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Figure 1. A symbolic representation for Any-to-Any generative tasks. (a) We develop a training-free inference engine that transforms
natural language task descriptions into executable symbolic flow comprising functions, parameters, and the topology. (b) The symbolic
flow allows executing generative tasks as programs. Example task is mentioned in the first sentence of Sec. 1. (c) Both functions and
parameters can be easily modified to customize the generation process and the output style.

Abstract

We propose a symbolic generative task description lan-
guage and a corresponding inference engine capable of rep-
resenting arbitrary multimodal tasks as structured symbolic
flows. Unlike conventional generative models that rely on
large-scale training and implicit neural representations to
learn cross-modal mappings—often at high computational
cost and with limited flexibility—our framework introduces

*Equal Contribution.
†Corresponding author.

an explicit symbolic representation comprising three core
primitives: functions, parameters, and topological logic.
Leveraging a pre-trained language model, our inference en-
gine maps natural language instructions directly to sym-
bolic workflows in a training-free manner. Our framework
successfully performs over 12 diverse multimodal genera-
tive tasks, demonstrating strong performance and flexibil-
ity without the need for task-specific tuning. Experiments
show that our method not only matches or outperforms ex-
isting state-of-the-art unified models in content quality, but
also offers greater efficiency, editability, and interruptibil-
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ity. We believe that symbolic task representations provide
a cost-effective and extensible foundation for advancing the
capabilities of generative AI.

1. Introduction
“Blending the wild growth of a jungle with the mystique of
ancient ruins into a brand-new scene would be stunning,”
your artist friend mused. “And if we could transform the
photographic image into a video, overlayed with my audio
recording of birds chirping and the soft murmur of flow-
ing water—it would create a truly dreamlike sensory expe-
rience.” These increasingly complex, cross-modal creative
needs point to a fundamental challenge: how can we design
a unified model capable of seamlessly handling generative
tasks across any combination of input and output modali-
ties (i.e., any-to-any generative tasks, as shown in Figure 2),
guided by natural language instructions [12, 25, 26, 42, 49]?
Taking the example of blinding two photographic images
(see Figure 1), the workflow for executing this task com-
prises several essential processes [12, 39, 49]. First, the
system imports two images and encodes them to extract
their latent features. Then, taking these features as condi-
tioning inputs, it combines them based on the user-specified
blending strength and re-synthesizes the blended latent rep-
resentation onto a blank latent canvas. Finally, the system
decodes this latent representation into a viewable image.

Current approaches for any-to-any generative tasks typ-
ically fall into two paradigms: Implicit neural modeling
and agaentic approaches. Implicit neural modeling ap-
proaches directly learn a neural representation from mass
training data [25, 26, 26, 31, 40, 41, 55]. While offering
simplicity in representing multimodal information, their ex-
tensibility is constrained by the scope of the training data.
They struggle to handle rare or unanticipated tasks—such
as the image blending example in Figure 1, if such cases
are not accounted for during training. Moreover, their re-
liance on implicit neural representations makes them non-
interruptible, leaving them ill-equipped to manage com-
plex, multi-step workflows. Agentic approaches rely on
sophisticated multi-agent coordination and tool orchestra-
tion [12, 13, 27, 33, 38, 39], which introduces system in-
stability and operational overhead in their decision-making
process. While powerful, these approaches lack a unified
formal representation of tasks and fail to capture their in-
herent compositional nature. Our experiments reveal that
complex agent designs do not necessarily outperform sim-
pler ones, motivating us to explore an alternative direction:
focusing on unified task representations and language
model-friendly interfaces that enable direct task specifica-
tion.

Examining the image-blending example reveals three
fundamental components essential for executing generative

tasks. At its core are distinct functions -computational op-
erations such as image encoding, conditioning, and blend-
ing that transform inputs into desired outputs. Each func-
tion’s behavior is shaped by parameters, such as the blend-
ing strength and re-synthesis intensity, which fine-tune the
operation to meet specific requirements. These functions
do not operate in isolation; their topology, or interconnected
relationships, form a cohesive workflow that guides the pro-
gression from input to output. These three components,
functions, parameters, and topology, together enable the ef-
fective execution of complex generative tasks. Based on
these insights, we propose A-LANGUAGE, a formal repre-
sentation that systematically captures these three essential
components of generative tasks. In A-LANGUAGE, func-
tion specifies the core computational operations, enabling
the system to precisely identify and execute required trans-
formations. parameter provides fine-grained control over
each operation’s behavior, allowing users to adapt functions
to specific task requirements. topology formalizes the work-
flow structure, defining how functions interact and com-
bine to accomplish complex generative goals. Through this
three-component abstraction, A-LANGUAGE enables flexi-
ble yet structured orchestration of generative tasks.

Alongside the symbolic generative task language, we in-
troduce a training-free inference engine that utilizes a pre-
trained language model (LM) as its foundation to derive a
symbolic representation from input instructions and a desig-
nated key function. Initially, the pre-trained LM identifies a
comprehensive function set and parameter set from the nat-
ural language instruction, forming an initial functional and
parametric structure. With this set of functions, we then pre-
dict the topology, outlining the dependencies among func-
tions to form the complete symbolic representation. We also
implement a refinement module, an iterative process acti-
vated upon any inference failure, enabling immediate cor-
rections to resolve issues. Together, the A-LANGUAGE, the
inference engine, and the refinement module led to a high-
quality system that provides flexible and precise workflow-
building capabilities.

Experimentally, we constructed a dataset of 120 real-
world generative cases spanning 12 task categories and val-
idated the effectiveness of our approach through user stud-
ies and executability evaluations. The results demonstrate
that our symbolic model is competitive with or outperforms
state-of-the-art multimodal generative models in task gen-
eralization, output quality, and editing flexibility. Addi-
tionally, our experiments investigated the impact of syntax
choices on the quality of symbolic flow generated by LMs.
Our contributions are three-fold:
• A unified symbolic representation, the A-LANGUAGE,

that systematically decomposes any generative task into
three core components: function for atomic operations,
parameter for behavioral control, and topology for sym-
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Figure 2. The Any-to-Any generative model. Our model demonstrates the capability to handle any-to-any generative tasks across
various modalities, including text, images, videos, audio, and 3D content. It supports flexible transformations such as converting image
to video, generating 3D models from images, or synthesizing audio from textual prompts. Formally, any-to-any generative tasks refer to
generating outputs in any desired modality from inputs in any other modality, all guided by natural language instructions [42].

bolic flow structure.
• A training-free inference engine that leverages pre-

trained LMs to automatically convert natural language
instructions into symbolic representations for executable
workflows.

• Empirical validation demonstrates its strong generaliz-
ability, modifiability, and user experience.

2. Related work
2.1. Unified multi-modal framework
Recent years have witnessed remarkable advances in large
language models (LLMs), which have demonstrated excep-
tional capabilities across various natural language tasks,
from basic comprehension to complex reasoning [3, 6–
8, 16, 21, 24, 29–31, 43, 44]. Building on this success, mul-
timodal large language models (MLLMs) have extended
these capabilities to integrate multiple forms of input and
output, covering data modalities such as images, audio,
video, and 3D structures [1, 4, 5, 10, 14, 18–20, 22, 32, 34–
37, 46, 47, 51–54, 56]. The field has progressed from iso-
lated single-modality models to sophisticated any-to-any
frameworks [25, 26, 28, 31, 40, 41, 55] that can handle
diverse input-output combinations within a single model
architecture. However, these unified multimodal frame-
works face significant challenges in practice. The scarcity
of high-quality, diverse multimodal datasets remains a fun-
damental bottleneck, particularly for complex cross-modal
tasks. Moreover, different modalities often require distinct
processing approaches and representations, making it chal-
lenging to achieve optimal performance across all possible

modality combinations in a single model. The need to align
disparate modalities into a coherent unified representation
while preserving their unique characteristics continues to
be a core challenge in advancing these frameworks.

2.2. Workflow synthesis
Workflow synthesis [2, 15, 17] seeks to generate executable
sequences of operations for complex tasks by coordinat-
ing AI models and resources, particularly in generative AI,
where tasks often require sophisticated combinations of in-
ference, parameters, and logic. Traditional methods using
neural modules or predefined operations struggle with the
open-ended nature of modern AI tasks. Recent advances
like HuggingGPT [39] leverage large language models for
task planning and model coordination, VISPROG [12] em-
ploys neuro-symbolic approaches for programmatic task
decomposition, and GenAgent [49] uses multi-agent col-
laboration to build workflows step by step. Despite their
differences, these approaches highlight the need for flexi-
ble, interpretable representations. Our work advances this
field by proposing a unified symbolic framework for de-
scribing and executing generative tasks, balancing expres-
siveness and practicality.

3. A-Language
We introduce A-LANGUAGE, a symbolic representation
that bridges the gap between natural language task descrip-
tions and executable workflows for any-to-any generative
tasks. Unlike previous unified multimodal approaches de-
pendent on implicit neural representations and intensive
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training, our A-LANGUAGE provides an explicit symbolic
representation (Sec. 3.1 and 3.2), allowing a training-free
execution (Sec. 4).

3.1. Formulation
Fundamentally, A-LANGUAGE formalizes any generative
task t as a triple:

Ω(t) := (F ,Φ, T ).

This unified formulation decomposes any generative task
into its essential constituents: the computational functions
F , their corresponding parameters Φ, and the topological
structure T that elucidates their interrelations and data flow
dynamics.

Function The function set is defined as F =
{f1, f2, ..., fn}, where n ∈ N, which represents atomic
computational units. Each function takes both input data
and parameters to produce outputs, formally defined as:

fi : Ii × ϕi → Oi,

where Ii defines its input space, ϕi represents its parameter
configuration, and Oi specifies its output space. The input
and output spaces Ii and Oi represent either simple scalar
values or composite data structures of arbitrary modalities,
allowing functions to process multiple inputs and generate
multiple outputs. For example, an image blending func-
tion might accept two image inputs and produce both a
blended result and an attention mask. When functions are
connected, their inputs and outputs can be partially mapped,
providing flexibility in constructing complex paths.

Parameter The parameter space Φ = {ϕf1 , ϕf2 , ..., ϕfn}
encompasses configurations that modify function behav-
iors, where each ϕfi represents the parameter space for
function fi. Parameters must be fully specified before func-
tion execution to ensure deterministic behavior. The param-
eter space is independent of the input space, enabling func-
tions to exhibit different behaviors while processing identi-
cal inputs.

Topology The topology set T = {d1, d2, ..., dm} defines
the precise data flows between functions, where each dk at
the finest granularity specifies a single directed connection
from a specific output of one function to a specific input
of another function. Specifically, dk is defined as a tuple
representing an individual data flow from the output of a
source function to the input of a target function. Formally:

dk = (fj , yj) → (fi, xi) | yj ∈ Oj , xi ∈ Ii

where fj and fi denote the source and target functions, re-
spectively. yj refers to a specific output produced by func-
tion fj , while xi corresponds to a specific input required by
function fi. Thus, each dk encapsulates the transfer of data
from a designated output of one function to a designated
input of another, allowing for precise tracking of data flow
through the system.

Symbolic flow The symbolic flow emerges from the in-
teraction of functions, parameters, and topological logic,
formalizing the complete generative process:

S = {(fi, ϕfi , Di) | fi ∈ F},
where Di is the set of all data flows dk in T that target
function fi:

Di = {(fj , yj) → (fi, xi) | fj ∈ F , yj ∈ Oj , xi ∈ Ii}.

Each element in the symbolic flow specifies a function, its
parameter configuration, and its incoming directed connec-
tions. Specifically, for each function fi, Di contains tu-
ples that map specific outputs of predecessor functions to
specific inputs of fi. This fine-grained formulation cap-
tures how computation progresses through the system, with
functions receiving their required inputs from designated
outputs of antecedent functions and parameter configura-
tions from the parameter space. Through this unified and
detailed representation, A-LANGUAGE can express diverse
and complex generative tasks.

3.2. Syntax styles
The symbolic representation Ω(t) can be expressed through
multiple syntactic styles, as shown in Figure 3, each of-
fering different trade-offs in expressiveness and clarity. To
identify the most effective representation for large language
model inference, we explore three distinct syntactic formu-
lations: declarative, dataflow, and pseudo-natural syntax,
as illustrated through concise examples in Figure 3.

Declarative Syntax Declarative syntax [45] focuses on
explicitly specifying computational components and their
relationships. Functions are separately declared with pa-
rameters, while connections are specified through explicit
statements. This style is effective for complex workflows
with reusable components, as it clearly separates compo-
nent definitions (F) from relationships (T ).

Dataflow syntax Dataflow syntax [49] emphasizes the
flow of data through function compositions, where out-
puts directly feed into subsequent functions. It captures
topological relationships (T ) through the order of func-
tion calls while maintaining explicit parameter specifica-
tions (Φ). This style is particularly suited for linear, sequen-
tial workflows.

27819



Notation Implementation and definition

System Components

X List[Any] // Input data of any modality
s str // Task description
C Dict // System constraints
Ω(t) Workflow // Complete workflow representation

Workflow Structure

fi ∈ F Node // Computational function
fi : Ii × ϕi → Oi Node.forward // Function mapping with parameters
ϕfi ∈ Φ Dict[str, Any] // Function parameters
dk ∈ T (Node, Any)-> (Node, Any) // Source output to target input mapping ((fj , yj) → (fi, xi))

Workflow Operations (Declarative syntax, simplified version)

Initialize Workflow() // Create empty workflow Ω(t) = (F ,Φ, T )
Add Node add_node(name, type, params) // Add function fi with parameters ϕfi
Connect connect(src_node, src_output, dst_node, dst_input) // Create topology dk : (fj , yj) → (fi, xi)

Table 1. System components and operations summary. A comprehensive overview of A-LANGUAGE’s system components and their
implementations. The upper two sections define the mathematical notations and their corresponding implementations, where the system
processes input data X according to task description s under constraints C. Functions fi transform inputs Ii with parameters ϕi to outputs
Oi, and are connected through directed mappings dk. The lower section demonstrates the Declarative Syntax as one example of workflow
construction, showing how basic operations map to the mathematical formulation Ω(t) = (F ,Φ, T ).

vae = vaeloader(
  model_path="vae-ft-
mse-840000-ema-
pruned.safetensors
)
... ...
vae = vae_model(
  latent
)

workflow = Workflow()
... ...
workflow.add_node("vae",
"vaeloader", {
    "model_path": "vae-
ft-mse-840000-ema-
pruned.safetensors"
})
... ...
workflow.connect("vae",
"latent", "vae_model")

vae is vaeloader with
the parameter of
(model_path is "vae-
ft-mse-840000-ema-
pruned.safetensors)
... ...
vae is vae_model with
the parameter of
(latent)

(a) Declarative Syntax (c) Pseudo-natural Syntax(b) Dataflow Syntax

Figure 3. Syntax comparison. We implement our symbolic repre-
sentation using three different styles of domain-specific languages
(DSLs). (a) The declarative syntax registers all components into
the workflow. (b) The dataflow syntax emphasizes the direction of
data flow. (c) The pseudo-natural syntax mimics human language
expression.

Pseudo-natural syntax Pseudo-natural syntax [9] aims
to bridge formal representations with more intuitive,
language-like structures, making task specifications more
accessible while maintaining mathematical rigor. This style
explores a balance between precision and readability.

Each style retains the full expressiveness of Ω(t), but of-
fers different advantages in terms of clarity and usability.
The subsequent empirical analysis will evaluate which syn-
tax best supports natural language inference while preserv-
ing necessary formal properties.

4. Inferring via pre-trained language model

The diversity and complexity of generative tasks necessitate
a flexible and robust approach to transforming high-level
task specifications into executable symbolic flows. As illus-
trated in Figure 4, we propose utilizing LMs as inference
engines to generate task-specific symbolic representations,
with Figure 5 demonstrating the complete pipeline from
natural language description to executable workflow. This

enables any-to-any transformations across different modal-
ities and task types.

Given a set of inputs X of arbitrary modalities, a task
description s, and a set of constraints C, our inference
framework generates a complete symbolic representation
Ω(t). As illustrated in Figure 4, our framework leverages a
pre-trained language model to infer both the computational
components and their topology from natural language de-
scriptions. This process can be formalized as:

M : (X , s, C) → Ω(t),

where X represents any combination of inputs such as im-
ages, text, audio, or other modalities, s describes the desired
transformation, and C represents a set of constraints, which
typically specifying information such as available func-
tions, specific parameter choices, valid parameter ranges,
and model compatibility. These constraints are essential for
ensuring that the generated symbolic flow is not only the-
oretically sound but also practically executable within the
given computational environment. Specifically, we divide
the inference into three main steps:

Component inference The first stage of our framework
focuses on determining the necessary computational com-
ponents. Given the input specifications and constraints, the
LM identifies the required functions and their parameters:

ψ1 : (X , s, C) → (F ,Φ).

This process accounts for both the explicit requirements of
the task and any implicit dependencies, ensuring that se-
lected functions are available within C.

27820



(a) Task description in natural language 

Task description: 

"Produce a beautiful portrait of a Victorian woman in 

dark attire, surrounded by a foggy room with antique 

furniture."

Key functions and parameters:

Use <"vae"> with <"model_path">=<"vae-ft-mse-

840000-ema-pruned">

workflow.add_node("vae", "vaeloader", {
    "model_path": "vae-ft-mse-840000-ema-
pruned.safetensors"
})
workflow.add_node("context_options", 
"ade_animatediffuniformcontextoptions", {
    "batch_size": 16,
    "width": 1,
    ...
}) ...

workflow.connect(
    "checkpoint", "lora1", "base_model"
)
workflow.connect(
    "vae", "latent", "vae_model"
)
workflow.connect(
    "lora1", "latent", "model"
)

(b) A comprehensive set of  functions and
parameters 

(c) A set of topology 

LM LM

Figure 4. Inferring symbolic flow with pre-trained language model (LM). Beginning with (a) a natural language task description and
key functions and parameters, we leverage LM to infer (b) a comprehensive set of functions and parameters. We then integrate (a) and (b)
to deduce the (c) topology. If compilation or execution fails, all information is aggregated for further refinement (Sec. 4).

Use: [<Func 1>, <Param 1>, <Func
2>, <Param 2>, ..]

Generate a high-resolution, cinematic 
image of an anthropomorphic fox in a 
sci-fi spaceship, wearing a spacesuit, 
with dramatic lighting and detailed 
features. The style should be realistic, 
high quality, in 4k resolution.

Infer

(a) Task Description (b) Symbolic Flow

workflow = Workflow()
workflow.add_node(
"cliptextencode_6",
"CLIPTextEncode", {"text":
'a high-resolution, 
... ...
workflow.connect("clip_4",
"cliptextencode_6",
"clip")

Executor

(c) Run-time representation (d) Generated result

Compile Execute

Figure 5. Demonstration of the inference and execution. The inference framework translates a natural language task description into an
executable symbolic representation. This symbolic representation is then compiled and executed through a workflow executor to perform
the desired transformation. See appendix for details.

Topology construction The second stage focuses on es-
tablishing relationships between the identified components
to form a coherent computational flow:

ψ2 : (X , s, C,F ,Φ) → T .

In this phase, the LM evaluates how the outputs of one
function can serve as inputs to another, ensuring that these
connections are executable and comply with the constraints
defined in C. This construction guarantees that data flows
seamlessly through the system in a manner consistent with
our unified formulation.

Iterative refinement The generated symbolic flow under-
goes an iterative refinement process to ensure correctness
and executability. We define this refinement as:

Ωi+1(t) = R(Ωi(t), ϵi),

where R represents the refinement operator and ϵi captures
any detected issues in iteration i. To prevent endless loops,
a maximum number of iterations can be set. During each it-
eration, the LM analyzes error signals and adjusts the sym-
bolic flow accordingly, either by modifying function param-
eters, adding missing components, or restructuring topolog-
ical connections. This iterative process continues until a
valid symbolic flow is achieved that satisfies all constraints
in C or the maximum iteration count is reached.

The combination of LM-based inference and iterative re-
finement enables our framework to handle diverse transfor-

mation tasks while maintaining robustness and generality.
By leveraging the LM’s reasoning capabilities and incorpo-
rating explicit constraints, we bridge the gap between high-
level task descriptions and executable symbolic flows, pro-
viding a flexible foundation for any-to-any transformations.

5. Experiments

5.1. Setup
Evaluation Benchmarks We comprehensively evaluated
our symbolic approach using 2 benchmarks: 1 A diverse
task suite with 120 generative tasks from real-world ap-
plications, categorized into 12 general groups with 10 in-
stances each (see Appendix for the complete task list).
2 ComfyBench [49], containing 200 multi-step generative
task workflows that integrate multiple components.

Metrics For execution evaluation, we measured the
single-run pass rate (Pass@1) of compilation and execu-
tion on our task suite, and the resolve rate on ComfyBench
representing successful task completion. For outcome qual-
ity and instruction-following, we conducted a systematic
user study with five annotators who ranked outputs from all
frameworks using metrics including: task-outcome align-
ment (correspondence between outputs and task specifica-
tions), outcome quality (aesthetic appeal, structural coher-
ence, and technical quality), average rank (mean perfor-
mance ranking across tasks), and win rate (percentage of
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comparisons where our method ranked higher).

Baselines For our diverse task suite evaluation, we pri-
marily compared with GenAgent [49] as our agentic frame-
work baseline, augmented with key functions and up to 3
refinement iterations for fairness. We also compared against
unified multimodal models including Show-o [48] (guid-
ance scale 1.75, 16 time steps), SEED-x [11] (maximum
1024 tokens, 3 history rounds), LVM [23], and Unified-
IO [26]. For video generation, we included the commer-
cial Gen-3 [37] model (720p resolution, 5-second length).
For ComfyBench evaluation, we compared with training-
free approaches (HuggingGPT [39] and ComfyAgent [49])
and the MLVM-based LWM [23] approach.

Implementation details Following Gupta et al. [12], we
implemented in-context learning with syntax and logical
guidance. We performed Retrieval-Augmented Generation
based on task descriptions, retrieving three most relevant
programs from a curated database containing 16 distinct ref-
erence programs. All experiments ran on a single L4 GPU
(24GB) with 1TB storage on a Debian 11 server. ComfyUI
served as the back-end for code execution. We used GPT-
4o (gpt-4o-2024-08-06) as the inference engine and
text-embedding-3-large as the embedding model.

5.2. Main results

Table 2. Comparison of the average rankings between out-
come quality and task-outcome alignment rankings (↓) on our
task suite. We primarily compared neural representing, training-
dependent modeling [11, 23, 26, 48] and our symbolic represent-
ing, training-free modeling. Each method was ranked on a scale
starting from 1, with 1 denoting the best-performing approach.
“U-IO 2” denotes “Unified-IO 2”, “I-2-3D” denotes “Image to 3D
Mesh”, “T2M” denotes “Text to Mesh”.

Method Inpaint Outpaint Img merge NVS Merge model I-2-3D

Show-o [48] 1.6 1.4 ✗ ✗ ✗ ✗

SEED-X [11] ✗ ✗ 1.2 ✗ ✗ ✗

LWM [23] ✗ ✗ ✗ ✗ ✗ ✗

U-IO 2 [26] - ✗ - ✗ ✗ ✗

Ours 1.4 1.6 1.8 1.0 1.0 1.0

Method T2I T2A Multi-view img I2V T2M T2V

Show-o [48] 2.8 ✗ ✗ ✗ ✗ ✗

SEED-X [11] 2.0 ✗ ✗ ✗ ✗ ✗

LWM [23] 4.2 ✗ ✗ ✗ ✗ ✗

U-IO 2 [26] 4.5 2.0 - - ✗ ✗

Ours 1.5 1.0 1.0 1.0 1.0 1.0

Comparative performance in user study Our sym-
bolic model consistently outperforms state-of-the-art uni-
fied models in both text-outcome alignment and result qual-
ity. As illustrated in Figure 6, our approach achieved a 94%
win rate against Show-o and 98% against LVM in Text to

SDXL 69% 31% 

SDXL 67% 33% 

 56% 44% Sho
w-o

SDXL 33% 67% 
Gen

-3  44% 56% 
 47% 53% Sho

w-o

SDXL
Unifi

ed
-IO

 2

SDXL 20% 80% 
 20% 80% 

SEED-X

 88% 12%
Sho

w-o

30% 
32% 

SEED-X

LW
M

SDXL
Unifi

ed
-IO

 2

0% 50% 100%
Win rate

0% 50% 100%
Win rate

 94%

 70%
 68%

 92%
 98%

 100%
 100%

 100%
 98%

Image2Video

Text2Image Inpainting

Outpainting

Text2Audio

Image merge

Task-outcome alignment (Ours) Outcome quality (Ours)

Figure 6. Comparison of our win rates with the state-of-the-art
unified multimodal models on our task suite.

Table 3. Performance on ComfyBench [49]. Metric: Resolve
rate (%). The table reports performance across three task types:
Vanilla, Complex, and Creative, along with the overall average.

Method Vanilla Complex Creative Total
ComfyAgent [50] 46.00 21.67 15.00 32.50
HuggingGPT [39] 21.00 0.00 5.00 11.50
LWM [23] 24.00 8.33 5.00 15.50
Ours 56.00 28.33 22.50 41.00

Table 4. Ablation study on inference design. Metric: Resolve
rate (%). The table shows the effect of different inference compo-
nents, evaluated under ComfyBench [49].

2-stage refinement Vanilla Complex Creative Total
✓ 47.00 10.00 10.00 28.50

✓ 32.00 16.67 5.00 22.00
✓ ✓ 56.00 28.33 22.50 41.00

Image tasks. In Image2Video generation, our model sur-
passed the commercial Gen-3 with a 67% win rate in text-
outcome alignment. For Text to Audio, our model attained
a 100% win rate in alignment and 98% in quality against
Unified-IO, underscoring its superior performance across
diverse applications.

Performance on ComfyBench Table 3 shows our ap-
proach significantly outperforming both training-free meth-
ods and MLVM-based approaches on ComfyBench’s com-
plex tasks. Our method handles inherently non-atomic tasks
like “merge model" (requiring 11 components and 11 links)
and “image merge" (requiring 13 components and 17 links)
that challenge other approaches.

How to infer symbol flow? Table 4 demonstrates the crit-
ical importance of our two-stage inference architecture (See
Figure 4) and iterative refinement mechanism (See Sec. 4).
Removing either component significantly degrades perfor-
mance across all task categories. With both components,
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Figure 7. Comparison of syntax styles. Metric: Pass@1 (↑). See
Appendix for details.

our approach achieves a 41% overall resolve rate on Com-
fyBench, compared to just 28.5% with refinement alone and
22% with two-stage generation alone.

Table 5. Agentic design [49] vs. symbolic inference (Ours) on
our task suite. We calculate the average pass rate (Pass@1, ↑) on
compilation and execution on our 120 task suite.

Method Compilation Execution
GenAgent [49] 0.84 0.63
Ours 0.98 0.87

Symbolic vs. agentic approaches As shown in Table 5
and Figure 7, our symbolic approach achieves higher suc-
cess rates without the complexities of agentic designs. Un-
like GenAgent [49], which employs multi-step planning
that can amplify errors and increase costs, our symbolic
method maintains simplicity while minimizing error prop-
agation. For straightforward tasks, this simpler approach
leads to higher pass rates, though for more intricate work-
flows, integrating symbolic representations with agentic
strategies may offer enhanced flexibility.

Figure 8. Comparative error distribution for dataflow, declar-
ative, and pseudo-natural syntax styles, illustrating six types of
errors occur when testing on the 120 generative tasks.

Representation: neural or symbolic? Our symbolic
model outperforms neural models in task generality and
output quality without additional training. Table 2 high-
lights that our symbolic approach successfully handles all

Initial Modified

(a) Switch model to <Zero123>

(b) Change the color of table 

workflow.add_node(..., {"text":
'a white plastic round
table center at the camera'})

↓
workflow.add_node(... {"text":
'a round wooden tablecenter at
the camera'})

Image-2-Multiview Image

Text-to-3D Mesh task

workflow.add_node("mvdream",
"MVDream Model", ...)

↓
workflow.add_node("zero123",
"Zero123Plus Diffusion Model",
...)

Initial Modified

Figure 9. Symbolic Flow Editing. We present examples of mod-
ifying (a) functions, where users can directly change models by
editing code to achieve desired effects, and (b) parameters, such
as adjusting textual prompts (treated as a type of parameter) to al-
ter the color of 3D assets.

120 generative tasks, including complex categories such as
3D and video generation. In contrast, neural models are lim-
ited by their reliance on extensive training data, restricting
their ability to manage diverse and complex tasks.

Explicit symbolic flow editing and error analysis Our
symbolic representation enables precise control over dis-
tinct stages of generative tasks through explicit program
modifications. Figure 9 illustrates examples of modifying
function (model) and parameter (textual prompt). Analy-
sis of the 120 test cases in Figure 8 reveals two key find-
ings: 1 Higher readability in language design correlates
with increased format errors, with pseudo-natural language
formats showing more invalid code formats than dataflow
or declarative styles. 2 Structurally rigid languages tend
to introduce topological gaps and connection errors, sug-
gesting that increased structural complexity challenges lan-
guage models in maintaining accurate dependencies.

6. Conclusion

We have proposed a symbolic generative task description
language, combined with an inference engine, providing
a novel and efficient way to represent and execute multi-
modal tasks without the need for task-specific training. By
leveraging a pre-trained large language model to infer sym-
bolic task descriptions, our approach has successfully syn-
thesized diverse multimodal tasks, demonstrating its flex-
ibility and potential to unify different generative AI capa-
bilities. Our experiments on 120 tasks and ComfyBench
have shown that our framework has achieved performance
comparable to unified multimodal models, highlighting its
expandability and cost-effectiveness.
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