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Abstract

Top-leading solutions for Video Scene Graph Generation
(VSGG) typically adopt an offline pipeline. Though demon-
strating promising performance, they remain unable to han-
dle real-time video streams and consume large GPU mem-
ory. Moreover, these approaches fall short in temporal rea-
soning, merely aggregating frame-level predictions over a
temporal context. In response, we introduce DIFFVSGG, an
online VSGG solution that frames this task as an iterative
scene graph update problem. Drawing inspiration from La-
tent Diffusion Models (LDMs) which generate images via
denoising a latent feature embedding, we unify the decod-
ing of object classification, bounding box regression, and
graph generation three tasks using one shared feature em-
bedding. Then, given an embedding containing unified fea-
tures of object pairs, we conduct a step-wise Denoising on
it within LDMs, so as to deliver a clean embedding which
clearly indicates the relationships between objects. This
embedding then serves as the input to task-specific heads
for object classification, scene graph generation, etc. DIF-
FVSGG further facilitates continuous temporal reasoning,
where predictions for subsequent frames leverage results of
past frames as the conditional inputs of LDMs, to guide the
reverse diffusion process for current frames. Extensive ex-
periments on three setups of Action Genome demonstrate
the superiority of DIFFVSGG.

1. Introduction

Video Scene Graph Generation (VSGG) is receiving grow-
ing attention as it benefits a wide range of downstream tasks
(e.g., video caption [34, 91], video retrieval [31, 50], and
visual question answering [49, 87]). To deliver a holistic
understanding of the underlying spatial-temporal dynamics
within scenes, this task aims to construct a sequence of di-
rected graphs where nodes represent objects and edges de-
scribe inter-object relationships (a.k.a., predicate).
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Figure 1. (a) Existing VSGG solutions typically adopt an offline
training pipeline, dividing the problem into various components:
object detection, temporal association, and contextual aggregation.
(b) DIFFVSGG introduces a new paradigm that performs spatial-
temporal reasoning directly as each frame is processed sequen-
tially, enabling progressive, online updates to the scene graph.

Top-leading VSGG approaches typically adopt an offline
pipeline [30, 69, 94], where scene graphs are generated in-
dependently for each frame and then aggregated along the
temporal dimension (i.e., Fig.1(a)). Though demonstrating
strong performance, they require full video sequences as in-
puts, which faces challenges in processing long videos con-
taining hundreds of frames due to GPU memory constraints,
and is unable to handle real-time video streams for applica-
tions like autonomous driving and augmented reality[100].
Moreover, the dealing of temporal cues focuses solely on
the global aggregation of frame-level predictions via Trans-
form blocks. This falls short in the reasoning over tem-
poral space, which is essential for modeling the dynamic
changes of interactions between subjects and objects, and
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potentially benefits predicate prediction. Though a surge of
early work has sought to facilitate explicit reasoning over
the temporal domain via messaging passing[90] or spatial-
temporal graph[74], a large performance gap remains when
compared to these offline temporal aggregation approaches.

To address these challenges, we propose DIFFVSGG, a
high performance online approach for VSGG in leverage of
Latent Diffusion Models (LDMs)[77, 81] (i.e., Fig.1(b)). In
VSGG, the scene graph is dynamically evolved throughout
the progression of video frames, with nodes and edges be-
ing continuously updated to precisely reflect the latest video
content. Such an iterative update process shares a similar
spirit of LDMs, which progressively remove noise to gen-
erate new samples from data distributions. Naturally, our
motivation is to develop a VSGG model that aligns with the
denoising principle of LDMs to iterative refine scene graphs
along the temporal dimension, facilitating online temporal
reasoning within this reverse diffusion process.

To achieve this, we tackle VSGG from a unified per-
spective, organizing the decoding of object classification,
bounding box regression, and graph generation three tasks
from a shared feature embedding, which serves as the input
and output of the Denoising U-Net. Concretely, from the
spatial perspective, given the object detection results from
each frame, multiple object pairs can be constructed. Then,
for each object pair, we integrate i) the visual feature of two
objects, ii) the union feature between, and iii) the locations
of two objects, into a unified embedding. This embedding
serves as the input to the denoising U-Net, after steps of
denoising, a clean embedding clearly describing the objects
as well as their inter-object relationships can be delivered.
From the temporal perspective, DIFFVSGG conducts frame-
by-frame reasoning where the result for each subsequent
frame is delivered by iteratively refining the predictions
of previous frames via reverse diffusion. Specifically, ob-
ject positions and contextual information from prior frames
are leveraged as conditions to guide the denoising of the
shared feature embeddings for current frames. This encour-
ages continuous temporal reasoning as the video progresses,
allowing DIFFVSGG to effectively capture long-term spa-
tiotemporal dependencies and adapt to complex motion pat-
terns in an online manner. To further unlock the potential of
LDMs, we build a memory bank to store positions for each
object. In this way, motion information including accelera-
tion and deceleration of object can be explicitly calculated.
These motion cues are integrated into conditional inputs for
the reverse diffusion step, which can help infer relationships
such as following or approaching between objects.

DIFFVSGG distinguishes itself in several aspects: First,
it tackles VSGG in an online manner to continuously ad-
dress an unlimited number of frames, while being friendly
to devices with limited GPU memory. Second, the predic-
tion of each video is implemented as a reverse diffusion pro-

cess, which elegantly encodes spatial and temporal reason-
ing into the Denoising step. Third, the temporal cues (i.e.,
historic predictions) are propagated into subsequent frames
as conditions and participating in the prediction, while prior
work simply aggregates predictions of all frames along the
temporal dimension. Fourth, the learning of object clas-
sification, bounding box regression, and graph generation
three tasks are jointly optimized with a shared feature em-
bedding. Such a unified learning paradigm allows for the
solving of VSGG from a global view, and avoids error made
in one task propagating to subsequent tasks. Fifth, this uni-
fied decoding simplifies the VSGG pipeline and eliminates
cumbersome handcrafted modules such as non-maximum
suppression (NMS), and entity matching across frames.

To the best of our knowledge, DIFFVSGG is the first
work that treats the VSGG task as an iterative denoising
problem along the temporal dimension. Extensive experi-
ments on Action Genome (AG) [40] demonstrate the superi-
ority of our proposed method. Notably, DIFFVSGG achieves
SOTA results across all three setups and surpasses the top-
leading solutions (e.g., DSG-DETR[30]) by 3.3 in terms of
R@10, highlighting the great potential of utilizing diffusion
models for visual relation understanding in videos.

2. Related Work
Scene Graph Generation (SGG). SGG involves detecting
object instances and classifying their pairwise visual rela-
tions in an image, which is essential for comprehensive vi-
sual tasks [7, 8, 11, 53, 97, 98, 117, 118]. Recent SGG ap-
proaches seek to comprehend visual context by aggregating
spatial context through various strategies, including explicit
message passing[14, 20, 56, 57, 103, 112], graph structure
modeling [83, 85, 99, 106, 110], external knowledge inte-
gration[3, 14, 33, 35, 109, 111], and transformer-based net-
works[12, 18, 23, 24, 43, 48, 55, 59, 64, 72, 79].

Extended from SGG, Video Scene Graph Generation
(VSGG) aims to ground visual relationships jointly in spa-
tial and temporal dimensions. Prior research primarily con-
centrates on addressing the long-tail distribution problem
observed in prominent benchmarks [40]. Numerous un-
biased approaches [16, 21, 46, 51, 54, 68, 86, 105] have
been devised to handle infrequent predicate classes arising
from this distribution. Furthermore, recent VSGG meth-
ods underscore the importance of spatial-temporal learn-
ing, and make use of the sequence-processing ability of
Transformer [2, 70, 84] to capture temporal continuity.
Nonetheless, these approaches often depend on complex
post-processing that decouples spatial and temporal learn-
ing into two independent steps, and simply emphasizes on
the consistent matching between frames.

In contrast, DIFFVSGG handles both spatial and tempo-
ral reasoning from a unified perspective, where the reason-
ing on temporal dimension is naturally achieved via utiliz-
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ing the spatial reasoning results of prior frames as the con-
ditions to guide predictions for the current frames.
Diffusion Models Beyond Image Generation. Diffusion
Models (DMs) have surpassed many other generative mod-
els in image generation [6, 22, 37, 38, 92, 104] by succes-
sively denoising images. Beyond image generation, DMs
inherently perform implicit discriminative reasoning while
generating data, which proves highly effective in visual
tasks that require complex relationship modeling and spa-
tiotemporal reasoning. Therefore, a surge of work has
adapted generative diffusion models for tasks including im-
age segmentation [1, 4, 5, 15, 32, 44, 93], object detec-
tion[13, 76, 102], object tracking[65, 66, 101], and monoc-
ular depth estimation[25, 67, 78, 116]. Recent research has
also utilizes DMs for more complex tasks that require high-
level visual understanding abilities such as visual-linguistic
understanding[47], scene generation[39], and human-object
interaction detection[41, 52]. The potential of DMs in pro-
cessing graph data has also been explored, encompassing
a range of advanced tasks. This includes early work em-
ploying score-based methods for generating permutation-
invariant graphs [42, 71], as well as recent approaches fo-
cused on enhancing graph neural networks [114, 115] and
advancing graph generation techniques[107].

In this work, we borrow the step-wise denoising ability
of latent diffusion models to enable spatial reasoning within
a single frame. This is achieved by iteratively refining the
union embeddings of object pairs, which serve to inform
the prediction for bounding boxes and predicate classes, etc.
On the other hand, temporal reasoning across frames is fa-
cilitated via conditional prompting, i.e., using predictions
of prior frames which contain rich location and inter-object
relationship cues to guide the denoising of current frames.
Temporal Reasoning in Videos.Reasoning within the tem-
poral dimension poses significant challenges for achieving
high-level comprehension in video-related tasks [9, 10, 27–
29, 61, 73, 108]. Recent advancements in video question
answering seek to tackle temporal reasoning by employ-
ing attention mechanisms [26, 82] or incorporating exter-
nal memory modules [45, 75] across video frames. In ad-
dition, to accurately capture the start, progression, and end
of an action, action recognition approaches [89, 95] model
complex motion patterns and dependencies in sequence.
Video object detection (VOD) [19, 62] focuses on accu-
rately capturing object trajectories, even in the presence of
occlusions and abrupt movements. The top-leading VSGG
solutions [30, 69, 94] instead aggregate predictions across
frames to maintain the temporal consistency of objects.

In summary, although existing work facilitates tempo-
ral reasoning from different perspectives and demonstrates
it effectiveness, the potential of diffusion models remains
largely underexplored. In fact, the sequential denoising in
time, where each step is informed by previous one, offers

a suitable tool to reconstruct the states for current frames
based on observations from past frames. This insight moti-
vates the proposal of DIFFVSGG, which tackles the VSGG
task via graph denoising over the temporal dimension.

3. Methodology

In this section, we first give a brief introduction to the gen-
eral background of latent Diffusion Models (§3.1), then
elaborate on the overall design of our proposed DIFFVSGG
(§3.2), and finally present the detailed information on the
network architecture and training objectives (§3.3).

3.1. Preliminary: Latent Diffusion Models

To begin, we give an illustration on how diffusion pro-
cesses [81] are used to model data distributions and gen-
erate high-quality samples. Specifically, we consider a
continuous-time Markov chain with t ∈ [0, T ]:

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI), (1)

where βt is a small noise variance term at timestep t, and N
denotes a Gaussian distribution. The corrupted data at any
intermediate time step t can be derived recursively as:

xt =
√

αtx0 +
√

1 − αϵ, (2)

where αt = 1 − βt and αt =
∏t

s=1 αs is the cumulative
product of αt over the timesteps, ϵ ∼ N (0, I) represents
the sampled noise. The reverse process essentially involves
learning to reverse the noise addition at each step. The
cleaned data at time step t can be written recursively as:

xt−1 = 1
√

αt
(xt − βt√

1 − α
ϵθ(xt, t), (3)

where a time-conditioned denoising neural network ϵθ(x, t)
is trained to minimize the mean squared error between the
true and predicted noise at each timestep:

LDM := Ex0,ϵ,t

[
∥ϵ − ϵθ(xt, t)∥2

2

]
. (4)

Building on the diffusion process described above, latent
diffusion models (LDMs) [77] first encode samples into a
low-dimensional latent space z = E(x) using an encoder E ,
and then apply the diffusion process within this compressed
space. Moreover, LDMs introduce the conditioning mech-
anisms which allow for control over the generated output
based on additional input y such as text, labels, or images.
Consequently, the training objective for LDMs is given as:

LLDM := EE(x0),y,ϵ,t

[
∥ϵ − ϵθ(zt, t, cθ(y))∥2

2

]
, (5)

where cθ is a conditioning model to encode y.
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Figure 2. Overview of our proposed inter-object relationship learning strategy using latent diffusion models.

3.2. DIFFVSGG: Diffusion Models for VSGG
Problem Definition. Considering a video sequence repre-
sented as I =

{
I1, · · · , IT

}
containing T frames, the ob-

jective of VSGG is to generate a sequence of scene graph
G =

{
G1, · · · , GT

}
over time, where each element Gt rep-

resents the corresponding scene graph for frame It. Each
graph Gt is defined as Gt = (Vt, Et), with Vt and Et de-
noting the sets of graph nodes and edges, respectively. Each
node vt

i ∈ Vt includes attributes such as category and loca-
tion for object i, while each edge et

i,j ∈ Et describes the
inter-object relationship (a.k.a.predicate) between subject i
and object j. In this manner, G captures all objects (i.e., V),
their interactions (i.e., E), and the dynamics as they evolve
over time (i.e., from t = 1 to t = T ) within the scene.
Graph Construction. Given a video I =

{
I1, · · · , IT

}
,

we first employ an on-the-shelf object detector Fdet for each
frame:

{F t, Bt, Ot} = Fdet(It), (6)
where F t is the feature extracted by backbone, Bt =
{bt

1, · · · , bt
Nt

} and Ot = {ot
1, · · · , ot

Nt
} are bounding box

and class predictions for Nt objects detected from frame It,
respectively. This serves to initialize an adjacency matrix
At ∈ RNt×Nt×De , of which each element aims to repre-
sent the inter-object relationships between object i and j:

At
i,j = [F t

oi
; F t

oi,oj
; F t

bi
] ∈ RDe ,

At
j,i = [F t

oj
; F t

oj ,oi
; F t

bj
] ∈ RDe .

(7)

Here [] refers to the concatenation of features, implemented
as torch.cat(). F t

oi
= FROI(F t, bt

i) is the instance-
level feature for object i extracted via ROIAlign [36] (i.e.,
FROI), F t

oi,oj
= FROI(F t, bt

i ∪ bt
j) is the feature mapped

from the union box of object i and j (i.e., bt
i ∪ bt

j), and F t
bi

describes bounding box bt
i using a box-to-feature mapping

function identical to that in [112]. At
i,j represents the rela-

tionship predicted from subject i, which differs from At
j,i

where j is considered the subject. In this way, the matrix
At encodes both node features of each object and the edge
features between any pair of them. Note that such subject-
based encoding does not incorporate F oj and F bj into Ai,j

(i.e., [Foi
; Fbi

; Foi,oj
; Foj

; Fbj
]), which hinders the neural

network to distinguish between the subject (i) and object

(j). Additionally, as the number of instances (i.e., Nt) typ-
ically varies across frames due to the emergence or disap-
pearance of some instances, we pad At to a fixed size of
N × N where N > max(N1, · · · , NT ), using randomly
generated feature embedding from Gaussian distributions.
Inter-object Relationship Learning via LDMs. Next we
aim to facilitate the learning of inter-object relationships
within LDMs using ground truth scene graph (i.e., Fig. 2).
Since we use an off-the-self object detector, the extracted
feature F t remains static for each frame. Therefore, with
access to the ground truth bounding box annotations, we
can compute precise edge features via Eq. 7 from F t. The
adjacency matrix Ât which exactly encodes the inter-object
features can also be obtained. Here Ât is the ground truth of
inter-object relationships, initialized using features derived
from ground-truth bounding boxes, where object pairs with
no relations are represented as empty entries. Ât instructs
the learning of a LDM which is responsible for recovering
object features and their relationships from random noise.
• Forward Process. Let Ât,0 represent the clean adjacency
matrix. The noise injection process to progressively perturb
this matrix is defined following Eq.2, and expressed as:

Ât,k =
√

αtxÂt,0 +
√

1 − αϵ, (8)

where Ât,k denotes the noisy adjacency matrix at step k.
This enables the model to learn robust feature representa-
tions, through the exposure to degraded versions of Ât,0.
• Reverse Process. To recover the original adjacency matrix
Ât,0, we employ a denoising U-Net ϵθ which is trained to
iteratively remove noise starting from the initial noisy ma-
trix Ât,K . This process follows the denoising step defined
in Eq.3 and proceeds as:

Ât,k−1 = 1
√

αt
(Ât,k − βt√

1 − α
ϵθ(Ât,k, k), (9)

where ϵθ is optimized to recover meaningful inter-object re-
lationships. Following Eq. 5, we define the training objec-
tive LVSGG by minimizing the spatial structure loss:

LVSGG := EÂt,k,ϵ,k

[
∥ϵ − ϵθ(Ât,k, k)∥2

2

]
. (10)

LVSGG encourages ϵθ to accurately predict and remove the
noise at each step k, so as to restore Ât structured in the
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Figure 3. Overview of our proposed temporal prompting strategy.

way that preserves spatial and relational coherence. Dur-
ing inference, given the adjacency matrix At from an ar-
bitrary frame t, we consider it noisy and utilize the well-
trained denoising U-Net above to refine it, so as to deliver
an updated version that indicates the interaction between
objects, as well as the location and category of objects:
At,k−1 = 1√

αt
(At,k− βt√

1−α
ϵθ(At,k, k). Unlike the training

process which utilizes Â derived from ground truth bound-
ing boxes, A here is obtained from the predicated ones.
Note that the main challenge of VSGG lies in modeling of
the dynamic changes of relation between object and subject,
and the diffusion models primarily focus on recovering ob-
ject features and their relationships. Thus, the slight bias
in predicated bounding boxes, especially after ROIAlign,
causes negligible impacts to relation predictions.
Condition Based Temporal Reasoning. For a given video
stream, we can infer future frames based on the content of
preceding frames. This observation serves as the motiva-
tion for our temporal prompting strategy (i.e., Fig.3), where
we condition the denoising process of At on the denoised
adjacency matrix of prior frames (i.e., At−1,0), as follows:

At,k−1 = 1
√

αt
(At,k − βt√

1 − α
ϵθ(At,k, k, At−1,0), (11)

where the condition decoder cθ in Eq. 5 is discarded, as
At−1,0 has already shared the same dimension as At,k.
With this condition-based temporal association for denois-
ing, the training objective for ϵθ is updated as:

LT VSGG :=EAt,k,At−1,0,ϵ,k

[
∥ϵ − ϵθ(At,k, At−1,0, k)∥2

2

]
.

(12)
Here LT VSGG encourages ϵθ to generate temporally consis-
tent outputs, enabling a smooth and coherent denoising of
adjacency matrix across frames. Moreover, since new in-
stances keep emerging as the video progresses, we calculate
similarities between ROIAligned features of the potential
new object (i.e., F t

op
) and all other objects in the past frame

(i.e., F t−1
oi

), and consider op as new object if the similarities
is smaller than 0.2 for all other objects. Then, the random
padded features in A during graph construction are replaced
with union and instance features of these new instances.

Motion Enhanced Denoising for VSGG. Motion cues
serve as indicators to describe object movements in a given
scene. They provide essential context for understanding the
position and duration of events. Moreover, the speed and
direction of object movements can reveal intentions for in-
teractions (e.g., approaching), which aids in temporal rea-
soning by inferring whether they might complete an ac-
tion or reach a goal. Therefore, given a box prediction
bt

i = {xt
i, yt

i , wt
i , ht

i} for object i, we explicitly calculate
the approaching speed between object i and j as follows:

dt
i,j =

√
(xt

i − xt
j)2+(yt

i − yt
j)2,

vt
i,j = (dt

i,j − dt−∆t
i,j )/∆t,

(13)

where ∆t is the interval of frame. Given vt ∈ RNt×Nt

,
we pad it into the same size with At (i.e., vt ∈ RN×N )
and inject it into At,k at each denoising step k: At,k =
At,k + vt.
Graph Readout. Next we investigate how to deliver SGG
predictions for each frame based on the denoised adjacency
matrix At,0. Specifically, the prediction for predicate of
each subject-object pair is obtained as follows:

rt
i,j = softmax(Fpred(At,0

i,j )) ∈ RNpred cls (14)

where Fpred is an MLP-based classifier and Npred cls repre-
sents the number of predicate classes. For object classifica-
tion and bounding box regression, to render a global view,
we utilize the entire row i of At,0 (i.e., At,0

i ) where all ele-
ments consider i as the subject, to deliver the prediction:

ot
i = softmax(Fobj(At,0

i )) ∈ RNobj cls , (15)

bt
i = sigmoid(Fbox(At,0

i )) ∈ R4, (16)

where Nobj cls is the number of object classes, Fobj and Fbox
are the MLP-based classifier and projector, respectively.

3.3. Implementation Details
Network Configuration. DIFFVSGG is an online VSGG
framework built upon the iterative diffusion diagram. It
comprises three components: one off-the-shelf detector to
deliver object detection results, the LDMs for inter-object
relationship denosing, and projector heads for object classi-
fication, predicate prediction, and bounding box regression.
Training Objective. The training process of DIFFVSGG
consists of two stages. In the first stage, we pre-train the
denoising U-Net ϵθ in Eq. 9, using Ât constructed from
ground truth bounding box annotations for objects. In the
second stage, we optimize the MLP classifier and projector
in Eq.14-15, which generate the final VSGG predictions.

Specifically, given relation prediction pr and ground
truth yr, the relation classification loss is computed as:

Lpred cls = −
∑Cr

i=1
yr,i log(pr,i). (17)
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Method
PredCLS SGCLS SGDET

R@10 R@20 R@50 mR@10 mR@20 mR@50 R@10 R@20 R@50 mR@10 mR@20 mR@50 R@10 R@20 R@50 mR@10 mR@20 mR@50

RelDN [113] 20.3 20.3 20.3 6.2 6.2 6.2 11.0 11.0 11.0 3.4 3.4 3.4 9.1 9.1 9.1 3.3 3.3 3.3
TRACE [88] 27.5 27.5 27.5 15.2 15.2 15.2 14.8 14.8 14.8 8.9 8.9 8.9 13.9 14.5 14.5 8.2 8.2 8.2

VRD [63] 51.7 54.7 54.7 - - - 32.4 33.3 33.3 - - - 19.2 24.5 26.0 - - -
Motif Freq [112] 62.4 65.1 65.1 - - - 40.8 41.9 41.9 - - - 23.7 31.4 33.3 - - -

MSDN [57] 65.5 68.5 68.5 - - - 43.9 45.1 45.1 - - - 24.1 32.4 34.5 - - -
VCTREE [85] 66.0 69.3 69.3 - - - 44.1 45.3 45.3 - - - 24.4 32.6 34.7 - - -
GPS-Net [60] 66.8 69.9 69.9 - - - 45.3 46.5 46.5 - - - 24.7 33.1 35.1 - - -

STTran [17] 68.6 71.8 71.8 37.8 40.1 40.2 46.4 47.5 47.5 27.2 28.0 28.0 25.2 34.1 37.0 16.6 20.8 22.2
APT [58] 69.4 73.8 73.8 - - - 47.2 48.9 48.9 - - - 26.3 36.1 38.3 - - -

STTran-TPI [96] 69.7 72.6 72.6 37.3 40.6 40.6 47.2 48.3 48.3 28.3 29.3 29.3 26.2 34.6 37.4 15.6 20.2 21.8
TR2 [94] 70.9 73.8 73.8 - - - 47.7 48.7 48.7 - - - 26.8 35.5 38.3 - - -

TEMPURA [69] 68.8 71.5 71.5 42.9 46.3 46.3 47.2 48.3 48.3 34.0 35.2 35.2 28.1 33.4 34.9 18.5 22.6 23.7
DSG-DETR [30] - - - - - - 50.8 52.0 52.0 - - - 30.3 34.8 36.1 - - -

DIFFVSGG 71.9 74.5 74.5 48.1 50.2 50.2 52.5 53.7 53.7 37.3 38.4 38.4 32.8 39.9 45.5 20.9 23.6 26.2

Table 1. Comparison of state-of-the-art VSGG methods on Action Genome test [40] under the w constraint setting.

Similarly, given object class prediction po and ground
truth yo, the object classification loss is defined as:

Lobj cls = −
∑Co

j=1
yo,j log(po,j). (18)

For bounding box regression, given the ground truth bound-
ing box tk (e.g., (x, y, w, h)) and the predicted bounding
box t̂k, the regression loss is formulated as:

Lbox reg = Smooth L1(tk − t̂k). (19)

The training objectives for each stage are formulated as:

Stage 1 : L = LT VSGG,

Stage 2 : L = Lpred cls + Lobj cls + 0.5Lbox reg,
(20)

4. Experiment
4.1. Experimental setting
Dataset. We evaluate DIFFVSGG on Action Genome
(AG) [40], the largest video scene graph generation dataset
comprising over 10K videos extended from the Charades
dataset [80]. This dataset includes 1,715,568 predicate in-
stances across 25 predicate classes, spanning 234,253 video
frames, and features 476,229 bounding boxes across 35 ob-
ject categories. The 1,715,568 instances for 25 predicate
classes are divided into attention, spatial and contacting,
three different types. Following prior work [17, 58], we
use the same training/testing split.
Training. In the first training stage which optimizes the
LDMs with ground-truth bounding box annotations, we set
the learning rate to 10−4 and use the Adam optimizer. The
batch size is set to 2048, and the model is trained for 100
epochs. Each input clip consists of five frames sampled at
random time intervals, enabling conditional temporal rea-
soning. The denoising U-Net ϵθ remains frozen once after
pre-training. In the second training stage, the classifiers and

projectors are trained for 10 epochs with a batch size of 8.
We use the AdamW optimizer with a learning rate of 10−5,
which decays by a factor of 5 halfway through the training.
Evaluation Setup. In line with previous studies[30, 40, 58,
63], three standard evaluation protocols are adopted:
• PredCLS: With oracle-provided object labels and bound-

ing boxes as well as grounding-truth subject-object pairs,
PredCLS assesses the model capability to predict predi-
cate labels for each subject-object pair.

• SGCLS: Building on PredCLS, SGCLS requires the si-
multaneous prediction of both predicate labels and the as-
sociated subject-object pairs for each predicate.

• SGDET: As the most challenging task, SGDET requires
generating complete scene graphs from scratch, including
object detection, subject-object pair selection, and predi-
cate classification. Detection is considered accurate if the
overlap between prediction and ground truth exceeds 0.5.

Evaluation Metric. We employ the Recall@k where k ∈
10, 20, 50 as the evaluation metric, to measure the propor-
tion of ground truth elements within the top-k predictions.
Additionally, Mean-Recall@k is also adopted to ensure the
evaluation is not biased toward high-frequency classes. The
evaluation is performed under two different scenarios:
• w constraint: Each subject-object pair is restricted to a

maximum of one predicate.
• w/o constraints: Each subject-object pair is allowed to

have multiple predicates simultaneously.

4.2. Comparison with State-of-the-arts
Tables 1-2 present the main experimental results of DIF-
FVSGG against several top-leading approaches on Action
Genome test [40]. Following existing VSGG works [17,
58], we firstly select a few representative image-level SGG
methods such as RelDN [113] and GPS-Net [60]. Then,
we compare DIFFVSGG with existing video-level solu-
tions such as STTran[17], APT[58], etc. In general, DIF-
FVSGG outperform image-level SGG methods by a large
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Method
PredCLS SGCLS SGDET

R@10 R@20 R@50 mR@10 mR@20 mR@50 R@10 R@20 R@50 mR@10 mR@20 mR@50 R@10 R@20 R@50 mR@10 mR@20 mR@50

RelDN [113] 44.2 75.4 89.2 31.2 63.1 75.5 25.0 41.9 47.9 18.6 36.9 42.6 13.6 23.0 36.6 7.5 18.8 33.7
VRD [63] 51.7 54.7 54.7 - - - 32.4 33.3 33.3 - - - 19.2 24.5 26.0 - - -

Motif Freq [112] 62.4 65.1 65.1 - - - 40.8 41.9 41.9 - - - 23.7 31.4 33.3 - - -
MSDN [57] 65.5 68.5 68.5 - - - 43.9 45.1 45.1 - - - 24.1 32.4 34.5 - - -

VCTREE [85] 66.0 69.3 69.3 - - - 44.1 45.3 45.3 - - - 24.4 32.6 34.7 - - -
TRACE [88] 72.6 91.6 96.4 50.9 73.6 82.7 37.1 46.7 50.5 31.9 42.7 46.3 26.5 35.6 45.3 22.8 31.3 41.8

GPS-Net [60] 76.0 93.6 99.5 - - - - - - - - - 24.5 35.7 47.3 - - -
STTran [17] 77.9 94.2 99.1 51.4 67.7 82.7 54.0 63.7 66.4 40.7 50.1 58.5 24.6 36.2 48.8 20.9 29.7 39.2

APT [58] 78.5 95.1 99.2 - - - 55.1 65.1 68.7 - - - 25.7 37.9 50.1 - - -
TR2 [94] 83.1 96.6 99.9 - - - 57.2 64.4 66.2 - - - 27.8 39.2 50.0 - - -

TEMPURA [69] 80.4 94.2 99.4 61.5 85.1 98.0 56.3 64.7 67.9 48.3 61.1 66.4 29.8 38.1 46.4 24.7 33.9 43.7
DSG-DETR [30] - - - - - - 59.2 69.1 72.4 - - - 32.1 40.9 48.3 - - -

DIFFVSGG 83.1 94.5 99.1 66.3 90.5 98.4 60.5 70.5 74.4 51.0 64.2 68.8 35.4 42.5 51.0 27.2 37.0 45.6

Table 2. Comparison of state-of-the-art VSGG methods on Action Genome test [40] under the w/o constraint setting.

t

person1

person2laptop

food
not look at

not look at

 look at
 look atnot look at

Attention

person1

laptop

Spatial

person2

food person1

laptop

Contact

person2

food

person1

person2laptop

food person1

laptop person2

food person1

laptop person2

food

person1

person2laptop

food person1

laptop person2

food person1

laptop person2

food

not look at

not look at

not look  at

not look at

look at

on the side of

in front of
on the side of in front  of

on the side of

on the side of

on the side of

on the side of

on the side of

touching

not contacting

not contacting

not contacting

not contacting

not contacting

not contacting

not contacting

not contacting

eating

holding

 

 look at

 

 look at

 

not look at

not look at

 

 look at 
 

 

 
on the side of

on the side of

in front of 

in front of 

in front  of

 

in front  of

 

 

touching

 

touching

 

 
 

 

not contacting

not contacting

Figure 4. Visualization results on Action Genome test [40]. All results are given under the SGDET setup. Predicates in red indicate
relationships are transformed to another one.

margin in all metrics. Concretely, under the w con-
straint setup, our proposed method achieves R@10/R@20/
R50 scores of 32.8/39.9/45.5, surpassing GPS-Net which
achieves 24.7/33.1/35.1 scores by 8.1/6.8/10.4 scores, re-
spectively. Similar trends can be observed on the w/o con-
straint setup. All of the above firmly demonstrates the ef-
fectiveness of incorporating temporal cues to tackle relation
understanding in dynamic scene.

Additionally, when compared to the video-level coun-
terparts, DIFFVSGG can still deliver state-of-the-art per-
formance. Specifically, though DSG-DETR[30] adopts a
modern DETR-like architecture and uses a Transformer-
based decoder with all frames as the inputs to aggregate
temporal cues, our DIFFVSGG which conducts online infer-
ence still outperforms it by a solid gap (i.e., 35.4/42.5/51.0
vs. 32.1/40.9/48.3 under the w/o constraint). More im-
portantly, when it comes to the comparison of mR met-
ric which prevents the bias toward high-frequency classes,
DIFFVSGG obtains significantly higher performance com-
pared to existing work. This suggests that using latent dif-

fusion models (LDMs) to model the inter-object relation-
ship is effective, and it successfully learned meaning dis-
tributions which can prevent overfitting to high-frequency
classes. Similar conclusions can be drawn on PredCLS and
SGCLS two evaluation protocols, where DIFFVSGG can
still deliver SOTA performance under both w constraint
and w/o constraint two setups.

4.3. Qualitative Results
We provide visualization results of UNIALIGN in Fig.4. It
can be seen that our proposed method is able to generate
accurate scene graphs across various challenging scenarios,
such as fast motion and occlusion.

4.4. Diagnostic Experiment
To assess the effectiveness of the detailed designs of DIF-
FVSGG and gain deeper insights, we conduct a series of ex-
periments on the AG test [40]. All performance metrics
are reported under the SGDET setup.
Key Component Analysis. We first examine the efficacy
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w constraints w/o constraints
# LVSGG LT VSGG Motion R@10 R@20 R@50 R@10 R@20 R@50

1 26.9 35.3 38.0 27.5 38.9 48.5
2 ✓ 29.7 37.7 41.5 30.3 40.1 49.9
3 ✓ 32.0 39.3 44.6 33.9 42.0 50.3
4 ✓ ✓ 32.8 39.9 45.5 35.4 42.5 51.0

Table 3. Analysis on key components of DIFFVSGG.

Union Box Subject Subject w constraints No Constraints
# Feature Feature Location R@10 R@20 R@50 R@10 R@20 R@50

1 ✓ 29.5 36.7 42.0 32.3 39.2 47.5
2 ✓ ✓ 31.0 38.2 43.6 33.7 40.8 48.7
3 ✓ ✓ ✓ 32.8 39.9 45.5 35.4 42.5 51.0

Table 4. Analysis on elements to construct adjacency matrix At.

w constraints w/o constraints
Step T R@10 R@20 R@50 R@10 R@20 R@50

10 31.7 38.5 42.9 34.0 41.1 49.5
20 32.8 39.9 45.5 35.4 42.5 51.0
50 33.2 40.5 46.4 35.7 43.1 51.4
100 33.1 40.3 45.9 35.5 42.8 51.1

Table 5. Analysis on forward and reverse diffusion steps.

of essential components of DIFFVSGG in Table3, where the
first row denotes the baseline model directly using bounding
box predictions to construct scene graphs without denois-
ing refinement. After integrating LDMs to model complex
inter-object relationships within the scene (i.e., row #2),
DIFFVSGG enjoys considerable improvement on both w
and w/o constraint setups. Next, applying condition based
temporal reasoning to capture long-term temporal depen-
dencies further boosts the performance to 32.0 and 33.9
on two setups. Finally, upon the incorporation of motion
enhanced denoising (i.e., row #4), DIFFVSGG obtains the
best performance on both setups, suggesting that motion
cues can effectively enhance the awareness of temporal cues
through conditional promoting.
Graph Construction. We study the impact of using vari-
ous features to construct the adjacency matrix At in Table 4.
As shown, incorporating all three types of features, as de-
scribed in Eq.7, achieves the best performance.
Number of Diffusion Step. Next we investigate the effect
of different number of diffusion steps. As shown in Table
5, the best performance is achieved at T = 50. However,
to balance the performance and efficiency efficiency, we set
T = 20, which yields a slight reduction in performance.
Number of Layer in Denoising U-Net. We further ana-
lyze the impact of using different number of layers in the
encoder and decoder of denoising U-Net. As shown in Ta-
ble 6, DIFFVSGG achieves similar performance when the
layer number exceeds 2. For efficiency, we set it to 3.
Graph Readout. We explore different graph readout strate-

# Layer w constraints w/o constraints

R@10 R@20 R@50 R@10 R@20 R@50

2 31.9 38.2 44.5 34.0 42.1 50.1
3 32.8 39.9 45.5 35.4 42.5 51.0
5 32.4 39.6 46.1 34.4 43.0 50.7
6 32.6 39.3 46.3 34.7 44.0 50.9

Table 6. Analysis of the layer configuration of the U-Net.

w constraints w/o constraints
Element R@10 R@20 R@50 R@10 R@20 R@50

At,0
i 32.8 39.9 45.5 35.4 42.5 51.0

At,0
i,j 31.7 37.7 43.5 33.6 41.2 49.6

Table 7. Analysis on the elements used for graph readout.

ParameterInference w constraints w/o constraints
Model Number Time R@10R@20R@50 R@10R@20R@50

TRACE [88] 66.7 M 8.4 FPS 13.9 14.5 14.5 26.5 35.6 45.3
STTran [17] 51.1 M 10.9 FPS 25.2 34.1 37.0 24.6 36.2 48.8

TEMPURA [69] 53.5 M 9.6 FPS 28.1 33.4 34.9 29.8 38.1 46.4
DSG-DETR [30] 65.5 M 7.3 FPS 30.3 34.8 36.1 32.1 40.9 48.3

DIFFVSGG 46.7 M 8.7 FPS 32.8 39.9 45.5 35.4 42.5 51.0

Table 8. Analysis on the trainable parameters and inference time.

gies in Table 7. Here At,0
i refers to utilize the entire row i of

At,0 to deliver the predictions (i.e., Eq. 15-16), while At,0
i,j

denoting utilize one element at (i, j) of At,0 to make pre-
diction. It can be seen that aggregating all elements in a row
that contains the same subject delivers higher performance.
Running Efficiency. Finally we probe the running effi-
ciency of DIFFVSGG. As seen in Table 8, our method re-
quires the fewest trainable parameters among all competi-
tors. Though inference speed is slightly slower than exist-
ing work due to step-wise denoising, the improvement in
performance compensates for this limitation.

5. Conclusion

We presented DIFFVSGG, a diffusion-based VSGG solution
that makes contributions in three aspects. First, as an online
approach, it effectively addresses challenges such as GPU
memory constraints and real-time processing while deliv-
ering high performance, highlighting its potential for real-
world application. Second, we propose a learning strat-
egy for LDMs to generate inter-object relationships from
random subject-object pairs, with ground-truth object loca-
tions as the annotations. Third, in leverage of LDMs, DIF-
FVSGG provides a new approach to enable temporal reason-
ing via dynamic, iterative refinement of scene graphs across
frames, conditioned on predictions of prior frame. We hope
this work could provide a new perspective for video analy-
sis through reverse diffusion along the temporal dimension.
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