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Abstract

3D Gaussian Splatting (3DGS) has shown impressive re-

sults for the novel view synthesis task, where lighting is

assumed to be fixed. However, creating relightable 3D

assets, especially for objects with ill-defined shapes (fur,

fabric, etc.), remains a challenging task. The decomposi-

tion between light, geometry, and material is ambiguous,

especially if either smooth surface assumptions or surface-

based analytical shading models do not apply. We propose

Relightable Neural Gaussians (RNG), a novel 3DGS-based

framework that enables the relighting of objects with both

hard surfaces or soft boundaries, while avoiding assump-

tions on the shading model. We condition the radiance

at each point on both view and light directions. We also

introduce a shadow cue, as well as a depth refinement

network to improve shadow accuracy. Finally, we pro-

pose a hybrid forward-deferred fitting strategy to balance

geometry and appearance quality. Our method achieves

significantly faster training (1.3 hours) and rendering (60

frames per second) compared to a prior method based on

neural radiance fields and produces higher-quality shadows

than a concurrent 3DGS-based method. Project page:

whois-jiahui.fun/project_pages/RNG.

1. Introduction

Creating 3D assets from multi-view captures of the real

world is an effective way for content creation, avoiding

manual modeling labor. The resulting 3D assets can be

objects with well-defined surfaces or ill-defined shapes

(e.g., fur, fabric, grass, etc.), as both are important in many

applications. Unfortunately, if we want the resulting assets

to be relightable, the task is still challenging because of the

ill-posed nature of the decomposition between light, materi-

als, and geometry. This is especially true for complex non-
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smooth materials, which raise difficulties in decomposition,

as surface-specific constraints or surface-based analytical

shading models cannot be leveraged. In this paper, we

aim to relight objects with clear surfaces or soft boundaries

given multi-view captured images with varying illumina-

tion, simultaneously achieving high-quality relighting and

shortening training/rendering times.

After ground-breaking view-synthesis work on Neural

Radiance Fields (NeRF) [20] and 3D Gaussian Splatting

(3DGS) [15], extensive efforts have focused on reconstruct-

ing relightable 3D assets [9, 13, 14, 17–19, 24]. However,

these methods mostly rely on surface shading models and

introduce surface constraints (including the assumption of

valid normals), preventing them from reconstructing ob-

jects with soft boundaries and/or materials that are not

well represented with simple analytic models. Recently,

NRHints [27] enabled relightable capture of both smooth

surfaces and objects with soft boundaries by using input

views with a moving point light and a neural appearance

model. Being based on a NeRF framework, NRHints

suffers from high training/rendering time costs and some

over-smoothing of detail. The concurrent work GS3 [2]

uses the same capture setup but instead uses 3DGS as the

underlying framework, which is more efficient in training

and rendering, and captures finer details. With the less

accurate geometry obtained from 3DGS, GS3 has relatively

lower shadow quality.

In this paper, we propose Relightable Neural Gaussians

(RNG), a novel 3DGS-based framework for relighting ob-

jects with both clear surfaces and soft boundaries. We

implicitly model the radiance of objects by learning latent

(feature) vectors at each neural Gaussian. To interpret

neural Gaussians, we use the neural Gaussian decoder

network, and condition it on the view and light directions.

Analytical assumptions in shading models and surface con-

straints are avoided in our neural representation, making

it capable of learning appearances that do not fit well into

those constraints.

Following prior work [27], we utilize views with a mov-

ing point light, to observe many view/light combinations
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and reduce ambiguities in decomposition. However, point

lights produce sharp shadows, which are challenging for

neural networks to capture accurately. We present a shadow

cue with depth refinement to condition the neural Gaussian

decoder, improving the shadow quality. We also introduce

a two-stage hybrid (forward-deferred) optimization pipeline

for better shadow appearance.

In our results, RNG shows not only higher-quality de-

tails than the NeRF-based prior method NRHints, but also

more accurate shadows than the concurrent 3DGS-based

approach GS3. In terms of performance, RNG takes about

1.3 hours for training and achieves a 60 frame per second

(fps) rendering performance on an RTX 4090 GPU, which

is competitive with 3DGS and GS3 and many times faster

than NRHints.

To summarize, our main contributions include

• a relightable neural Gaussian framework to render objects

with smooth surfaces or soft boundaries, under arbitrary

view and light directions, and with no analytic assump-

tions on the shading model,

• a shadow cue technique and a depth refinement network

to enhance the quality of shadows, and

• a hybrid (forward-deferred) optimization strategy, achiev-

ing high-quality reconstruction and sharp shadow appear-

ance.

2. Related work

2.1. Inverse rendering

Inverse rendering [1, 19, 29] decomposes the light, material,

and geometry with multi-view RGB inputs, and the decom-

posed assets can be relit under any desired novel lighting.

To represent the materials, several methods introduce a

standard shading model similar to the Disney Principled

BRDF [5] as a physically-based prior, and neural materi-

als [32] can also be utilized for material recovery. With

the representation capacity of NeRF, some methods [3, 4,

26, 28] produce high-quality inverse rendering at the cost

of high training consumption and slow rendering speed. Jin

et al. [14] use grid features to represent the scenes, leading

to relatively fast training speed. Zhang et al. [33] adopts the

SGGX Microflake model [11] to perform inverse rendering,

achieving unique effects for semi-transparent targets. SDFs

are also commonly used in the representations [17, 24, 30],

leading to smoother surface normals but biasing the method

to objects with relatively smooth surfaces.

3DGS brings the rasterization framework into multi-

view stereo reconstructions. However, this nature of 3DGS

also hurts the quality of its obtained geometric attributes,

such as depth and normal, making them noisy and difficult

for further use. Some existing methods [6, 7, 10, 12]

bring constraints or introduce meshes into the Gaussians,

improving the geometry quality. By introducing analytical

shading models, several works utilize 3DGS to achieve

inverse rendering under unknown environment lighting.

Jiang et al. [13] and Shi et al. [23] supervise the normals via

the orientation of Gaussians, while Gao et al. [9] and Liang

et al. [18] leverage depth to obtain the normal information.

Compared to NeRF-based methods, 3DGS-based meth-

ods are more efficient and handle soft-boundary objects

better due to their flexible representation. Therefore, we

choose to use 3DGS as the underlying framework. Further,

previous approaches with surface priors fail to handle soft

objects, and the fixed types of analytical models also limit

the application. In contrast, our method generalizes across

a wider range of scenarios without such assumptions.

2.2. Relighting of illdefined shapes

Most existing inverse rendering methods cannot simply

extend to soft-boundary objects, due to the incompatibil-

ity of shading models and the challenging light transport

in such scenes. Gao et al. [8] present Deferred Neural

Relighting, which leverages learned neural texture on a

rough proxy geometry for relighting objects including fluffy

shapes. Mullia et al. [21] propose a novel representation

that combines explicit geometry with a neural feature grid

and an MLP decoder, achieving high-fidelity rendering and

relighting with good flexibility and integration. Unlike

our method, they only support synthetic inputs and require

ground-truth geometry.

Recently, Zeng et al. [27] proposed NRHints, which

maintains an implicit neural representation with both SDF

and NeRF-style feature grids, and predicts radiance with

shadow and highlight hints, achieving high-quality re-

lighting. However, NRHints is computationally heavy

in training and rendering, and tends to over-smooth soft

objects, especially at boundaries. Our concurrent work

GS3 [2] introduces triple splatting to relight objects. They

introduce analytical appearance approximation that is also

supplemented by neural networks, enabling high-efficiency

relighting for fluffy objects as well. GS3 still suffers

from the inherent lower-quality geometry of Gaussian point

cloud, leading to less sharp shadow appearance.

We target the same problem as in NRHints and GS3,

and use point-lit images as input as well. However, we

introduce neural Gaussians, avoiding surface constraints

and shading model assumptions, gaining more flexibility

in representation. We further propose the shadow cue with

depth refinement to enhance the shadow quality, and design

a hybrid optimization strategy. Overall, RNG achieves

faster training/rendering and finer details than NRHints, as

well as higher shadow quality under point lights than GS3.

3. Method

The goal of our work is to reconstruct high-quality re-

lightable assets for objects with both hard surfaces and soft

26526



Neural	Gaussian

- covariance

μ - position	

- opacity

Neural	Gaussian	decoder

MLP

Latent vec. 

View dir.

Light dir.

Shadow cue

Re�lectance

Rendered
image

-	latent	vectorx

Stage	1:	Forward	shading
(pre-accumulation) ...

Alpha
blending

Stage	2:	Deferred	shading
(post-accumulation)

Camera ray

Aggregated
feature

Shadow	mapping

Conditioning

...

Latent 
vectors

Neural
Gaussians

Re�lectance

Rasterize

Splat

Camera

Not shadowed

Light

Splat

Light

Shadowed

Neural
Gaussian
decoder

Neural Gaussians

Shadow cue

Alpha
blending

Neural
Gaussian
decoder

Pixel color

Radiance
(Pixel color)

Re�lectance

light 
intensity

light 
intensity ...

Radiance

Figure 1. The overview of RNG. Each Gaussian point in the scene contains an extra latent vector that describes the reflectance. The latent

values interpreted by an MLP decoder, conditioned on view and light directions. Training has two stages. In the first stage, we employ

forward shading, where we decode all the latent vectors of Gaussian points into colors, followed by the alpha blending. In the second

deferred shading stage, we first alpha-blend the neural Gaussian features to get an aggregated feature, and then we feed it to the decoder.

We apply shadow mapping to obtain a shadow cue map and use the shadow cue as an extra input for the decoder in the second stage.

boundaries while maintaining fast training and rendering

time. We propose relightable neural Gaussians (Sec. 3.2)

to implicitly model the reflectance. We also apply a shadow

cue with depth refinement (Sec. 3.3) to improve the quality

of shadows and design a hybrid forward-deferred opti-

mization strategy (Sec. 3.4) to further improve the shadow

appearance while preserving the quality of geometry. Fig. 1

illustrates the overview of our method.

3.1. Background: 3D Gaussian Splatting

3DGS represents a scene with a set of 3D Gaussians, each

of which is defined as

Gaussian(x|µ,Σ) = e−
1

2
(x−µ)TΣ−1(x−µ), (1)

where x is a position in the scene, µ is the mean of the

Gaussian, and Σ denotes the covariance matrix of the 3D

Gaussian, which is factorized into a scaling matrix S and a

rotation matrix R as Σ = RSSTRT . To render an image,

3DGS projects the 3D Gaussians onto the 2D image plane

and employs alpha blending on the sorted Gaussians as

C =
∑

i∈N

ciαi

i−1∏

j=1

(1− αj), (2)

where ci is the color of each Gaussian, and αi is given

by evaluating a projected 2D Gaussian with covariance

Σ′ multiplied with a learned per-point opacity. In 3DGS,

the alpha blending of color ci (which depends on the

view direction and is represented by spherical harmonics)

from every nearby Gaussian point yields the reflectance at

position x.

3.2. Relightable neural Gaussians

Existing 3DGS-based relighting methods leverage analyt-

ical shading models and/or surface assumptions. Instead,

we use a learned latent space to implicitly represent the

view- and light-dependent reflectance in the scene. As

shown in Fig 1, each Gaussian point carries a latent (feature)

vector that models this reflectance. To enable relightability,

the reflectance has to be dependent on not only the view

directions ωo but also the light directions ωi. Therefore,

the network can decode and predict the reflectance values

at novel light positions. The final reflectance is represented

as

ρ(x, ωo, ωi) = Θ(x|ωo, ωi), (3)

where Θ is the neural Gaussian decoder and x is the shading

point with its corresponding latent vector. This reflectance

value is analogous to the BRDF times cosine term from the

standard rendering equation, and needs to be multiplied by

light intensity and light falloff to obtain final radiance from

a point light. When applying novel lighting conditions, the

network takes the given point light positions and view direc-

tions as conditioning inputs, leading (after combining with

incoming light intensity) to a neural implicit relightable
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Figure 2. The effect of the depth refinement network. The

weighted sum of Gaussian depths is not accurate, resulting in mis-

matching shadow cues. Therefore, we propose a depth refinement

network to correct the depth.

radiance representation.

3.3. Shadow cue

With our proposed neural Gaussians, the reflectance at

positions in the scene can be represented by latent vectors

stored in each Gaussian point. However, there are still

some potential quality issues. First, the network tends to

over-fit all view/light directions in the training set, resulting

in blurry or incomplete shadows in unseen predictions or

inconsistent shapes in movement. Second, point lights yield

sharp shadows, and the MLP is prone to over-smooth such

high-frequency signals.

To address the above issues, we introduce a shadow cue

to condition the neural Gaussian decoder. The shadow cue

is a 1-channel map in the screen space that indicates the

visibility to the light of each shading point and will be fed

into the MLP together with other inputs described in Eq. 3.

We obtain the shadow cue by performing shadow map-

ping under the 3DGS framework. Shadow mapping re-

quires the precise locations of shading points. However,

since we do not explicitly trace rays, we can instead use the

depth value for each pixel for shading point computation.

Obtaining the depth values of a Gaussian cloud is not

well-defined. Therefore, we introduce a depth refinement

network to correct the depth values and help find the valid

shading points.

Depth refinement. An intuitive and naive proxy for the

depth is the weighted sum of the depth and Gaussian

responses along the ray,

z̄ =
Σαizi

Σαi

, (4)

where zi is the depth value of ith Gaussian on the camera

ray and αi is the ray response at each intersections of 3D

Gaussians. Usually, this proxy is normalized, thus the

background leakage at semi-transparent areas can be re-

duced. However, sometimes the weighted sum is incorrect,

leading to wrongly located shading points and consequently

(a) Splat to get a depth (c) Splat to shadow camera

Shadow camera

Depth

(b) Re�ine the depth

Depth
re�inement

MLP

Shadow	cue

Figure 3. The illustration of shadow cue computation. First, we

splat the Gaussians onto the camera to get depth values. Then,

we run the depth refinement network to correct them and locate

the shading points P . At last, we splat the shading points onto

the shadow camera to find the intersections of shadow rays Q, and

store the distance |PQ| as the shadow cue.

mismatching shadow cues. We discuss and showcase this

situation in the supplementary. To address this issue, we

propose a depth refinement network to correct the shading

point locations by learning a scaling factor, as shown in

Fig. 2. We assume the depth correction is linear for each

pixel and dependent on view directions ωo. Therefore, the

refined depth value is obtained by

z̄′ = z̄ · Φ(ωo), (5)

where Φ is the depth refinement MLP.

Shadow mapping. Conventional shadow mapping

marches the ray to get visibility, which can be expensive

and difficult to achieve. Instead, under the 3DGS

framework, we perform an extra pass of Gaussian splatting

to cast shadow mapping. We obtain the shadow cue in

the following steps, as shown in Fig. 3. First, we splat

Gaussians onto the camera and record the depth values of

each pixel. Second, we run the depth refinement network

to correct the depth and calculate a shading point P for

each pixel based on the pixel depth. After this, we set

a virtual shadow camera at the point light position. We

splat Gaussians onto the shadow camera for a second pass,

recording the depth to find a shading point Q for each

pixel in the shadow camera. We project P into the shadow

camera frame to find its corresponding Q. Since Q is

equivalently the shadow ray intersection, the distance |PQ|
is recorded as the shadow cue for this pixel.

Note that for computational efficiency, we omit the depth

refinement when we obtain the shadow camera depth. With

shadow cues, the neural Gaussian decoder takes multiple

inputs, and all of them contribute to the final color of a

single Gaussian point. The final reflectance is represented

as

ρ(x, ωo, ωi) = Θ(x|ωo, ωi, V ), (6)

where V = |PQ| is the shadow cue. In practice, we use

the same resolution as the camera for the shadow camera,

and we apply a clamping between zero and the scene units

to the shadow cue map for the stability of training.
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3.4. Hybrid optimization

With all the components above, we now have the RNG

framework, where the scene is represented as a structure of

neural Gaussian points, and the reflectance at each Gaussian

point is represented as a feature vector that is conditioned on

view/light directions and shadow cues. The adjusted 3DGS

rasterization operation becomes

Cforward =
∑

i∈N

Θ(xi|ωo, ωi, S, V )αi

i−1∏

j=1

(1− αj), (7)

where Cforward is the color at each pixel. We call this

rasterization procedure forward shading.

In forward shading, the alpha blending after the re-

flectance computation blurs the shadow. To address this

problem, we introduce the deferred shading.

Deferred shading. In deferred shading, we blend the

feature vectors of Gaussians first to get an aggregated

feature in image space, and then we decode it with the

neural Gaussian decoder. In this case, we propose the

rasterization of deferred shading as

Cdefer = Θ(
∑

i∈N

xiαi

i−1∏

j=1

(1− αj)|ωo, ωi, V ). (8)

To our observation, forward shading produces better ge-

ometry and worse shadow, while deferred shading improves

the shadow appearance but causes floaters. Therefore, we

design a two-stage hybrid optimization strategy to benefit

from both options. Further investigation into this choice is

discussed in the supplementary.

Two-stage strategy. The whole training procedure of

RNG consists of two stages. We employ forward shading

in the first stage to get Gaussian points and latent vectors

and use deferred shading in the second stage. In the second

stage, we enable the shadow cue and re-train the neural

Gaussian decoder. We keep all learned latent vectors in

the first stage as initialization of the second stage, in order

to provide more semantic information and accelerate the

training of the second stage. Note that in the first stage,

we do not enable the shadow cue, because at the early stage,

the Gaussians are not well-shaped, and the generated wrong

shadow information may hurt the training stability.

4. Results

In this section, we validate the effectiveness and quality

of RNG. We first provide the implementation details in

Sec. 4.1, and describe about the experiment setups in

Sec. 4.2. Then, we evaluate our method with quantitative

results in Sec. 4.3 and provide ablation studies in Sec. 4.4.

4.1. Implementation

We implemented our method using the Pytorch [22] frame-

work. The feature vector in each Gaussian is 16-channel,

and the neural Gaussian decoder is an MLP with 4 hidden

layers and 256 hidden units. We apply frequency encoding

to both view/light directions and shadow cues, making them

15 dimensions and 17 dimensions, respectively. We use

the Adam optimizer [16] and train it at a learning rate

1.0 × 10−3 for the color decoder MLP, 3.0 × 10−4 for

the depth refinement MLP and 2.5 × 10−3 for feature

vectors in Gaussian points. The same loss functions from

3DGS [15] are used, which is a combination of L1 loss

and structural similarity index (SSIM) [25]. We train the

model for a total 100k steps, and the forward shading stage

usually takes the first 30k iterations. In order to improve

the computational efficiency, we cache the shadow cue for

each training view and only update them every 5 iterations.

We run all our results on an RTX 4090 GPU and i9-13900K

CPU, powered by a Windows Subsystem Linux 2 (Ubuntu

22.04.5) distribution.

4.2. Experiment setups

Datasets. We validate our relighting quality by compar-

ing it to previous methods on real and synthetic datasets

from NRHints [27] and RNA [21]. We run all results on

down-sampled datasets with 512 × 512 resolution and a

maximum of 1000 training views. For synthetic data, all

backgrounds are colored in black.

Comparing methods. We select four representative

NeRF-/GS-based relighting methods for comparison. For

validating the relighting quality under point lights, we

compare with NRHints [27] and GS3 [2]. Furthermore, we

compare with GS-IR [18] and Relightable 3D Gaussian [9]

to validate the relighting under environment lights.

Metrics. We provide the peak signal-to-noise ratio

(PSNR), SSIM, and perceptual similarity (LPIPS) [31]

values for comparison, to compare both pixel-wise error and

visual differences.

4.3. Quality validation

In Fig. 4, we compare our relighting results with NRHints

and GS3 under point lighting on real-world objects and

synthetic scenes. We provide renderings under novel

views/lights and their difference maps for comparison.

Both GS3 and our method have finer details, especially

for furry objects. Both NRHints and our method handle

the shadow effects well, producing more solid and sharp

shadow regions. We typically have lowest LPIPS and

highest/second-highest PSNR and SSIM values, indicating

the overall quality of our method. In terms of training time,
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Table 1. Comparison of various scenes between NRHints [27], GS3 [2] and our method. We provide (from left to right) PSNR (↑),

SSIM (↑), and LPIPS (↓) for comparison, and the best/second-best results are colored in red / orange , respectively. We produce the best

or second-best results on most scenes and with better PSNR, SSIM, and LPIPS values on average, indicating high-fidelity reconstruction

and realistic details in our renderings.

Scene NRHints[27] GS3 [2] Ours

Cat 28.3712 0.8751 0.1318 26.0850 0.8815 0.1019 28.3869 0.8883 0.0847

CatSmall 35.4472 0.9705 0.0450 34.4018 0.9729 0.0390 34.7511 0.9699 0.0377

Cluttered 32.1470 0.9434 0.0629 30.2874 0.9443 0.0489 30.7970 0.9442 0.0456

CupFabric 38.1833 0.9831 0.0256 37.1364 0.9830 0.0236 38.5429 0.9857 0.0170

Fish 30.2113 0.9000 0.1176 30.8571 0.9180 0.0668 31.0113 0.9195 0.0561

FurBall 26.7098 0.9340 0.0524 26.3552 0.9309 0.0577 27.8211 0.9263 0.0436

HairBlonde 32.4589 0.9497 0.0388 32.9148 0.9715 0.0194 34.7907 0.9731 0.0147

Hotdog 32.8954 0.9728 0.0227 25.4029 0.9489 0.0483 30.3820 0.9603 0.0339

Lego 29.5974 0.9559 0.0300 26.6257 0.9226 0.0514 26.7235 0.9244 0.0506

Pikachu 33.5846 0.9716 0.0248 32.1464 0.9697 0.0294 31.3826 0.9661 0.0289

Pixiu 31.4333 0.9360 0.0751 30.3765 0.9371 0.0640 30.3485 0.9410 0.0540

RedCloth 34.0962 0.9186 0.1002 31.6039 0.9328 0.0489 35.2186 0.9489 0.0282

WhiteFur 23.4099 0.8871 0.1004 32.8326 0.9662 0.0220 33.7007 0.9700 0.0140

Average 31.4266 0.9383 0.0636 30.5404 0.9446 0.0478 31.8352 0.9475 0.0392

Table 2. Comparison of relighting under novel environment lighting with prior GS-based relighting methods [9, 18]. We provide (from left

to right) PSNR (↑), SSIM (↑) and LPIPS (↓) for comparison, and the best/second-best results are colored in red / orange , respectively.

Our model significantly improves the accuracy in decomposing light and materials, yielding overall prevailing metrics.

Scene GS-IR[18] RelightableGS[9] Ours

Armadillo 30.4157 0.8726 0.0316 24.4747 0.8765 0.0327 37.0618 0.9062 0.0145

CupPlane 20.7918 0.8577 0.0640 25.5422 0.9083 0.0292 28.7075 0.9189 0.0281

HairBlue 26.6556 0.8154 0.0796 20.7416 0.8187 0.0721 31.3762 0.8731 0.0700

HairYellow 23.2272 0.7996 0.1308 25.3962 0.8266 0.1152 25.6469 0.8527 0.1102

Average 25.2726 0.8363 0.0765 24.0387 0.8575 0.0623 30.6981 0.8877 0.0557

both GS3 and our method are significantly faster (more than

20×) than NRHints.

In Table 1, we also report the statistics of NRHints, GS3,

and our method on a series of datasets. Our method has

overall lower LPIPS and close SSIM values to GS3, as we

have better details. Since we also introduce the shadow cues

and hybrid optimization, the shadow quality also increases

the realism of our renderings. We are also competitive with

NRHints in terms of pixel-wise errors with much lower

training/rendering time cost, thanks to the efficiency of

3DGS and the flexibility of neural appearance models.

In Fig. 5, we provide the relighting results under novel

environment lighting and compare them with prior GS-

based methods [9, 18], and report the quantitative results

across different datasets in Table 2. We run their methods

with datasets under unknown environment lighting, and run

our method with the same amount of training views under

point lights, to be as fair as possible. After training all

models, we relight them under the same novel environment

map for quality comparison. Our method produces closer

appearance to the reference and more plausible shadow

effects, achieving higher PSNR/SSIM and lower LPIPS

values. Our method benefits from two aspects: the point-lit

input images and the neural appearance model. Capturing

with point lights helps us better decompose the lighting

and materials, and the neural appearance model can handle

complex light transport such as sub-surface scattering and

hair fiber scattering, leading to overall better results.

We also provide additional validation and visualization

of our learned geometry and shadows, the relighting quality,

and the power of neural appearance in our supplementary.

Please refer to them for more details.

4.4. Ablation study

Ablation of all components. In Fig. 6, we show the

ablation of our model by gradually removing the depth
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GS3 (~1 hour) Ours (~1.3 hours)

33.0812 | 0.9595 | 0.0270 33.1967	|	0.9623	|	0.0172

WhiteFur

ReferenceNRHints (~26 hours)

22.8034 | 0.8500 | 0.1273

Fish

Cat

26.9651 | 0.8478 | 0.1553 25.5781 | 0.8676 | 0.1090 27.0613	|	0.8643	|	0.0946

27.2085 | 0.9445 |	0.038725.8700 | 0.9388 | 0.058728.5176	|	0.9495	|	0.0411

Hotdog

PSNR | SSIM | LPIPS

PSNR | SSIM | LPIPS

PSNR | SSIM | LPIPS

28.6495	|	0.9235	|	0.042728.4255 | 0.9178 | 0.062326.2944 | 0.8624 | 0.1473 PSNR | SSIM | LPIPS

Fish

Hotdog

WhiteFur

Figure 4. Comparison between NRHints [27], GS3 [2] and our method on real/synthetic datasets under point lights. The best/second-best

results are marked as bold/italic, respectively. Our method has the lowest LPIPS with the shown images and is also the best or second-best

in PSNR and SSIM values. Our method also has better shadow areas than GS3.

GS-IR ReferenceOurs

26.1621

Relightable GS

22.9300 14.6757 28.0282	23.9514 26.0756 

31.6699	15.6282 20.2044 31.0758	|	0.7578	|	0.012216.2373 | 0.8458 | 0.035325.2326 | 0.7064 | 0.0342

CupPlane HairYellow

HairBlueArmadillo30.0067	22.5417 13.0382

GS-IR ReferenceOursRelightable GS

Figure 5. Comparison of relighting results under environment lighting with PSNR values of each image. We compare our relighting results

with some previous GS-based methods [9, 18] and the ground truth. Our method decomposes the light and materials better and achieves

better relighting, as we utilize point-lit images and the neural appearance model.

refinement MLP, the shadow cue, and the deferred shading.

The quality gap indicates the effectiveness and necessity of

all the components of RNG. We also provide the ablation

study on network sizes in our supplementary.

Effect of depth refinement network. In Fig. 7, we show

the significance of the depth refinement network. We

compare the shapes and positions of the cast shadows

via shadow mapping with/without the depth refinement

network. As a result, there is obvious mismatching in
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Reference
(PSNR)	

Deferred shading/ /Shadow cue Depth	re�inementw/w/o

26.8435

26.9347

26.843526.7003

26.934726.3071

26.7003 27.0364

26.3071 27.9245

27.0364 27.6507

27.924527.1504

27.6507

27.1504

Figure 6. The ablation study of RNG components. We gradually

remove them from our full model and show the quality gap be-

tween them with PSNR values. The shadow quality is significantly

decreased without these components, and the PSNR values also

demonstrate their effectiveness and necessity.

Reference

without

depth
re�inement

network

Shadow cue

Shadow cue Shadow cue

Shadow cue

Shadow cue diff. Shadow cue diff.

with

depth
re�inement

network

Figure 7. The comparison of results with/without depth refinement

MLP and the visualizations of corresponding shadow cues. The

corresponding positions of shadow cues in both cases are marked

with red arrows and dotted lines. With the depth refinement,

the shadow mapping gives more reasonable and matched shadow

cues, helping the network to better condition the appearance of the

shadow information.

Reference

23.1277 | 0.9506 | 0.0735

Ours

Shadow cue PSNR | SSIM | LPIPS

Figure 8. Comparison of our method and the ground truth on

highly reflective objects. Our result blurs the reflection, as we did

not introduce ray marching into our framework.

positions with the ground truth if we remove the depth

refinement network. The model can more accurately locate

the shading points and generate more reasonable shadow

cues with depth refinement.

4.5. Discussion and limitations

Precision of our representation. RNG shows less accu-

racy in terms of PSNR values in some scenes than NRHints.

The main reason is that NRHints uses an SDF as a powerful

prior, which gives very accurate shadows for objects that

are clearly surface-like. Furthermore, NRHints uses larger

networks than ours; we trade off between quality and

computational overhead.

Geometry quality. Although we deploy the shadow cue

to help the network predict better shadow appearances and

present the depth refinement network to compensate for

this inaccuracy, the shadow quality is still limited by the

geometry reconstruction precision, since a perfect geome-

try reconstruction for soft-boundary objects is not trivial.

Therefore, we suffer from this disadvantage like most GS-

based approaches.

Complex material effects. RNG can handle objects with

both hard surfaces and ill-defined shapes. However, since

we use rasterization instead of ray marching, it is difficult

for our model to handle highly reflective appearances. We

also show a failure case in Fig. 8. The reflection of the

checkerboard is blurry on the dice, and the reflected shadow

is incomplete.

5. Conclusion

In this paper, we have proposed RNG for relighting both

surface-based and soft-boundary objects under the 3DGS

framework. The proposed neural Gaussian framework

avoids assumptions on shading models, and the shadow

cue helps produce sharp shadows, together with our hybrid

optimization strategy. RNG can render high-fidelity details

and high-quality shadow effects, achieving real-time ren-

dering with a significantly improved training (1.3 hours)

and rendering (60 fps) performance, compared to prior

work.

There are still many potential future research directions.

For example, introducing reflection and refraction into

the existing framework may be promising. Loosening

the requirement on the lighting conditions and supporting

more flexible capture setups would be valuable but also

challenging. Another potential direction is to explore a

more accurate definition of depths in a Gaussian splatting

framework, further improving the shadow quality.

Acknowledgements

We thank the reviewers for their valuable comments.

This work is supported by the National Science Fund of

China under Grant Nos. U24A20330, 62361166670, and

62172220.

26532



References

[1] Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall,
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