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Figure 1. We propose a differentiable inverse rendering method with (a) multi-view flash photography inputs. Our analysis-by-synthesis
method achieves not only (b) novel-view relighting and accurate geometry reconstruction, but also (c) interpretable basis BRDFs and their
spatially-separated weights. This allows for (d) intuitive scene editing.

Abstract

Inverse rendering seeks to reconstruct both geometry
and spatially varying BRDFs (SVBRDFs) from captured
images. To address the inherent ill-posedness of inverse
rendering, basis BRDF representations are commonly used,
modeling SVBRDFs as spatially varying blends of a set of
basis BRDFs. However, existing methods often yield ba-
sis BRDFs that lack intuitive separation and have limited
scalability to scenes of varying complexity. In this paper,
we introduce a differentiable inverse rendering method that
produces interpretable basis BRDFs. Our approach models
a scene using 2D Gaussians, where the reflectance of each
Gaussian is defined by a weighted blend of basis BRDFs.
We efficiently render an image from the 2D Gaussians and
basis BRDFs using differentiable rasterization and impose
a specular-weighted rendering loss with the input flash pho-
tography images. During this analysis-by-synthesis opti-
mization process of differentiable inverse rendering, we dy-
namically adjust the number of basis BRDFs to fit the tar-
get scene while encouraging sparsity in the basis weights.
This ensures that the reflectance of each Gaussian is repre-
sented by only a few basis BRDFs. This approach enables

the reconstruction of accurate geometry and interpretable
basis BRDFs that are spatially separated. Consequently,
the resulting scene representation, comprising basis BRDFs
and 2D Gaussians, supports physically-based novel-view
relighting and intuitive scene editing.

1. Introduction

Inverse rendering aims to reconstruct geometry and re-
flectance from captured images, a fundamental problem in
computer vision and computer graphics. Recent advances
in differentiable rendering methods [18, 29] have facili-
tated analysis-by-synthesis differentiable inverse rendering.
These methods enable the optimization of scene parame-
ters by minimizing the discrepancy between captured and
synthesized images [2, 8, 12, 45, 47]. However, achieving
accurate inverse rendering remains challenging, especially
when the available lighting and viewing angles are limited.
A promising approach to mitigate this problem is to exploit
the spatial coherence of SVBRDFs using basis BRDF rep-
resentations [1, 19, 27, 28, 32]. Representing the BRDF at
each point as a spatially varying blend of basis BRDFs al-
lows gathering multiple points to accurately fit basis BRDFs
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and their per-point weights.
Early methods often focus solely on estimating basis

BRDFs and their weights for objects with known 3D ge-
ometry [20, 21, 50]. Moreover, they typically require
excessive optimization time and suffer from low accu-
racy. Recent methods jointly optimize geometry and ba-
sis BRDFs [2, 8, 30]. These approaches often result in
non-interpretable basis BRDFs which are spatially entan-
gled: each scene point is represented by many basis BRDFs
with high weights and those basis BRDFs are often non-
interpretable. Thus, their results are impractical to use for
downstream tasks such as scene editing. Additionally, they
are often limited to using a fixed number of basis BRDFs,
regardless of scene complexity.

In this paper, we propose a differentiable inverse render-
ing method that jointly estimates geometry and reflectance.
We represent geometry as a set of 2D Gaussians [9, 14],
each with shape parameters and basis BRDF weights. The
reflectance of each Gaussian is modeled as a spatially vary-
ing blend of basis BRDFs. We dynamically adjust the num-
ber of basis BRDFs during the analysis-by-synthesis opti-
mization, promoting sparsity in the basis BRDF weights.
To enhance training stability, we employ a weighted pho-
tometric loss that focuses on potentially specular regions.
We demonstrate that our method obtains not only accurate
geometry but also scalable and interpretable basis BRDFs
which sparsely represent SVBRDFs as shown in Figure 1.

In summary, we make the following contributions:
• A differentiable inverse rendering method that jointly es-

timates 2D Gaussians and basis BRDFs, obtaining inter-
pretable basis BRDFs.

• A basis BRDF control method and sparsity regularizer
that dynamically adjust the number of basis BRDFs dur-
ing analysis-by-synthesis optimization, promoting inter-
pretability through sparse blending.

• Extensive evaluation compared with existing methods,
and demonstration of intuitive scene editing.

2. Related Work
Inverse Rendering Learning-based inverse rendering
methods train neural networks such as CNNs [22, 23,
33, 34, 38, 43], transformers [51], and diffusion mod-
els [25, 31, 40] on datasets, enabling efficient inference by
exploiting prior distributions in the training data. They of-
ten suffer from out-of-distribution inputs, resulting in phys-
ically inaccurate results.

The analysis-by-synthesis framework enables inverse
rendering by inverting the forward rendering process. Re-
cent advancements have been particularly sparked by dif-
ferentiable rendering techniques using volumetric render-
ing [3–7, 10, 11, 17, 26, 36, 37, 39, 41, 44–48] and raster-
ization [2, 12, 16, 24, 35, 52]. Recent rasterization-based
methods using isotropic points [8], 2D Gaussians [49], and

3D Gaussians [2, 12, 16, 24, 35, 52] exhibit both effi-
ciency and accuracy. However, they suffer when insuffi-
cient light-view angular samples are provided. Incorpo-
rating basis BRDFs into the modern analysis-by-synthesis
framework has shown promising performance, however the
reconstructed basis BRDFs are often non-interpretable, lim-
iting their usefulness in downstream tasks such as scene
editing [2, 8]. In contrast, our novel method obtains 2D
Gaussians with accurate geometry and interpretable basis
BRDFs.
Basis BRDF Basis BRDFs have often been used as a rep-
resentation of SVBRDFs, decomposing the SVBRDF into a
blend of basis BRDFs. This approach is based on the spatial
coherence of reflectance, assuming that the BRDFs of many
pixels are similar in real-world scenes [27, 28]. Using basis
BRDFs helps reduce the ill-posedness of inverse rendering
because it enables gathering many light-angular observa-
tions for each basis BRDF reconstruction. Existing methods
jointly optimize basis BRDFs and spatially varying weights
for planar [19, 32] and non-planar objects [1, 13, 15, 30].
Recently, two methods [2, 8] demonstrated the effective-
ness of basis BRDFs in modern differentiable analysis-by-
synthesis frameworks. While they showed promising re-
sults, the estimated basis BRDFs are non-interpretable as
shown in Figure 6, which limits their utility in downstream
tasks such as scene editing. Moreover, generalizing their
methods to varying degrees of scene complexity is chal-
lenging because the number of basis BRDFs is fixed. To
overcome these problems, we are inspired by the decade-
ago work of Zhou et al. [50], which proposed adjusting the
number of basis BRDFs during optimization. Their method
assumes known geometry, does not exploit a differentiable
rendering pipeline, and suffers from low reconstruction ac-
curacy and efficiency. We address these challenges by
developing a differentiable inverse rendering method that
jointly estimates 2D Gaussians and basis BRDFs to ob-
tain interpretable basis BRDFs, where the number of basis
BRDFs are automatically controlled.

3. Method
Our method consists of two parts. In Section 3.1, we focus
on optimizing 2D Gaussians and basis BRDFs without con-
cerning the interpretability of basis BRDFs. Next, we ex-
tend the method to obtaining interpretable basis BRDFs in
Section 3.2. Figure 2 shows the process of our method over
analysis-by-synthesis iterations. We obtain not only accu-
rate geometry but also interpretable basis BRDFs whose
number adapts to the scene and the basis BRDFs represent
SVBRDFs with spatially-separated basis-BRDF weights.

3.1. Gaussian Inverse Rendering with Basis BRDFs

We introduce our method that jointly estimates geometry
and a fixed number of basis BRDFs in a differentiable man-

476



Basis BRDFs and images

Training images

Base color extraction Basis BRDFs and images

Normal mapImageNormal mapImage

Point cloud

Initialization Iteration=2000 Iteration=20000 (final)

N
ov

el
-v

ie
w

 re
lig

ht
in

g

N
ov

el
-v

ie
w

 re
lig

ht
in

g

Figure 2. The process of our analysis-by-synthesis iterations. Given a set of multi-view photometric images, we initialize point cloud
and extract base color for basis BRDFs. We jointly optimize 2D Gaussians and basis BRDFs by comparing the differentiably-rendered
images and the input images. Our method enables obtaining interpretable basis BRDFs with spatially-separated basis-BRDF weights and
the number of basis BRDFs adapts to the scene.

ner from multi-view flash-photography images.

Geometry We use 2D Gaussians as geometric primi-
tives [14], where each Gaussian g ∈ G is an elliptical disk,
and G is the set of all Gaussians. Each Gaussian g is param-
eterized by its center location p ∈ R3×1, principal vectors
t ∈ R3×2, and scaling factors s ∈ R2×1. The Gaussian
surface normal n is computed as the cross product of the
principal vectors.

Basis BRDFs We use a basis BRDF representation,
where we define N basis BRDFs. We model the i-th basis
BRDF fi with base color bi, roughness σi, and metallic pa-
rameter mi using the simplified Disney BRDF model [42]:

fi(i,o) =
1−mi

π
bi

+
D(h;σi)F (o,h;bi,mi)G(i,o,n;σi)

4(n · i)(n · o)
, (1)

where i and o are the incident and outgoing directions, and
h = (i + o)/2 is the half-way vector. D is the normal
distribution function, F is the Fresnel term, and G is the
geometric attenuation. Details of these terms are provided
in the Supplemental Document.

We assign blending weights wi(g) for every i-th basis
BRDF per each Gaussian g, and represent the BRDF f of

the Gaussian g as:

f(i,o; g) =

N∑
i=1

wi(g)fi(i,o). (2)

Scene Representations In summary, our scene represen-
tation consists of per-Gaussian parameters G and basis
BRDF parameters R:

g = {p, t, s}︸ ︷︷ ︸
geometric

∪{{wi(g)}Ni=1, α}︸ ︷︷ ︸
photometric

,where g ∈ G,

R = {mi,bi, σi}Ni=1. (3)

α is the Gaussian opacity. To initialize the basis BRDF pa-
rameters R, we perform k-means clustering with a fixed
number N on the input multi-view flash photography im-
ages I ′. The base colors {bi}Ni=1 are initialized as the mean
values of the clusters. The roughness {σi}Ni=1 and metallic
parameters {mi}Ni=1 are set to initial values: σi = 0.5 and
mi = 0.0. We initialize the weights wi(g) uniformly and
set α following Huang et al. [14].

Differentiable Rendering We render an image under the
flash light, modeled as a point light source, using differen-
tiable rasterization. Specifically, we compute the radiance
L of each Gaussian g as:

L(i,o; g) = (n · i)f(i,o; g)E(g), (4)

477



where E(g) is the incident light intensity on Gaussian g.
After computing the radiance, we rasterize the Gaussians

onto the image plane, sort them by depth, and accumulate
radiance values using alpha blending [14] to produce the
final pixel value of the rendered image I . We define this
rendering as a function render(·):

I(u) = render
(
{Li}Mi=1

)
=

M∑
i=1

LiαiGi(r(u))
i−1∏
j=1

(1− αjGj(r(u))) , (5)

where u ∈ U is a pixel, M is the number of Gaussians
projected onto pixel u. {Li}Mi=1 and {αi}Mi=1 are the radi-
ance and opacity values of the depth-sorted i-th Gaussian,
respectively. The vector r(u) is the ray coming from cor-
responding pixel u, and Gi(r(u)) is the Gaussian-filtered
distance between the center of i-th Gaussian and the inter-
section point between the ray r(u) and the i-th Gaussian.
Details are provided in the Supplemental Document.

Optimization We optimize the Gaussian parameters G
and the basis BRDF parameters R by minimizing the loss
function L in an analysis-by-synthesis manner:

L = Lrender + λgeomLgeom + λmaskLmask, (6)

where Lrender penalizes the difference between the rendered
image I and the input image I ′ across all input views.
Lgeom is a geometric regularization term for depth distortion
and normal consistency [14], and Lmask is the cross-entropy
loss between the rendered mask and the ground-truth mask.
λgeom and λmask are the balancing weights. Details are pro-
vided in the Supplemental Document.

Specular-weighted Rendering Loss Multi-view flash
photography typically generates fewer observations of
specular-dominant pixels compared to diffuse-dominant
pixels. To address this imbalance, we weight specular ob-
servations by using the potentially-specular weight map:

H(u) = 1 + λθh(cos θh(u))
k, (7)

where θh is the rendered half-way angle map as θh(u) =
render

(
{arccos(ni · hi)}Mi=1

)
. ni and hi are the normal

and half-way vector of Gaussian i, respectively. We set the
scalar λθh = 5 and k = 10 to strongly weight specular
regions.

We use the potentially-specular weight map H for calcu-
lating the final rendering loss:

Lrender =
1

|U |
∑
u∈U

H(u) ((1− λs)L1(u) + λsLSSIM(u)) ,

(8)
where L1(u) = ∥I(u)−I ′(u)∥1, LSSIM(u) is the SSIM loss
between I(u) and I ′(u), and λs is a balancing weight.
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Figure 3. Basis BRDFs with varying scene complexity. We ad-
just the number of basis BRDFs during optimization to adapt to the
scene complexity. We initialize the same number of basis BRDFs
for both scenes in this example.

3.2. Interpretable Basis BRDFs

While our method in Section 3.1 offers accurate inverse
rendering, the reconstructed basis BRDFs lacks of inter-
pretability. Here, we extend the method to obtain inter-
pretable basis BRDFs whose number adapts to the scene as
shown in Figure 3. We develop basis BRDF control method
of merge and removal in addition to impose sparsity on ba-
sis BRDF weights.

Sparsity of Basis BRDF Weights For obtaining inter-
pretable basis BRDF, each scene point needs to be repre-
sented with only few basis BRDFs with high weights. This
enables spatially separating SVBRDFs with sparse basis
BRDFs. We impose sparsity on the basis BRDF weights
{wi(g)}Ni=1 for each Gaussian g, making each Gaussian
represented by only a few basis BRDFs.

First, we apply a softmax function with a low temper-
ature T = 0.0125 to the weights, promoting sparse per-
Gaussian weights:

wi(g)←
exp (wi(g)/T )∑N

i′=1 exp (wi′(g)/T )
. (9)

Second, we apply an entropy-based sparsity regularizer on
the Gaussian weight wi and rendered weight image Wi for
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Figure 4. Basis BRDF control. During the optimization, we compute the values of each basis BRDF for sampled half-way angles θh from
which radiometric difference is obtained. We compute the geometric difference between point clouds of basis BRDFs. If two basis BRDFs
are radiometrically and geometrically similar, we merge them. If the rendered weight map Wi has few valid pixels, we remove the basis
BRDF.

each i-th basis BRDF:

Lsparse =−
1

|G|
∑
g∈G

N∑
i=1

wi(g) logwi(g)

− 1

|U |
∑
u∈U

N∑
i=1

Wi(u) logWi(u), (10)

Wi =render ({wi(g)}g∈G) . (11)

Basis BRDF Merge Basis BRDFs often become simi-
lar during optimization, making the resulting basis BRDFs
non-intuitive with duplicates. We address this by merg-
ing similar basis BRDFs during analysis-by-synthesis op-
timization, as shown in Figure 4. We compute the values of
each basis BRDF fi at uniformly-sampled halfway angles
θh for the RGB channels, resulting in a matrix fi ∈ RC×3.
C is the number of halfway angles. We then compute the
radiometric difference between pairs of basis BRDFs, rep-
resented as a matrix Dradio ∈ RN×N , which is defined as:

Dradio(i, j) =
1

C
∥fi − fj∥2 . (12)

We also compute the geometric difference between the ev-
ery pair of basis BRDFs, represented as a matrix Dpoint ∈

RN×N using the Chamfer distance between point clouds
represented by each basis BRDF:

Dpoint(i, j) =
1

|Pi|
∑
p∈Pi

min
q∈Pj

∥p− q∥22

+
1

|Pj |
∑
q∈Pj

min
p∈Pi

∥q− p∥22, (13)

where Pi and Pj are the point clouds for the i-th and j-th ba-
sis BRDFs, consisting of the center locations of Gaussians
where the i-th or j-th basis BRDF has the highest weight.

If the radiometric difference Dradio(i, j) is below a
threshold τmerge and Dpoint(i, j) is minimal among all ∀j,
we merge the two basis BRDFs by deleting the basis BRDF
with fewer associated Gaussians and reassigning the per-
Gaussian basis BRDF weights as

wj(g)← wi(g) + wj(g), ∀g ∈ G. (14)

Basis BRDF Removal To obtain meaningful basis
BRDFs only, we remove i-th basis BRDF if it contributes
to only a few pixels during optimization as shown in Fig-
ure 4. We evaluate this using the rendered weight image Wi
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IRON DPIR GS3 Ours GT normal GT image

Figure 5. Normal reconstruction. Our method successfully recovers the detailed surface normal, outperforming other state-of-the-art
inverse rendering methods: IRON [45], DPIR [8], GS3 [2].

from Equation (11) as:

|{u ∈ U |Wi(u) > τremoval-weight}|
|U |

< τremoval-number, (15)

where τremoval-weight = 0.1 is the threshold determining
whether the i-th basis BRDF significantly contributes to that
pixel u, and τremoval-number = 0.005 is the threshold for the
normalized number of such pixels.

Scheduling For a warm start, we first run our inverse ren-
dering described in Section 3.1. After a predefined num-
ber of iterations, 6000 in our experiments, we perform basis
BRDF merge and removal at predefined intervals 500 dur-
ing iterations to refine the basis BRDFs. We incorporate the
sparsity loss Lsparse and optimize the scene parameters by
minimizing:

L = Lrender+λgeomLgeom+λmaskLmask+λsparseLsparse, (16)

where λsparse is the balancing weight. Refer to the Supple-
mental Document for the details on the optimization.

4. Results
Datasets We evaluate our approach on both synthetic and
real-world photometric dataset. For the synthetic dataset,
we render four complex scenes containing multiple objects,
following the co-located flash photography. Each scene in-
cludes multiple objects. The dataset consists of 200 training
images and 100 test images per scene. For the real-world
photometric dataset, we capture one multi-object scene us-
ing a mobile phone with flash at 200/40 training/testing im-
ages. We conduct geometric and radiometric calibrations of
the light and the camera.

4.1. Validation and Comparison

Geometry We assess our method in comparison with
state-of-the-art analysis-by-synthesis inverse rendering
methods: IRON [45], DPIR [8] and GS3 [2]. Figure 5

IRON DPIR GS3 Ours
MAE ↓ 15.71 17.04 15.28 9.81
Train ↓ 12h 2h 1h 0.5h

Table 1. Normal reconstruction and training time. Our method
outperforms IRON [45], DPIR [8], and GS3 [2] in quantitative
numbers evaluated on the synthetic dataset.

and Table 1 show the results for geometry reconstruction,
demonstrating the highest accuracy in normal reconstruc-
tion with mean angular error (MAE). IRON and DPIR em-
ploy neural signed distance functions to recover smooth sur-
face normal, not only resulting in loss of details but also re-
quiring extended training times for optimization as shown
in Table 1. GS3, which is based on 3D Gaussian splatting
with anisotropic spherical Gaussians, exhibits limited accu-
racy in shape reconstruction. Our method accurately mod-
els surface geometry and reflectance using 2D Gaussians
and interpretable basis BRDFs, achieving the highest accu-
racy of normal reconstruction, especially for thin and con-
vex objects. Moreover, we outperform the others in terms
of training speed.

Basis BRDF Figure 6 shows the estimated basis BRDFs
and weight maps, comparing modern inverse-rendering
methods using basis BRDFs: GS3, DPIR, our method
without interpretable basis BRDFs (Section 3.1), and our
method with interpretable basis BRDFs (Section 3.2). Both
DPIR and GS3 use basis BRDFs to leverage spatial coher-
ence of specular reflectance. These methods yield non-
interpretable basis BRDFs, as evident from the rendered
weight maps and basis BRDF renderings. Our method in-
troduced in Section 3.1 improves the interpretability of the
basis BRDFs by jointly optimizing base colors. However,
the resulting basis BRDFs are still often duplicated and non-
intuitively classified. Moreover, all the methods have a fixed
number of basis BRDFs, limited to modeling different com-
plexity of scenes. In contrast, our full method (Section 3.2)
obtains interpretable basis BRDFs whose number fits the
target scene, as shown in Figure 3.
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Figure 6. Basis BRDFs and weight maps. Our inverse-rendering methods (Section 3.1 and Section 3.2) obtain basis BRDFs that are
explainable with spatially separated weight maps and intuitive basis BRDFs, compared to GS3 [2] and DPIR [8].

IRON DPIR GS3 Ours GTGT image 

Figure 7. Novel-view relighting. Our method enables high quality novel-view relighting with the accurate surface normal. We achieve
physically-valid relighting with accurate normal and basis BRDFs.

4.2. Applications

Novel-view Relighting Figure 7 shows novel-view re-
lighting and estimated normals, compared with IRON,
DPIR, GS3. They suffer from inaccurate estimation of ge-
ometry. Despite inaccurate normals, GS3 manages to render
high-quality relighting results. This is because neural net-
works compensate for such imperfection by learning resid-
uals, as relighting is the main goal of GS3. In contrast, our
method reconstructs accurate geometry and interpretable
basis BRDFs that enable not only novel-view relighting but
also downstream tasks such as intuitive scene editing. For
more results, refer to the Supplemental Document.

Scene Editing Our inverse rendering method enables se-
lective editing based on basis BRDFs and weight images.
Figure 8 shows that our interpretable basis BRDFs facilitate
reflectance editing. Interpretable basis BRDFs enable prac-

tical material editing by adjusting desired BRDF parame-
ters of base color, roughness, metallic based on their sparse
weight maps. We then obtain a single object from the entire
scene by selecting basis BRDFs that are utilized to repre-
sent the corresponding object. Next, we delete other basis
BRDFs and Gaussians that have the highest weight for other
basis BRDFs. We also filter out Gaussians based on Gaus-
sian positions. This allows for extracting object mesh [14]
and relighting it under an environment map. Figure 9 shows
additional material-editing results on a real-world scene.

4.3. Ablation Study

Sparsity Regularizer Lsparse Figure 10 shows that the
sparsity regularizer and the basis BRDF control enable ob-
taining interpretable basis BRDFs.

Specular-weighted Rendering Loss We test the impact
of the specular-weighted rendering loss that prioritizes
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Figure 8. Intuitive scene editing. We modify our basis BRDF
parameters to edit the reflectance. We also selectively extract mesh
and relight it under the environment map.
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Figure 9. Material editing and relighting on real-world ob-
jects. We obtain high-quality novel-view relighting for a real-
world scene, where interpretable basis BRDFs are reconstructed
with their sparse weight maps. We edit basis BRDFs and relight
the scene under novel illumination conditions.

potentially-specular areas using the rendered half-way an-
gle map. Figure 11 shows that specular-weighted rendering
loss produces a more stable reconstruction compared to not
using the weighting.

5. Conclusion

In this paper, we have introduced a differentiable in-
verse rendering method that jointly estimates 2D Gaus-
sians and basis BRDFs. Our method obtains inter-
pretable basis BRDFs that can represent SVBRDFs in a
spatially-separable manner, enabling accurate geometry and
SVBRDF reconstruction. Also, the number of basis BRDFs
automatically adjusts to a target scene. We demonstrate
the effectiveness of our method compared to state-of-the-

Without sparsity and basis control

With sparsity and basis control

GT

Figure 10. Impact of sparsity regularizer and basis BRDF
control. Without sparsity loss and basis BRDF control of
merge and removal, the resulting basis BRDFs are blended each
other as shown in the corresponding images, making them non-
interpretable for downstream tasks.

Without specular weight With specular weight GT

Specular weight mapGT image 1.0

6.0

Figure 11. Impact of specular-weighted loss. Using specular-
weighted rendering loss improves geometry and reflectance recon-
struction quality by recovering high frequency features from spec-
ularity, which is emphasized by the specular weight map.

art approaches. Using the interpretable basis BRDFs, our
method also facilitates downstream tasks such as intuitive
scene editing.

Limitations Our basis BRDF representation assumes
opaque objects, leaving modeling non-surface objects as a
future work. Combining semantic information from a large
vision model is also an interesting future work.
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