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Abstract

Multi-view object detection in crowded environments
presents significant challenges, particularly for occlusion
management across multiple camera views. This paper intro-
duces a novel approach that extends conventional multi-view
detection to operate directly within each camera’s image
space. Our method finds objects bounding boxes for images
from various perspectives without resorting to a bird’s eye
view (BEV) representation. Thus, our approach removes the
need for camera calibration by leveraging a learnable archi-
tecture that facilitates flexible transformations and improves
feature fusion across perspectives to increase detection accu-
racy. Our model achieves Multi-Object Detection Accuracy
(MODA) scores of 95.0% and 96.5% on the Wildtrack and
MultiviewX datasets, respectively, significantly advancing
the state of the art in multi-view detection. Furthermore, it
demonstrates robust performance even without ground truth
annotations, highlighting its resilience and practicality in
real-world applications. These results emphasize the effec-
tiveness of our calibration-free, multi-view object detector.

1. Introduction

Occlusions continue to represent a significant barrier to the
accurate detection and tracking of objects using computer
vision techniques. Various strategies have been employed
to address this problem for single-view scenarios, such as
part-based detection [38, 47] and detectors trained with spe-
cialized losses [42, 46]. Alternatively, numerous approaches
make use of additional information from RGB-D sensors
[14, 15], LIDAR point clouds [7], or multiple RGB cam-
era views [0, 11]. In this study, we consider the problem of
multi-view pedestrian detection, which is the recognition of
pedestrians from several RGB camera perspectives.
Multi-view pedestrian detection uses synchronized
frames from multiple calibrated cameras that observe a com-
mon region of interest with partially overlapping fields of
view. The calibration parameters of the cameras provide the
connection between 2D image coordinates and 3D world
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Figure 1. Overview of the Calibration-free Multi-View Detection
(CaMuViD) architecture. Our method uses N camera views to
extract feature maps and estimate the projection (A?) / back projec-
tion matrices (A?) that predict bounding boxes B3; for each view.

locations. The world plane, typically a BEV, encompasses
points in the 3D world at a fixed height, generally z = 0,
i.e., the ground plane. Assuming average human dimensions,
bounding boxes from various image views can be projected
to the real world and aggregated at each location on the
ground plane. This enables multi-view pedestrian detection
methods to assess ground-plane pedestrian occupancy. How-
ever, this approach faces significant challenges, primarily
due to view obstructions, particularly in densely populated
environments. The dynamic nature of occlusions and the lack
of adequate criteria to determine optimal camera perspec-
tives for multi-object detection further complicate matters.

Traditional methods [12, 18, 27, 28] address the chal-
lenges of multi-view pedestrian detection by making predic-
tions from individual cameras and matching distinct features
of pedestrians across different views. However, occlusions
still pose significant challenges, often leading to associa-
tion errors. To solve the global association problem, several



strategies [10, 17, 30, 34] have been proposed to identify

individuals on the ground plane and project these identifica-

tions back to the camera views using camera calibration data.

However, these methods often face difficulties in accurately

determining the positions of distant pedestrians, as inverse

projections can distort features, complicating the extraction
of reliable features from targets farther from the camera.

Additionally, a significant limitation of most existing
multi-view detection methods is their tendency to overfit,
as highlighted in [39]. This overfitting severely restricts the
models’ ability to generalize to new environments and di-
verse camera configurations. A key objective of this research
is to devise a model that can effectively generalize from
synthetic datasets to real-world scenarios. This is especially
important in environments where acquiring accurate ground-
truth and camera calibration data is difficult, such as densely
occupied indoor spaces or sparsely populated outdoor areas.

In response to these challenges, we introduce a novel
and effective method for Calibration-Free Multi-View De-
tection (CaMuViD). Our approach brings a fresh perspective
to the field by deviating from conventional techniques in
two significant aspects. First, instead of relying on camera
calibration parameters for multi-view feature projection, we
use a camera calibration-free feature projection. Second, and
most importantly, we present a comprehensive framework
that generates bounding boxes directly in the camera views
without requiring any identification on the ground plane,
facilitating the detection of people far from the cameras.
As Fig. 1 illustrates, at inference time, CaMuViD not only
generates the detected bounding boxes of pedestrians across
multiple camera views but also estimates the correspond-
ing feature projection and inverse projection matrices across
these views.

We empirically demonstrate the efficacy of CaMuViD
through an extensive evaluation on two benchmark datasets
specifically designed for multi-view pedestrian detection
and association. On the Wildtrack dataset [6], CaMuViD
substantially outperforms state-of-the-art methods, achieving
a Multi-Object Detection Accuracy (MODA) of 95.0%. On
the MultiviewX dataset[ 1 7], it achieves similar results, with
a MODA score of 96.5%.

In this paper, we provide the following contributions:

. A novel framework for multi-view pedestrian detection
based on calibration-free feature projection across cam-
eras observing a common region of interest.

. A multi-view pedestrian detection model based on a fine-
tuned Internimage (deformable convolution model) as a
backbone [4 1] using a new learning technique to enable
the estimation of feature projection and back projection
matrices.

. An extensive evaluation on two publicly available datasets
demonstrating state-of-the-art performance according to
various object detection evaluation metrics.
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4. The source code is publicly available
https://github.com/amiretefaghi/CaMuViD.

on

2. Related Work

This section discusses the main recent contributions to
monocular object detection, i.e., object detection using a
single camera perspective. It then examines key techniques
and methodologies employed in multi-view pedestrian de-
tection.

2.1. Monocular detection

Monocular object detection is a fundamental task in com-
puter vision due to its relevance in real-world applications
such as autonomous driving [43], robotics [29], surveillance
[33], and augmented reality [22]. This task entails identify-
ing and localizing objects within a single image or video
frame. The primary challenge in monocular object detec-
tion revolves around accurately estimating the 2D bounding
boxes of multiple objects in the image while simultaneously
recognizing their categories in the presence of frequent oc-
clusions and cluttered background scenes. Over the years,
numerous techniques to address these challenges have led to
significant advancements in the field. These approaches can
be broadly categorized into two main groups: a) two-stage
detectors, and b) single-stage detectors.

Many state-of-the-art monocular object detection meth-
ods adopt a two-stage approach [48]. In the first stage, they
generate a set of object proposals or candidate regions within
the image. In the second stage, they refine these proposals,
classify objects, and predict bounding box coordinates. No-
table methods in this category include Faster R-CNN [31]
and FPN [23]. In contrast, single-stage detectors simplify the
detection pipeline by directly predicting object categories
and bounding boxes from the image in a single pass. SSD
(Single Shot MultiBox Detector) [26] and YOLO (You Only
Look Once) [40] are widely used single-stage detectors for
their real-time performance. Among single-stage methods,
anchor-based approaches use predefined anchor boxes of var-
ious scales and aspect ratios to improve object localization
[24, 26, 36, 45]. Anchor-free methods, on the other hand, do
not rely on anchors, thus offering more flexibility [9, 19, 20].
DETR [4] represents a novel approach that redefines object
detection as a set prediction task, introducing a complete
end-to-end detection network based on a transformer archi-
tecture.

However, in real-world scenarios involving multiple cam-
era perspectives, single-view models often struggle with
occlusions and variations in object scale, limiting their scene
understanding capability. Consequently, multi-view object
detection methods have become increasingly important for
handling these challenges and improving detection perfor-
mance in complex multi-view scenarios.


https://github.com/amiretefaghi/CaMuViD

2.2. Multi-view Pedestrian Detection

To address pedestrian detection under severe occlusion, many
detection methods use multiple synchronized and calibrated
camera views, which provide complementary perspectives
of the scene. Camera calibration defines a mapping between
each ground-plane location and the corresponding bounding
boxes across various camera angles. This mapping enables
the calculation of 2D bounding boxes using approximate
human width and height in the 3D world. However, this 2D
bounding box calculation assumes fixed human dimensions,
which may not accurately reflect the actual height and width
of pedestrians. Consequently, multi-view detection systems
often assess their effectiveness using pedestrian occupancy
maps on the ground plane. Integrating information from
different views remains a primary challenge in multi-view
detection, and a variety of methods have been proposed.

One approach to modeling the multi-view environment
involves aggregating local appearance information based on
spatial relationships among pixels, using methods such as
mean-field inference [2, 1 1] and conditional random fields
(CRFs) [2, 32]. Baque et al. [2] achieved state-of-the-art per-
formance on the Wildtrack dataset [0] by constructing higher-
order potentials that ensure consistency between CNN es-
timations and generated reference images. They further en-
hance the performance of their approach by training the CRF
alongside the CNN in an integrated manner. Roig et al. [32]
frame the problem of multi-class object detection in a multi-
camera environment as an energy minimization task using
CRFs. Rather than making independent predictions about ob-
ject presence at specific image locations, they concurrently
predict the labeling for the entire scene.

The MVDet [17] framework introduced a novel approach
to multi-view detection by transforming perspective-view
features onto the ground plane, where pedestrian occu-
pancy maps were computed through spatial aggregation.
SHOT [34] later improved this approach by using multiple
homographies to project features at various heights, reduc-
ing distortions caused by single homography projections
and enhancing detection accuracy. MVDeTr [16] further
advanced these techniques by introducing a deformable at-
tention mechanism, allowing for more effective feature ag-
gregation across different positions and camera views, and
mitigating issues like shadow artifacts. Additionally, it incor-
porated view-level augmentations, such as flipping, cropping,
and scaling, to improve dataset variety and reduce overfitting.
MVAug [10] added scene-level augmentations by applying
geometric transformations to the features projected on the
ground plane. Similarly, 3DROM [30], drawing from random
erasing in 2D object detection, introduced random occlusion
techniques in 3D space to make the model more robust. How-
ever, these methods often show poor generalization, tending
to overfit to specific scenes and camera configurations.

GMVD [39] is the first attempt to improve the flexibil-
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ity of multi-view detection models to different camera ar-
rangements. It builds upon the MVDet [17] architecture
but replaces the learnable layer for spatial aggregation with
average pooling to more effectively adapt to different sce-
narios. In [39], the authors also present a new dataset that
covers a wide range of scenes with varying camera con-
figurations to evaluate their model. However, GMVD still
relies on inverse projections, which can result in the loss of
critical information introduce distortions and shadow-like
artifacts. MVFP [ 1] introduces a nonparametric 3D feature
pulling strategy, directly extracting the corresponding 2D
features for each valid voxel within the 3D feature volume.
This approach effectively addresses the feature distortion
from previous methods, offering a simple but effective so-
lution to enhance performance. To aggregate information
from different views, all the previous methods used calibra-
tion matrices to project extracted features to a real-world
plane and detected people from a BEV perspective. Unlike
previous approaches, our method directly learns the relation-
ships among features from different views, eliminating the
dependence on camera calibration information.

3. Proposed Method

This work focuses on detecting occluded pedestrians across
multiple camera views. Fig. 2 provides an overview of our
proposed method. As described in detail below, our model
uses fully connected networks (FCNs) to generate projection
matrices based on the image feature maps obtained from the
detection backbone. We employ a unique learning loss to
enables our model to estimate both the projection and back
projection matrices that relate the camera views.

3.1. Feature Extraction and Detection Network

As shown in Fig. 2, the input for our model is a set of images
T = {L;}Y,, where I; € R¥>**W represents the i-th
camera view, which has 3 channels, width W, and height H.
A backbone network D then extracts the set of feature maps,
F = {F}N |, where F; € RE->*HrxWs jg the feature map
corresponding to the ¢-th image.

In our model, the backbone D is based on the InternIm-
age [41] model pre-trained on the MS COCO [25] dataset.
The most distinctive feature of Internlmage is the use of
deformable convolutions, which offer two key benefits. First,
they provide the large effective receptive field required for
tasks such as detection and segmentation. Second, they en-
able adaptive contextual aggregation, tailored to input and
task requirements. By incorporating deformable convolu-
tions, Internlmage relaxes the strict inductive bias inherent
in traditional CNNs, allowing it to learn more robust pat-
terns from extensive data, similar to vision transformers [8].
This highlights the potential of deformable convolutions as a
compelling backbone for large-scale vision models.
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Figure 2. Approach Overview. For given input Z = {I;}~, our method extracts set of feature maps, F = {F;}, and uses these features
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_ 1 matrices. With calculated projection matrices, the model is able

to project the feature maps to common space for multi-view fusion and accumulate information from different views, and the back projection
matrices give the model this ability to back project information F = { F}}_; to each view and detect pedestrians with bounding boxes.

3.2. Feature Projection Matrix Estimation

Instead of projecting the camera views to a world plane
using camera matrices, we implicitly aggregate information
from different views to detect people directly in the image
space. As shown in Fig. 3, our method uses FCNs to estimate
the set of projection matrices AP = {A? € RE*Cr 1N |
define the mapping from the i-th camera view to a common
representation space for all the cameras. We estimate these
projection matrices by feeding extracted feature maps in F
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Figure 3. FCN Architecture of a) projection and back projection
matrices block, and b) the feature refinement block.
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to the fully connected network, IV,,, as shown in Eq. (1).

A? = N, (F;),

K2

(1

where i € 1,2, ..., N. The model uses A? to project extracted
features to the common space. This projection is performed
by multiplying A? and F;, i.e.,

P, = A? x F, @

where P; is the projected feature map corresponding to cam-
era view i through channel-wise matrix multiplication A?.

3.3. Feature Fusion and Back Projection

After projecting the features onto a common space, we fuse
them to integrate information from multiple views. This fu-
sion combines complementary data from each view, resulting
in a more robust and comprehensive feature representation.
Our fusion strategy concatenates the features from all views
along the channel dimension, i.e.,

Pc:[P17P27"'7PN]7 (3)

where P, € RC *HsxWr and " is N x C'. The main bene-
fit of concatenation over summation is that it does not dilute
information from distinct views. That is, a high-activation
area summed to a low-activation area would force the two
activations to the middle, which is undesirable. On the other
hand, the concatenated feature map may contain redundant
information. Hence, we apply a convolution layer with kernel
size 1 to reduce the number of channels of the concatenated
feature vector to the desired size and also act as learnable
weighted summation, according to

Pf:Nc(Pc)a (4)



where N, is the convolution layer. Once we have the fused
feature map P; € RE*HixWrs which contains informa-
tion from all the camera views, we project this information
back to each camera’s image plane. To achieve this goal, we
employ another FCN, N, to learn the back projection by
generating the set of matrices A® = {A4% € RE/*Cr}N
We impose the condition that A? = (A?)~!, which ensures
that the model learns the back projection from the common
representation space to each camera’s image plane. That is,

A} = Ny (F). (5)
Fig. 3(a) shows the architecture of the N, and IV, networks,
which generate the feature projection and back-projection
matrices, respectively.

After generating the back projection matrices, we can
apply the back projection from the common space to each
camera’s view space by multiplying the back projection
matrices and the fused feature maps,

E, =AY x Py, (6)
where F; are the back-projected feature maps from the com-
mon space to camera view ¢, obtained through channel-
wise matrix multiplication A%. To satisfy the condition that
A? = (AT)~1, we employ the loss term presented in Eq. (7)

N
LUP:Z|A?XP1'—F1’|~ (N
=1

While previous methods [21] proposed mechanisms to
calculate projection matrices for image reconstruction, our
method estimates both projection and back projection ma-
trices for features (i.e., not images) from different views.
Therefore, we use the multi-view loss in Eq. (7) to accurately
estimate both the projection and back projection matrices.

3.4. Feature Refinement and Target Detection

With the features successfully fused and re-projected to their
respective camera spaces, the model is now equipped with en-
riched, multi-view representations. However, to fully benefit
from this process, an additional step is required to ensure the
features are well-suited for accurate target detection. This is
where the feature refinement module (FRM) plays a crucial
role, fine-tuning the features before they proceed to the de-
tection head. As shown in Fig. 3(b), this block contains two
convolution layers followed by a ReLU activation function.
We use a large kernel size for the first convolution layer to
refine the re-projected feature maps based on a large area to
improve feature summarization performance. After applying
the FRM to the re-projected feature maps, they are used as
inputs to the detection head, Eq. (8).

B = DetHead(N,(F)), (8)
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where F is setof {3}, , Bis the set of predicted bounding
boxes and N, is the FRM network. Our detection head is
based on the cascaded RCNN model [ 13], which an effective
person detector in crowded scenes because of its multi-level
detection capability.

3.5. Network Implementation and Training Details

We use Internlmage-t [4 1] as the backbone of our detector
network. We use the COCO pre-trained weight for the back-
bone and train our model independently on each dataset,
namely Wildtrack [6] and MultiviewX [17] for 20 epochs
using a learning rate of le — 4 . During training, we use
the view projection loss from Eq. (7) in addition to standard
object detection loss terms (bounding boxes and classifica-
tion losses) with a weight of 1le — 4. We downsize the input
images to 640 x 1338 to limit memory consumption. As
in previous works [1, 10, 16, 17, 30, 34], we used 90% of
the first frames of each dataset for the training set and the
remaining frames for the test set.

4. Experiments and Results

We compare the detection performance of our model
with several state-of-the-art multi-view detection methods,
namely, MVDet [17], Deep-Occlusion [2], DeepMCD [5],
POM-CNN [11], RCNN & clustering [44], SHOT [34],
MVDetr [16], MVAug [10], 3DROM [30], MVFP [1], and
TrackTacular [37]. We also present an ablation analysis to
elucidate the contributions of individual components of our
approach. Our evaluation is based on five key object detec-
tion metrics obtained using two publicly available datasets,
as explained in detail below.

4.1. Datasets

We evaluate our method on two of the most widely used
publicly available multi-camera datasets for pedestrian de-
tection: Wiltdtrack [6] and MultiviewX [17]. Both datasets
provide high-resolution images (1080 x 1920 pixels) from
multiple calibrated cameras with partially overlapping fields
of view, as well as ground truth bounding boxes and corre-
sponding global identifiers for the pedestrians visible to all
the cameras. Both datasets employ a grid-based annotation
system to precisely locate and track objects on the ground
plane. Additionally, both datasets provide annotated pedes-
trian bounding boxes at two frames per second, aligning their
temporal granularity.

4.1.1. Wildtrack

Wildtrack covers a scene area spanning 12 x 36 meters ob-
served by seven cameras. The ground plane is quantized
into a 480 x 1440 grid, with each grid cell measuring 2.5
centimeters square. Approximately 20 people are visible in
each frame on average, and the region of interest is covered
by an average of 3.74 cameras per grid cell.



Table 1. Detection performance evaluation results. Results marked with a * were reported in [17].

Wildtrack MultiviewX

Method MODA 1 | MODP 1 | Prec. 1 |Rec. 7| F1 T || MODA 1 | MODP 1| Prec. T|Rec. 1| F} T
RCNN & clustering [44] 11.3 18.4 68.0 | 43.0 | 52.7 18.7* 46.4* | 63.5* | 43.9* | 51.9
POM-CNN [11] 232 30.5 75.0 | 55.0 | 63.5 - - - -

DeepMCD [5] 67.8 64.2 85.0 | 82.0 | 835 70.0* 73.0 | 85.7* | 83.3* | 84.5
Deep-Occlusion [2] 74.1 53.8 95.0 | 80.0 | 86.8 || 75.2* 54.7* | 97.8* | 80.2* | 88.1
MVDet [17] 88.2 75.7 94.7 | 93.6 |94.1 83.9 79.6 96.8 | 86.7 | 91.5
SHOT [34] 90.2 76.5 96.1 | 94.0 | 95.0 88.3 82.0 96.6 | 91.5 | 94.0
MVDetr [16] 91.5 82.1 97.4 | 94.0 | 95.7 93.7 91.3 99.5 | 94.5 | 96.9
MVAug [10] 93.2 79.8 96.3 | 97.0 | 96.6 95.3 89.7 994 | 959 |97.6
3DROM [30] 93.5 75.9 97.2 | 96.2 | 96.7 95.0 84.9 99.0 | 96.1 | 975
MVFP [1] 94.1 78.8 964 | 97.7 |97.0 95.7 82.1 984 | 97.2 | 97.8
TrackTacular [37] 93.2 71.5 973 | 958 |96.5 96.5 75.0 994 | 97.1 | 98.2
Ours H 95.0 \ 80.9 \ 96.3 \ 98.6 \ 974 H 96.5 \ 89.3 \ 97.9 \ 98.6 \ 98.3

4.1.2. MultiviewX sequently, there is a subtle but important distinction in the

MultiviewX is a synthetic dataset generated using the Unity
engine and human models from PersonX [35]. It covers a
smaller area than Wildtrack: 16 x 25 meters. Like Wildtrack,
it also employs a 2.5 centimeter square grid resolution on
the ground plane. MultiviewX features six cameras with
partially overlapping fields of view, and an average of 4.41
cameras covers each grid cell in the region of interest.

4.2. Evaluation Metrics

We evaluate our method in terms of its Multi-Object De-
tection Accuracy (MODA) and Multi-Object Detection Pre-
cision (MODP) [3], as well as its precision, recall, and F}
score. It is important to note that our method performs pedes-
trian detection solely on the image plane. Hence, unlike
previous methods that detect pedestrians from a BEV per-
spective, our approach only produces bounding boxes. Con-

determination of True Positives (TP), False Positives (FP),
and False Negatives (FN). In BEV, detections are mapped to
a global coordinate frame, clustered, and compared with the
ground truth (GT). A detection from any single camera that
matches the GT is considered a TP, while redundant detec-
tions from other views are not treated as FPs. Our approach
replicates this procedure without projecting bounding boxes
onto the ground plane. During the evaluation, detections
that meet an IoU threshold, it is 0.45 in our case, with GT
bounding boxes are assigned to the GT using the Hungarian
algorithm. We aggregate all detections assigned to GT boxes
and unassigned detections from all views for each frame and
then check whether they correspond to TPs, FPs, or FNs.
If an ID is assigned to at least one detection, it is counted
as a TP; otherwise, it is considered an FN. Detections with-
out corresponding GT are projected onto the world plane

(a) Camera view 1 (b) Camera view 2

(c) Camera view 5

(d) Camera view 6

Figure 4. Qualitative detection results (green represents ground truth and red detections). The first row corresponds to the Wildtrack dataset

and the second row shows frames from the MultiviewX dataset.
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and clustered to combine identical detections from different
views into a single point, counted as an FP.

4.3. Multi-View Object Detection Performance

As shown in Tab. 1, our method outperforms several state-of-
the-art methods by a significant margin on both datasets. On
Wildtrack, we obtain a 0.9% MODA improvement over the
cutting-edge MVFP [1]. On MultiviewX, the improvement
is 0.8%. Our method also achieves the best results in both
datasets in terms of recall and Fj score. As already men-
tioned, our MODP is computed based on IoU. In contrast,
BEV-based approaches compute Euclidean distances in the
world plane, which makes our MODP more strict. Despite
this, the MODP achieved by our model is competitive under
those considerations.

Fig. 4 illustrates the performance of our method on vari-
ous camera views from both datasets. In addition to detecting
virtually all of the pedestrians within the region of interest,
our method also detects individuals who are mistakenly not
represented in the ground truth annotations. People with red
bounding boxes but no corresponding green bounding boxes
in Fig. 4 lack ground truth annotations in several camera
views, yet our method successfully detects them, as well
as people with blue bounding boxes are detected, but they
are out of field of view. This indicates that our method does
not rely solely on ground truth annotations to learn coherent
multi-view appearance features.

4.4. Cross-dataset Performance

In this evaluation, the model is trained on the MultiviewX
dataset and tested on WildTrack. This procedure assesses
the model’s robustness and ability to handle the diverse and
complex conditions found in real environments, which show
noticeable differences from the synthetic training data. The
results are shown in Tab. 2. For methods designed for fixed
camera setups, we exclude one view from WildTrack in the
evaluation while maintaining the total number of individuals
in the scene, following the experimental setup from [39].
With six camera views, our method outperforms prior ap-
proaches, even exceeding MVFP [1], which uses seven cam-
eras. In this experiment, we can observe a more notorious
effect of the IoU-based MODP. The actual person width
and height deviations from the fixed values used in WILD-
TRACK and MultiviewX for ground truth annotations also
contribute to the MODP reduction. As mentioned in [1], it
is important to note that methods such as MVDet [17] and
MVAug [10] experience significant accuracy drops during
scene generalization due to their reliance on a single-layer
projection, which depends heavily on memorizing the ground
plane structure from the training data, leading to challenges
in new scenarios. In contrast, our method, which uses ex-
tracted feature maps for projection estimation,demonstrates
better generalization.
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Table 2. Cross-Dataset performance comparison of different meth-
ods.

Method MODA | MODRP | Prec | Recall | F1

MVDet [17] 17.0 65.8 |60.5| 48.8 |54.0
MVAug [10] 26.3 58.0 |71.9| 50.8 |59.5
MVDeTr [16]|| 50.2 69.1 |74.0| 77.3 |75.6
SHOT [34] 53.6 72.0 |752| 79.8 |77.4
GMVD [39] 66.1 722 |82.0| 84.7 |83.3
3DROM [30] 67.5 65.6 |94.5| 71.7 |81.5
MVFP [1] 76.7 749 |852| 92.8 |88.8
Ours 86.4 60.7 |89.3| 98.1 |93.5

4.5. Camera Elimination Performance Analysis

This experiment evaluates the impact of removing individual
camera views on various performance metrics in a multi-
view pedestrian detection model based on Wildtrack. By
systematically blanking out different cameras, we assessed
how reducing the number of active cameras influences key
metrics, including MODA, MODP, Precision, Recall, and F1
score, as shown in Tab. 3. The results show that reducing the
number of camera views negatively impacts all metrics, with
the most significant declines observed in MODA and MODP
when four or more views are removed. MODA, which re-
flects detection accuracy by penalizing missed detections
and false positives, is notably lower when fewer than four
cameras are active. Configurations with only one or two
cameras achieve MODA scores 35.5% and 18.8% lower
than the optimal configuration, respectively. In contrast, con-
figurations with five or more cameras reach up to 95.6%
MODA, indicating the importance of multiple perspectives
for accurate detection. Similarly, MODP, which measures
the precision of bounding box localization, improves with
additional camera views, reaching a maximum of 80.2%
when five views are active, compared to only 65.0% with a
single view. This suggests that more views help the model
accurately localize pedestrians, reducing the margin of error
in bounding box placements. Precision and Recall also show
improvements with more camera views. Precision remains
high across configurations, but it is maximized at 96.6%
when multiple views are used, showing that false positives
are minimized with comprehensive scene coverage. Recall,
however, is more sensitive to the number of cameras, rising
from 60.2% with a single view to 99.3% with five active
views. This underscores that additional views reduce the
likelihood of missing detections, especially in occluded or
crowded areas. Finally, the F1 score is highest (98.0%) when
six cameras are active, reflecting the combined benefits of
high accuracy and broad coverage. These findings highlight
that using multiple camera views is essential in multi-view
pedestrian detection to achieve robust performance across
all metrics. Multi-view camera configuration mitigate occlu-



Table 3. Camera elimination model performance.

C1 C2C3C4C5C6 C7/|MODA |MODP|Precision|Recall| F1
vV X X X X X X|| 60.1 | 65.0 99.8 | 60.2 |75.1
vV VX X X X X|| 778 | 71.5 99.8 | 77.9 |87.5
vV VX X X X|| 906 | 764 984 | 92.1 [95.1
VvV Vv X X X|| 938 | 794 98.3 |95.5 (96.9
vV VvV Vv X X|| 93.8 | 80.0 96.8 |96.9 97.0
vV VvV Vv Vv oX]| 956 | 80.2 96.6 | 99.3 (98.0
vV VvV VY VY90 | 80.9 96.3 | 98.6 974

sions, provide diverse perspectives, and enhance the model’s
ability to detect and localize pedestrians accurately, ensuring
reliable performance in complex environments.

4.6. Ablation Study

Our ablation study evaluates the effectiveness of different
fusion strategies and the Feature Refinement Module (FRM).
Three sets of experiments were performed: (1) using summa-
tion instead of concatenation for feature fusion without FRM,
(2) using concatenation for feature fusion without FRM, and
(3) using concatenation for fusion with FRM.

As shown in Tab. 4, the summation-based fusion method
without FRM achieved a MODA of 93.8% and an F1 score
of 96.9%. While this approach provides reasonable re-
sults, we observed a slight improvement when switching
to concatenation-based fusion, which increased the MODA
to 94.6% and the F1 score to 97.3%. This improvement
suggests that concatenating feature maps before detection
allows for a richer feature representation compared to sum-
mation, leading to enhanced performance in detection met-
rics. Finally, in our last experiment, we introduced the FRM
following the concatenation operation. This module further
improves performance, achieving a MODA of 95.0% and an
F1 score of 98.3%. The increase in both precision and recall
highlights the FRM’s ability to refine fused features effec-
tively, resulting in more accurate detections. Additionally,
the MODP score saw an increase from 80.2% to 80.9%, in-
dicating better alignment and quality of the detected objects.
Overall, these results demonstrate that concatenation-based
fusion, combined with feature refinement through the FRM,
significantly improves the detection performance compared
to using summation or concatenation alone.

Fig. 5 compares projected, fused, and reprojected fea-
ture maps using two strategies. In geometry-based methods,
feature maps are projected onto the world ground plane us-
ing camera parameters, fused with other views, and then
reprojected back onto image space for detection. However,
this process loses spatial details, particularly pedestrians’ ap-
pearance information, and projective transformations distort
the activation maps, causing misalignment across views and
reducing their effectiveness for pedestrian detection. In con-
trast, our method maintains consistency across camera views
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Original Feature Map

Reprojected Feature Map

Projected Feature Maps

Figure 5. Comparison between geometry-based and geometry-free.
Geometry-free: matrix-multiplying estimated projection (A?) and
back-projection (A®) by the feature maps. Geometry-based: we
project the feature maps to the world plane and backproject it by
using the camera matrices.

Fused Projected Feature Maps

Geometry-Based

Geometry-free

by operating directly in image space. To further clarify, we
conducted an ablation study by replacing the A” and A® ma-
trices with camera parameter-based projections, leading to a
significant performance drop: MODA 9.1% on Wildtrack.

5. Conclusion

We present a novel framework for multi-view detection. Our
model learns feature projection and back-projection matrices
for all camera perspectives, advancing our understanding of
occlusion modeling and enhancing individual identification
across camera views. This method establishes a new bench-
mark in multi-view pedestrian detection and achieves precise
bounding box predictions within the image space for each
distinct camera view.

Our model achieves an impressive MODA of 95.0% on
the Wildtrack dataset and 96.5% on MultiviewX, marking
significant progress over existing models and underscoring
the robustness and efficacy of our approach. Qualitatively,
our model consistently identifies individuals, even in cases
where ground truth annotations are absent, illustrating its
adaptability and resilience in complex multi-view scenarios.

Looking forward, we aim to extend our model to incorpo-
rate multi-view association, which would enable the track-
ing of individuals across multiple cameras and potentially
across sequential frames. This development will enrich the
model’s contextual understanding from various perspectives,
enhancing its capability to detect, associate, and track indi-
viduals. By integrating multi-view associations, the model
can offer a more comprehensive understanding of pedestrian
dynamics in dense scenes, ultimately broadening its utility
in real-world applications.

Table 4. Ablation study results.

Fusion || FRM | MODA | MODP | Precision | Recall | F1

Sum X 93.8 80.3 95.5 98.4 196.9
Concat || X 94.6 80.2 95.4 99.3 |197.3
Concat || v 95.0 | 80.9 96.3 98.6 (974
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