a text prompt. We consider
3 video models: DynamiCrafter [62], Runway Gen-3 Alpha
Turbo [42], and Luma Dream Machine [36]. We generate
multiple samples per input pair (IA, IB) by providing dif-
ferent prompts or orderings of the input pair.

3.2. Self-consistency Score

Video models generate wildly varying results for similar
inputs. This variability is particularly present when do-
ing video interpolation, where a number of camera paths
and scene configurations are possible, especially in the low-
or no overlap case. Furthermore, the quality of the dif-
ferent samples varies a lot, and artifacts and inconsisten-
cies (e.g., objects appearing/disappearing) are common, as
shown in Fig. 2. To address these issues, we propose a two-
pronged approach: 1) we generate n different videos to ac-
count for inherent variability, and 2) we develop a score to
identify the video that exhibits the most consistent structure.
Determining consistent videos. Consider a low-quality
video that has rapid shot-cuts or inconsistent geometry

16766



Real video

Gen. Video 0
Dmed = 53.29

Gen. Video 1
Dmed = 3.31

Image A Image BFrames

(a) We take images A and B and generate interpolated videos, (two, Video
0 and Video 1, are shown here for illustration). In this case, the ground
truth real video is available, and so we show it at the top for comparison.
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(b) Visualization of predicted rota-
tions using randomly sampled sub-
sets of each generated video on the
unit sphere. Note that the samples
from Video 1 cluster tightly, and so
appear as nearly a single point.
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(c) Visualization of predicted trans-
lation directions using randomly
sampled subsets of frames from
Video 0 and Video 1.

Figure 3. Self-consistency scores for poses derived from generated
videos. (a) From a pair of input frames A and B, we generate several
candidate videos from a given video interpolation method. For each video,
we sample subsets of frames and compute a relative pose from A to B
from each subset ((b) and (c)). We then compute a medoid distance be-
tween these samples as a self-consistency score for that video, shown to
the left of each video in part (a). In this case, Video 0 contains artifacts,
and so yields an inconsistent set of poses (and a high medoid distance),
which Video 1 is much more natural and produces a more consistent set of
poses and a lower medoid distance.

(Fig. 2). Selecting different subsets of frames from that
video would likely produce dramatically different pose es-
timations. We operationalize this concept by measuring a
video’s “self-consistency.”

For a given sampled video, we randomly select m sets
of k frames (always including the original input images IA
and IB), and calculate the predicted relative pose for each
frame subset:

fpose({I}(i)) = T̂ (i). (7)

We quantify video inconsistency using the medoid distance:

Dmed = min
i

1

m− 1

∑
j ̸=i

dist
(
T̂ (i), T̂ (j)

)
. (8)

Intuitively, a low medoid distance indicates that every sub-
set of frames produces roughly the same relative pose be-
tween IA and IB , suggesting a consistent video. We illus-
trate this concept in Fig. 3.

In some degenerate cases, a video that is generated
poorly (e.g. only has blurry or uninformative frames) could

still have low medoid distance if it consistently makes bla-
tantly incorrect predictions (e.g., always 180 degrees apart).
Thus, we found it helpful to bias the metric so that the
medoid should not deviate too far from the pose estimated
from the original input images alone:

Dtotal = Dmed + dist
(
T̂med, fpose({IA, IB})

)
, (9)

where T̂med is the medoid relative pose.
Putting it all together. We select the video with the low-
est Dtotal, and output as the consensus pose the predicted
medoid relative pose T̂med.

3.3. Method Overview and Implementation Details

Given a pair of images, we first generate n videos using a
video generative model. For each generated video, we sam-
ple subsets of k frames (2 original input images and k − 2
generated frames) to compute candidate poses using a pose
estimator (e.g., DUSt3R or MASt3R). This process is re-
peated m times, yielding m candidate poses per video. Fi-
nally, we select the most reliable prediction based on the
medoid distance metric among all candidates.

For each image pair IA and IB , we use GPT-4o [1] to
generate two different captions to describe the content of the
input image (“Use one sentence to caption these images of
the same static scene” and “Use simple language to specif-
ically include details that describe the same scene shown in
these two images in one sentence”). We then use the cap-
tions to generate interpolated videos for both the original
(IA to IB) and the flipped order (IB to IA). We found this
flipping to be crucial because video models are often biased
toward producing videos that pan to the right as opposed to
the left (see Fig. 6).

These generated video prompts guide the video models
to produce coherent intermediate frames (see Fig. 4). Us-
ing each of the four generated prompts, we run each video
model to interpolate in the specified direction, resulting in
a total of n = 4 generated videos per image pair. For each
generated video, we sample subsets of k = 5 images (2
original input, 3 generated) to compute candidate poses. In
particular, we sample subsets of frames randomly 10 times
and once with uniform spacing, for a total of m = 11 sam-
pled frame subsets per video. For each sample, the k = 5
frames are provided as input to DUSt3R, and from the re-
sulting poses we compute the medoid as described above.

4. Experiments
4.1. Dataset and Benchmark

We evaluate our method, InterPose, on challenging inputs
from four datasets annotated with ground truth 3D cam-
era poses, covering a diverse range of indoor and outdoor
setups. For each dataset, we selected image pairs by ran-
domly sampling frames within a specified delta yaw range
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Figure 4. Qualitative comparison of the three video models: DynamiCrafter (DC), Runway (RW), and Dream Machine (DM), using the same text prompt
for each video model. Top left: a pair of images from the Cambridge Landmarks dataset. Prompt: Dozens of bicycles are parked along the street in front
of old brick and stone buildings, with a person walking by and trees in the background. Bottom left: a pair of images from ScanNet. Prompt: A cozy café
corner features wooden chairs, framed sports photos, and a TV screen. Top right: a pair from DL3DV-10K. Prompt: A peaceful morning stroll along a
wooden boardwalk surrounded by lush, sunlit greenery. Bottom right: a pair from NAVI. Prompt: A wooden toy figure with gray ears and green wheels sits
next to a small yellow school bus on a black pedestal in an outdoor paved area.

(see below). This selection ensures challenging pose esti-
mation scenarios with sufficiently large viewpoint changes.
Due to the prohibitive cost of running commercial video
models, we limit the evaluation to at most 300 image pairs
per dataset. We will release the selected indices for repro-
ducibility.

Cambridge Landmarks [27]: This outdoor, scene-scale
video dataset captures streets and building facades in Cam-
bridge. We utilize a subset of 290 image pairs from [6]
with yaw changes between 50° and 65°. These pairs feature
small to no overlap, with motions characterized predomi-
nantly by rotation but minimal camera translation. Thus,
we report only rotation metrics for this dataset.

ScanNet [12]: An indoor, scene-scale video dataset cap-
turing various indoor environments. We randomly selected
300 image pairs from test 75 scenes, with yaw changes in
the range of 50° and 65°.

DL3DV-10K [33]: A scene-scale, center-facing video
dataset comprising over 10K videos from 65 types of point-
of-interest locations. We randomly selected 300 pairs from
300 outdoor scenes, each with yaw changes ranging from
50° to 90°.

NAVI [23]: An object-centric, center-facing dataset that in-
cludes video and multiview images captured using various
camera devices under different environmental conditions.
We randomly selected 300 pairs from 36 objects, each with
yaw changes between 50° and 90°.

While all datasets feature significant viewpoint changes,
the center-facing nature of DL3DV-10K and NAVI leads to
large overlaps in the view frustrums between input views.
Our experiments indicate that these center-facing datasets
are significantly easier for pose prediction than ScanNet and
Cambridge Landmarks, which have many outward-facing
camera viewpoints.

4.2. Experimental Variants

4.2.1 Baselines and Our Method

We compare our method against several pose estimators:
SIFT [35] + Nearest Neighbors: As a classic geometric
baseline, we match SIFT features using nearest neighbors
and RANSAC [16] to filter outliers. Using ground truth
intrinsics, we compute the essential matrix, from which we
extract relative rotations and translations using OpenCV [8].
LOFTR [51]: LOFTR uses a transformer to learn semi-
dense matches between images. As with the SIFT baseline,
we filter outliers and use the correspondences to estimate an
essential matrix.
DUSt3R [60]: DUSt3R is a recent method for pose estima-
tion and 3D reconstruction from unconstrained image col-
lections. From any number of input images, DUSt3R re-
constructs a dense pointmap for each pair of images and
then jointly optimizes the camera poses and to best align
the point clouds.
MASt3R [30]: MASt3R, a recent follow-up method to
DUSt3R, follows a similar backbone and training scheme
as DUSt3R but incorporates additional heads to produce lo-
cal features and facilitate feature matching. With these en-
hancements, MASt3R can be more accurate than DUSt3R,
particularly when sufficient correspondences are available.
Ours (DUSt3R / MASt3R): We use the relative transfor-
mation predicted from the generated video with the lowest
total medoid distance (see Sec. 3.2). We apply this to pose
estimators DUSt3R and MASt3R.

4.3. Video Models

We evaluate three video models (visualized in Fig. 4):
DynamiCrafter [62]: DynamiCrafter is an open-source
image animation model enabling video generation and
keyframe interpolation. DynamiCrafter is based on a pre-
trained text-to-video diffusion model and finetuned on We-
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Figure 5. Qualitative results of pose estimation from DUSt3R taking only image pair as input and taking additional video frames. We show the
input image pair in the first two columns, and the DUSt3R prediction using the image pair alone in the third column. The 3D reconstruction shows the
predicted point maps and camera poses for the input images, with the first camera denoted in blue, the second camera in gold, and its corresponding ground
truth camera in red, best seen digitally. In columns four to six, we visualize interpolated frames from three different video models. In the last column, we
show the DUSt3R pose predictions made using all 5 images, but we are only showing the poses and pointmaps corresponding to the input images for clarity.
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Cambridge Landmarks ScanNet

Pose estimator Input data MRE↓ Racc ↑ AUC30 ↑ MRE↓ MTE↓ Racc ↑ tacc ↑ AUC30 ↑
5° 15° 30° 5° 15° 30° 5° 15° 30°

SIFT+N.N.

Pair

97.64 15.17 22.41 24.48 20.49 112.95 48.99 2.06 3.44 5.50 23.02 25.09 31.62 1.82
LOFTR 30.30 31.38 56.55 70.00 51.63 64.46 45.49 8.33 17.00 22.00 27.00 28.33 35.33 6.43
DUSt3R 13.28 63.45 87.24 88.97 77.23 21.31 24.72 65.33 76.33 79.00 48.33 68.33 73.67 60.34
MASt3R 36.55 28.62 64.83 74.14 55.69 24.35 17.93 44.00 73.33 79.67 38.00 67.33 77.67 55.10

Ours (DUSt3R)
DynamiCrafter 12.70 65.17 88.97 90.34 79.00 18.96 16.42 68.00 82.33 84.33 48.67 71.67 80.33 62.14
Runway 10.78 64.83 91.03 94.14 80.59 19.93 16.31 67.67 81.33 84.33 51.00 72.33 80.67 61.83
Dream Machine 11.96 57.93 89.66 92.76 78.67 17.65 15.88 68.67 81.33 85.33 47.67 71.33 82.33 63.06

Ours (MASt3R)
DynamiCrafter 31.43 34.83 70.00 76.55 60.03 21.97 16.48 53.00 75.67 80.00 40.67 70.33 80.00 57.90
Runway 29.04 42.07 72.76 78.97 63.57 21.68 15.28 50.33 75.67 81.67 41.00 70.00 83.33 57.19
Dream Machine 27.47 34.48 74.14 80.69 63.14 19.91 15.05 53.00 78.67 83.00 41.00 70.33 82.33 58.28

Table 1. Camera pose estimation results on outward-facing datasets (Cambridge Landmarks and ScanNet). We evaluate the pairwise pose estimation
task using our method based on two pose estimators DUSt3R and MASt3R. Our method consistently outperforms both DUSt3R and MASt3R when using
input pairs alone across three video generators.

DL3DV-10K NAVI

Pose estimator Input data MRE↓ MTE↓ Racc ↑ tacc ↑ AUC30°↑ MRE↓ MTE↓ Racc ↑ tacc ↑ AUC30°↑
5° 15° 30° 5° 15° 30° 5° 15° 30° 5° 15° 30°

SIFT+N.N.

Pair

76.64 46.80 18.06 28.09 33.44 31.77 33.11 36.45 12.11 107.46 45.10 4.67 6.67 7.33 16.33 17.00 19.00 3.20
LOFTR 35.92 41.76 37.67 52.33 61.00 40.00 41.00 45.33 23.53 71.34 51.21 6.67 14.33 19.00 24.67 25.33 29.33 4.88
DUSt3R 10.72 13.08 39.67 87.33 94.00 55.33 83.67 89.00 66.99 8.65 7.88 68.67 92.67 94.67 69.00 92.33 95.00 78.66
MASt3R 4.13 3.88 83.67 98.00 99.33 88.33 95.33 97.00 87.22 5.59 5.23 71.67 94.33 98.00 69.67 96.00 98.00 80.84

Ours (DUSt3R)
DynamiCrafter 10.02 9.13 38.33 87.33 95.67 58.33 87.00 93.00 67.97 8.26 6.57 68.00 92.67 95.67 69.00 91.67 96.67 78.78
Runway 9.49 8.81 41.33 90.33 96.67 57.33 86.67 92.33 69.44 8.08 6.24 67.67 93.67 96.00 67.67 93.33 97.00 79.02
Dream Machine 9.13 8.72 41.33 90.33 96.33 57.67 86.33 94.67 69.11 7.85 6.51 69.33 93.67 95.33 71.00 93.00 95.67 79.06

Ours (MASt3R)
DynamiCrafter 4.49 4.04 81.33 98.67 99.33 86.33 95.67 97.67 85.86 5.29 5.61 69.00 96.67 98.67 63.00 95.67 98.67 80.21
Runway 4.17 4.01 81.67 99.00 99.33 87.33 96.00 97.33 86.79 5.28 5.20 72.67 96.33 98.67 69.00 97.00 98.67 81.63
Dream Machine 4.30 4.21 80.67 99.00 99.33 85.33 94.67 97.00 85.88 5.66 5.45 70.00 97.33 98.33 70.00 96.00 98.33 81.42

Table 2. Camera pose estimation results on center-facing datasets (DL3DV-10K and NAVI). MASt3R demonstrates significantly improved performance
on these center-facing datasets compared to outward-facing ones. We evalute our method based on two pose estimators DUSt3R and MASt3R. Our method
obtains comparable results on the DL3DV-10K dataset and slightly better performance on the NAVI dataset, demonstrating that using a video model does
not hinder performance even when DUSt3R and MASt3R are already strong.

bVid10M [2] for video generation from images and text
prompts. Given an image pair and text prompt, Dynami-
Crafter generates 16 frames of resolution 320× 512.
Runway [42]: Runway Gen-3 Alpha Turbo model is a com-
mercial video generation model to generate video from text
and images. The output video has 112 frames of 1280×768.
Luma Dream Machine [36]: Luma Dream Machine is a
commercial video generation model that generates video
from text and images. The generated video is 114 frames
with the same aspect ratio as the input, and approximately
one megapixel resolution.

In total, we spent $5,500 on generating prompts and run-
ning the commercial video models.

4.4. Metrics

For each pair of images, we evaluate the pose accuracy. We
compute the geodesic rotation error and translation angle er-
ror using eqs. (3) and (4) respectively. We report the mean
rotation error (MRE) and mean translation error (MTE) in
degrees. We also evaluate the percentage of rotation (Racc)
and translation (tacc) errors that are within 5°, 15°, and 30°
of the ground truth. Finally, we report the Area-Under-
Curve (AUC30) from 0° to 30° at 1° thresholds for rotation

and translation accuracy following [25, 59].

4.5. Quantitative Results

In Table 1 and Table 2, we present a quantitative evaluation
of camera pose estimation on challenging subsets of image
pairs on four diverse datasets.
Baseline comparison. Feature matching-based methods
like SIFT+NN and LOFTR struggle when the input pair
shares little-to-no overlap as they rely on visual corre-
spondences between overlapping regions. DUSt3R and
MASt3R show significant improvements over SIFT+NN
and LOFTR since they were trained on diverse 3D data
without relying solely on explicit feature correspondences.
Performance with Generative Video Models. We find
that our method of combining generative video models with
a pose estimator consistently enhances performance across
all datasets. Taking the generated frames as additional in-
put to DUSt3R or MASt3R and selecting the most reliable
prediction with our proposed self-consistency score outper-
forms relying on the input frame pair alone. This holds for
all three video models for both rotation and translation.

On outward-facing datasets such as Cambridge Land-
marks and ScanNet (Table 1), our method significantly
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Figure 6. Left-to-right bias. We observed that video models exhibit a tendency to generate similar camera motions (e.g., both left-to-right pans) regardless
of the intended direction of interpolation (i.e., transitioning from image A to image B or from image B to image A). This suggests an underlying bias within
the model. To mitigate this bias, we swap the order of input images during the generation process.

reduces pose estimation errors. For example, when us-
ing our method with the DUSt3R pose estimator on Cam-
bridge Landmarks, the mean rotation error decreases from
13.28° to 10.78° using Runway’s model, while on ScanNet,
mean rotation and translation errors decrease from (21.31°,
24.74°) to (17.65°, 15.88°) using Dream Machine. Many
image pairs in these datasets feature outward-facing cam-
era viewpoints with no overlap, which causes MASt3R to
perform worse than DUSt3R, particularly on Cambridge
Landmarks. In the supplementary material, we visualize
scenarios where MASt3R fails completely. Despite this,
our method still achieves improvements on both datasets
when MASt3R is used as the pose estimator. Specifically,
it reduces the mean rotation error from 36.55° to 27.47° on
Cambridge Landmarks and increases the AUC at 30° from
55.10% to 58.28% on ScanNet when using video frames
generated by Dream Machine.

On center-facing datasets such as DL3DV-10K and
NAVI, the improvements are less pronounced but still
present, as illustrated in Table 2, since these datasets in-
herently contain overlapping regions between input views.
On the DL3DV-10K dataset, our method using the DUSt3R
pose estimator reduces the mean translation error from
13.08° to 8.72°, and increases tacc@30° from 89% to
94.67% using frames from Dream Machine. On the NAVI
dataset, the DUSt3R pair only baseline already works well
out of the box, but our method using video frames still re-
duces both mean rotation and translation errors by approxi-
mately 1° each. Because of the overlapping regions in these
datasets, MASt3R benefits from the ability to leverage reli-
able matches, resulting in better performance than DUSt3R.
Given the almost perfect performance of MASt3R on these
datasets, our method, which takes video frames as addi-
tional input, achieves comparable results to MASt3R on
the DL3DV-10K dataset when using only image pairs, and
shows slight improvements on the NAVI dataset, decreas-
ing the mean rotation and translation errors from (5.59°,
5.23°) to (5.28°, 5.20°) when using video frames generated
by Runway.

We also evaluate an additional open-source video model

CogVideoX-Interpolation [15, 63], ablate variants of our
method, and evaluate the effectiveness of our method across
different yaw changes in the supplement.

4.6. Qualitative Results

In Fig. 5, we visualize qualitative results of using DUSt3R
on the input pairs alone compared with using selected gen-
erated frames from a video model. We find that all 3 video
models are capable of generating informative intermediate
images. We also visualize more video frames from all three
video models in Fig. 4.

Please refer to the supplementary materials for more
videos, interactive DUSt3R point clouds, and comparisons.

5. Conclusion
In this paper, we did a preliminary investigation into how a
video model can be used to help pose estimation. We de-
veloped a heuristic for measuring the self-consistency of a
generated video using a medoid-based selection algorithm,
and we found that the additional context from the generated
videos consistently helped a state-of-the-art pose estimator.
This finding holds for the 3 recent publicly available video
models that we were able to test. There is still significant
room for improvement. That our oracle performs so much
better than all other approaches reveals that finding a better
video selection strategy is a fruitful area of research. We
also found a number of limitations in current-generation
video models. First, they are quite expensive and slow to
run, which limited the scope of our investigation. Second,
the videos still could not guarantee multi-view consistency.
Although our medoid-distance-selection strategy helped al-
leviate this issue, sometimes all generated videos were low
quality. Finally, we found that the video models are quite
sensitive to minor changes such as prompts, camera intrin-
isics, and image aspect ratios.
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